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C o m m e n t a r y

In the exuberant world of K+ channels, the Ca2+- and 
voltage-activated K+ (BK, MaxiK, Slo1) channel stands 
alone. It is coded by a single gene (slo1 or KCNMA1), and 
the pore-forming  subunit has seven transmembrane 
segments instead of six as found in voltage-dependent 
K+ channels (Atkinson et al., 1991; Adelman et al., 1992; 
Butler et al., 1993; Wallner et al., 1996). Being activated 
by depolarizing voltages and cytoplasmic Ca2+, the BK 
channel is the perfect molecular machine to retard or 
to simply stop excitatory signals. The negative feedback 
(hyperpolarization) created by the opening of these K+ 
channels is caused by the perfect tuning between Ca2+ 
and voltage sensors. The communication between these 
two types of sensors is allosterically established, that is, volt-
age or internal Ca2+ alone is able to open the BK chan-
nel, but channel opening is increasingly facilitated as 
more Ca2+ and voltage sensors are activated (Horrigan and 
Aldrich, 2002; Horrigan, 2012) (Fig. 1 A). Another impor-
tant difference between BK channels and Kv channels, 
where opening is tightly coupled to voltage-sensor activa-
tion (Soler-Llavina et al., 2003) (Fig. 1 B), is that, albeit 
with a very low probability, BK channels can open in a 
voltage sensor– and Ca2+-independent manner (reaction 
C↔O defined by the equilibrium constant L in Fig. 1 A).

Despite being coded by a single gene, BK channel diver-
sity is large. Alternative splicing, posttranslational modi-
fications, and/or the presence of modulatory  or  
subunits create this diversity (Orio et al., 2002; Salkoff 
et al., 2006; Yan and Aldrich, 2010, 2012). In particular, 
modifications induced in BK gating kinetics by the 1, 2, 
and 4 subunits proved to be of crucial importance in 
many physiological processes, ranging from shaping neu-
ronal excitability and neurosecretion to smooth muscle 
tone, and in others not so physiological, such as alcohol 
tolerance (Brenner et al., 2000; Hu et al., 2001; Gollasch 
et al., 2002; Grimm and Sansom, 2007; Martin et al., 2008). 
The expression of  subunits is highly tissue specific; 1 
is the only  subunit expressed in smooth muscle, and 4 
is mainly expressed in the nervous system (Orio et al., 2002; 
Wu and Marx, 2010). In vascular smooth muscle cells 
(SMCs), the presence of 1 plays a vital role in vasoregu-
lation, and its lack leads to hypertension (Brenner et al., 
2000; Fernández-Fernández et al., 2004; Nelson and Bonev, 
2004). 1 and 2 have been observed to dramatically 
slow down activation and deactivation kinetics as well as 

increase the apparent Ca2+ sensitivity of the BK channel. 
Although 4 also decelerates BK activation and deacti-
vation kinetics, even more so than 1, Ca2+ sensitivity of 
channels formed by /4 subunits is complex. Chan-
nels are less sensitive to Ca2+ at low internal Ca2+ concen-
trations (<10 µM) than channels formed by the  subunit 
alone. However, Ca2+ is more effective in activating /4 
channels at higher Ca2+ concentrations (Ha et al., 2004; 
Wang et al., 2006).

In addition to their effects on channel gating,  sub-
units grant BK channels sensitivity to several physiologi-
cally important compounds, thus making these subunits 
targets for possible pharmacological interventions. For 
example, 1-containing BK channels but not channels 
formed by the  subunit alone appear to be the target 
of 17-estradiol and other compounds such as estrogen 
analogues, anti-estrogens, and the bile salt component 
lithocholic acid (Valverde et al., 1999; Dick et al., 2001; 
Bukiya et al., 2009; Maher et al., 2013). The activation of 
BK channels by 17-estradiol has been proposed as the 
possible mechanism that mediates the acute relaxation 
of vascular smooth muscle induced by the hormone (White 
et al., 1995; Ruehlmann et al., 1998). On the other hand, 
stress steroids activate channels formed by the /4 com-
plex but not by /2 (King et al., 2006). Polyunsaturated 
fatty acids such as arachidonic acid (AA) are also able to 
directly activate BK channels, but in this case, AA enhances 
BK current in the presence of either 2 or 3 (Sun et al., 
2007). Findings by Sun et al. (2007) also show that AA is 
able to remove inactivation, suggesting that this fatty acid 
is interacting with the 2-inactivating peptide. Tissue spec-
ificity of  subunits and their particular capacity to endow 
BK channels with different pharmacological profiles have 
greatly increased the importance of BK channels in main-
taining the adequate cellular electrical homeostasis in 
different tissues.

Docosahexaenoic acid (DHA), an omega-3 fatty acid 
known to be associated with beneficial cardiovascular 
effects, was reported to be a potent activator of BK cur-
rents in rat coronary artery SMCs and to promote dila-
tion of isolated small coronary arteries (Lai et al., 2009; 
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rest and in the absence of internal Ca2+, Hoshi’s group 
arrived at the conclusion that DHA acts directly on the 
C↔O equilibrium (Fig. 1 A) and destabilizes the chan-
nel closed conformation of the pore gate.

The next step in this BK channel saga was to identify the 
molecular determinants in the 1 subunit that confer BK 
its ability to be activated by the omega-3 fatty acid (Hoshi 
et al., 2013a). The effects of DHA were first tested in chan-
nel with various subunits (1, 2 [inactivation removed], 
4, and 1 [LRRC26]), with the result that robust channel 
activation by DHA was only observed in channels formed 
by /1 and /4.  subunits consist of two transmem-
brane domains connected by a large external loop and 
with N and C termini oriented toward the cytoplasm. The 
1 phenotype can be recovered by creating a chimera 
containing the N terminus and the N-terminal half of the 
first transmembrane segment (TM1) of 1 in a 2 back-
ground. Two 1 amino acid residues, one in the amino ter-
minus (R11) and the other in TM1 (C18), proved to be 
enough to recover the full effect of DHA when replacing 
the corresponding amino acids in 2 (A42, L49). On the 
other hand, the corresponding amino acids in 4 are 
E12 and R19. As in the case of the double mutant 2 
A42R:L49C, BK channels formed by /2 A42E:L49R 
subunits have very similar responses to DHA as /4 
channels. Mechanistically, it is still unclear how these of 
amino acid residues in 1 and 4 confer DHA sensitivity 
to the BK channel. However, the fact that the /1 as well 
as the /4 channel can be activated by DHA opens the 
possibility that DHA regulation of neuronal BK channel 
activity may play an important role in the nervous system.

In this issue of JGP, Hoshi et al. continue dissecting 
the effects of DHA, and their queries have led them to 
the identification of a single amino acid residue in the 
BK S6 transmembrane domain, which has been seen  
to establish the sensitivity to the omega-3 fatty acid.  

Wang et al., 2011). DHA, an omega-3 fatty acid found in 
fish oil (salmon, sardines, herring, etc.) and also in plant 
seeds, is the most abundant omega-3 fatty acid in the brain. 
By studying the Greenland Inuit tribe, which consumes 
large amounts of fat from fish, the conclusion was reached 
that high levels of omega-3 fatty acids consumed by the 
Inuit were the cause of their reduced triglycerides and 
blood pressure. Hence, this study underscores the bene-
fits of consuming this type of lipid (Dyerberg et al., 1975). 
Below-normal levels of this fatty acid have been also as-
sociated with cognitive decline and increase in neural 
cell death (Serhan et al., 2004; Lukiw et al., 2005). How-
ever, the detailed mechanisms underlying the mode of 
action of this important fatty acid remain unclear.

The work done by Hoshi et al. (2013b) adds to the 
numerous beneficial effects of DHA by including the 
possibility that this fatty acid could be clinically relevant 
if targeted to BK channels, because of its blood pres-
sure–lowering effects. In wild-type mice, but not in Slo1 
knockout (SLO1/) mice, DHA injections have been ob-
served to reversibly reduce blood pressure and produce 
a significant increase in BK-mediated K+ currents in iso-
lated aortic vascular SMCs, a current enhancement that 
was absent in SMCs dissociated from SLO1/ mice. When 
applied to the intracellular side of inside-out membrane 
patches, DHA was able to quickly activate /1 channels 
in a reversible manner and with an EC50 of 500 nM. These 
findings indicate that the omega-3 fatty acid directly acts 
on the /1 complex with an affinity that is 20-fold 
greater than the affinity to a G-coupled receptor associ-
ated to the antiinflammatory properties of this fatty acid 
(Oh et al., 2010). Other important fatty acids like, for 
example, omega-6 fatty acids, -linoleic and eicosapen-
taneoic acid or AA, are also able to activate BK channels, 
albeit with a lower potency. Because DHA BK channel 
activation can be elicited with all the voltage sensors at 

Figure 1. Sequential versus allo-
steric models. (A) Allosteric model. 
In this model, Po is given by the 
expression: Po = [L(1 + JD + KC + 
JKCD)4]/[L(1 + JD + KC + JKCD)4 + 
(1 + J + K + JKE)4]; J = e(zjF(VVh)/RT), 
with zJ = 0.6 e0, Vh = 168 mV; L = 
Loe(zLFV/RT), with zL = 0.3 e0 and 
Lo = 106. The values for the allo-
steric factors were: D = 19, C = 14, 
and E = 3.8, and the constant Kd = 
8.2 µM defines the Ca2+-binding re-
action X↔XCa (Orio and Latorre, 
2005). (B) A sequential model of 
the Hodgkin and Huxley type. In 
this type of model, the open prob-
ability (Po) is given by the expres-
sion: Po = (1/(1 + J))4, where the 
equilibrium constant that defines 
the reaction Resting↔Active of 
the voltage sensors is defined as:  
J = e(zjF(VVh)/RT), with zJ = 1.2 e0 
and Vh = 20 mV.
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transforms DHA binding energy into the pore opening 
is an open question. Perhaps the answer will emerge in 
the next paper by Hoshi’s group.
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