Supplementary Information – A Knowledge Graph approach to predict and interpret Disease-causing Gene Interactions

Alexandre Renaux $^{1,2,3*},~$ Chloé Terwagne $^{1,2},~$ Michael Cochez $^{4,5},~$ Ilaria Tiddi $^4,~$ Ann Nowé $^{1,3},~$ Tom Lenaerts 1,2,3*

^{1*}Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium.
²Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.

³Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium.

⁴Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The

Netherlands.

⁵Discovery Lab, Elsevier, Amsterdam, The Netherlands.

*Corresponding author(s). E-mail(s): Alexandre.Renaux@ulb.be; tom.lenaerts@ulb.be;

Contributing authors: chloe.terwagne@live.be; m.cochez@vu.nl; i.tiddi@vu.nl; ann.nowe@ai.vub.ac.be;

Appendix A BOCK knowledge graph data integration

Source database	database Version Extracted information		KG components
OLIDA [1]	04-2022	Oligogenic gene combinations, DOI, timestamp, ethnicity, curation scores	OLIDA
Mentha [2]	10-10-2022	Manually curated protein-protein interactions in human	PPI
STRING db [?]	v11.5	Human protein sequence raw blastp scores	SEQSIM
TCSBN [3]	26-10-2020	Tissue-specific co-expression network from normal human tissues (derived from GTEx)	COEXP
GTEx [4]	V8	Median gene-level RNA-seq transcript per millions (TPM) by tissue ; Tissue names and sample sizes	COEXP
InterPro [4]	87.0	Human protein domains and families	DOMAIN, FAMILY
CORUM [?]	4.0	Human protein complexes	COMPLEX
Gene Ontology [5]	10-07-2022	Gene ontology and annotations on human genes (positive associations with qualifiers "enables", "involved in", "is active in" and "located in"), excluding IEA and ND evidence codes	PROCESS, FUNCTION, CELLCMP
Human Phenotype Ontology [6]	06-2022	Human 'phenotypic abnormality' sub-ontology (non-obsolete), gene annotations and disease associations	PHENO, DISEASE
dbNSFP [7]	v4.3	RVIS [8] and GDI [9] gene scores	All with Gene
HGNC [10]	2022-10-12	Official gene names and Ensembl mappings	All with Gene
Ensembl [11]	Release 107	Ensembl identifiers, gene name and entrez id mappings	All with Gene
UniProt [12]	2022_04	UniProt mappings to Ensembl PPI, SEQSIM COMPLEX, DOM FAMILY	

Table A1. Source databases to construct BOCK. Bioinformatics databases used with their version used for this study. The specific extracted information from each database is indicated as well as the corresponding KG component it is used for (see Supplementary Table A2).

KG component	Node types	Edge types	Edge score	Filtering
OLIDA	OligogenicCombination, Disease	causes	None	None
	OligogenicCombination, Gene	involves	None	None
DISEASE	Disease, Phenotype	described	Disease-Phenotype frequency	None
PPI	Gene	physInteracts	Original Mentha score	None
SEQSIM	Gene	seqSimilar	Blast Score Ratio (BSR)	align. coverage $\geq 50\%$; BSR ≥ 0.2
COEXP	Gene	coexpresses	$CI_{low}(cor)$	tissue-sample-size > 70 ; $Z_{tpm}(G_1)$ & $Z_{tpm}(G_2) \ge -3$; $CI_{low}(cor) \ge 0.80$; p-val-adj < 0.01
DOMAIN	ProteinDomain, Gene	hasUnit	FI(PD)	Only "Active_site", "Binding_site", "Conserved_site", "Domain", "PTM", "Repeat"
FAMILY	ProteinFamily, Gene	belongs	FI(PF)	Only "Family" and "Homologous_superfamily"
COMPLEX	ProteinComplex, Gene	forms	FI(PC)	None
PROCESS	BiologicalProcess, Gene	associated	FI(BP)	None
11000255	BiologicalProcess	resembles	$SimGIC(BP_1, BP_2)$	Sim. score ≥ 0.5
FUNCTION	MolecularFunction, Gene	associated	FI(MF)	None
FORCTION	MolecularFunction	resembles	$SimGIC(MF_1, MF_2)$	Sim. score ≥ 0.5
CELLCMP	CellularComponent, Gene	associated	FI(CC)	None
	CellularComponent	resembles	$SimGIC(CC_1, CC_2)$	Sim. score ≥ 0.5
PHENO	Phenotype, Gene	associated	FI(P)	None
	Phenotype	resembles	$SimGIC(P_1, P_2)$	Sim. score ≥ 0.5

Table A2. KG components integration into BOCK. Data integration of the BOCK knowledge graph by component. Each component describes a different biological level or view and has been integrated into the knowledge graph from a source network or ontology database (see Supplementary Table A1) into KG node types and edge types. For most components, an edge score is computed and used as an edge property. For some components, the integration process has required the application of a filtering stage to limit the noise and the size of the integrated network. More details about the computation of scores and filtering steps are provided in the Methods section BOCK data integration and resources.

Network resource	# Genes	# Exclusive genes
Domains (InterPro)	20302	691
Functions (GO)	18344	46
PPI (Mentha)	17062	89
Coexpression (TSCBN)	14940	33
Seq. similarity (STRING)	12226	67
Phenotypes (HPO)	4870	32
Complexes (CORUM)	4357	0
Oligogenic combinations (OLIDA)	907	0

Table A3. Gene contribution from BOCK sources. BOCK source network gene contributions. We calculated #Genes as the total number of genes present in each source network. $\#Exclusive\ genes$ was obtained by considering genes that are exclusively present in each of the specific network resource.

Appendix B Disease-causing gene pair details

This appendix provides detailed information on the selection and analysis of disease-causing gene pairs. It covers the assignment of oligogenic evidence levels to each variant combination (Supplementary Table B1), the selection process of pathogenic gene pairs based on these levels (Supplementary Table B2), and specifics of the independent test set of 15 selected pathogenic gene pairs (Supplementary Table B3).

Evidence level	Weight	Criteria based on OLIDA curation scores				
	· · · · · · · · · · · · · · · · · · ·	FAMmanual	OR	(STATmeta	AND	STATmanual)
Weak	0.33	1		1	&	1
Moderate	0.67	2		2	-	-
Strong	1.00	3		3	-	-

Table B1. Oligogenic evidence levels based on familial and statistical scores. For each variant combination present in OLIDA, different types of curation confidence scores have been assigned according to the strength of evidences provided (e.g. relatives genotype information, cohort statistical analyses, etc). See [1] for more information on OLIDA confidence scores. For this method, we created an Evidence level, solely based on familial (FAMmanual) and statistical (STATmeta, STATmanual) curation confidence scores, associated with a linear weight. If none of the criteria are matching, the variant combination is discarded.

Status	# variant combinations	# gene pairs	# diseases	
Discarded	324	130	71	
Weak	577	280	108	
Moderate	131	101	71	
Strong	86	60	30	
Selected	794	441	153	

Table B2. Pathogenic gene pair selection according to evidence levels. Evidence levels have been attributed for each digenic variant combination in OLIDA (Supplementary Table B1). All variant combinations passing at least the *Weak* evidence level criteria have been selected (a total of 794) and weighted accordingly and the remaining variant combinations have been discarded. Statistics are presented with a gene-level and disease-level aggregation, by attributing the highest evidence level of each set.

Gene pair	Evidence level	Disease	PMID	Publication date
MYH7-ANKRD1	Moderate	Left ventricular noncompaction	34752814	06/11/2021
LAMA3-LAMB3	Moderate	Severe generalized junctional epidermolysis bullosa	34837689	01/10/2021
TSHR-SLC26A4	Moderate	Congenital hypothyroidism	34374102	10/08/2021
JAG1-DUOXA1	Moderate	Congenital hypothyroidism	34374102	10/08/2021
CDCA8-DUOX2	Moderate	Congenital hypothyroidism	34374102	10/08/2021
HOXB3-TG	Moderate	Congenital hypothyroidism	34374102	10/08/2021
MYO7A-SHROOM2	Strong	Atypical hemolytic uremic syndrome	34391192	02/08/2021
PKHD1-PKD1	Moderate	Autosomal recessive polycystic kidney disease	34032358	25/05/2021
POLG-PPFIA4	Moderate	Isolated focal cortical dysplasia	34095804	07/05/2021
SLC20A2-PDGFRB	Moderate	Bilateral striopallidodentate calcinosis	33793087	01/04/2021
TRAPPC11-TTN	Strong	Limb-girdle muscular dystrophy	33746696	04/03/2021
SPG7-SPAST	Strong	Hereditary spastic paraplegia	33598982	20/02/2021
MITF-C2orf74	Moderate	Waardenburg syndrome	33571247	12/02/2021
CHD7-CDON	Moderate	Kallmann syndrome	33208564	17/11/2020
BMPR2-NOTCH3	Moderate	Idiopathic pulmonary arterial hypertension	33007923	30/09/2020

Table B3. Independent test set details. Details on the selected held-out test set made of 15 pathogenic gene pairs. This test set was selected based on an automatic procedure designed to favour diverse, confident and recently published cases: first, all disease-causing gene pairs were ranked by their first associated article publication date, then for each gene pair from the most recent to the oldest, gene pairs were chosen if their evidence level was at least Moderate (Supplementary Table B1) and if none of their genes overlapped with the previously selected ones.

Appendix C ARBOCK framework parameter analysis

We present here in more details the parameters used in the ARBOCK framework (Table C1) and how their choice was empirically determined. In particular, we analyse the effect of the alpha, minsup_ratio and max_rule_length parameters on the model's performance, measured by the Area Under the Receiver Operating Characteristic (AUROC), and explanation complexity, measured mainly by the number of paths on average present in the explanation subgraph, for True Positive (TP) instances. Note that for this benchmark, the choice of AUROC as performance metric stems from its ability to meaningfully evaluate and compare models irrespective of class imbalance and threshold settings, without being artificially inflated by models that merely predict the majority class (e.g sets of parameters leading to a model with only the default rule), considering our high class imbalance setting.

Figure C2 present a comprehensive analysis of the best performing models (considering all other parameters) according to the alpha parameter of the decision set model. At α =0.5, performance is maximised and higher values lead to more explanation complexity, measured as the number of matching rules and explanation path count. This model corresponds to path_cutoff=3; minsup_ratio=0.2; max_rule_length=3.

Figure C3 shows the combined effect of minsup_ratio and max_rule_length, for fixed α =0.5 and path_cutoff=3, on performance and explanation path count. Higher max_rule_length leads to a similar performance but at the cost of increasing explanation complexity. Lower minsup_ratio leads to better performance and a smaller number of paths in explanations.

Fixing path_cutoff=2, as presented in Figures C4 and C5 leads to a maximum performance of 0.67 for all evaluated sets of parameters but yields simpler explanations in terms of path count.

Parameter	Description Step		Algorithm	Range	Set value
path_cutoff	Maximum number of edges traversed for a path	Path extraction	Depth-first search	$[1, \infty[$	3
minsup_ratio	Minimum fraction of entity pairs to consider a pattern frequent	pairs to consider a Rule mining]0, 1[0.2
max_rule_length	Maximum number of metapaths in a rule	Rule mining		$[2, \infty[$	3
α	Relative importance of α positive coverage over Model transport α		Greedy weighted set cover]0, 1[0.5

Table C1. Framework parameters summary. This table presents the parameters defined in the ARBOCK approach. For each parameter, a description, its relevant step in the process, the algorithm employed in that step, the range of potential values, and the specific value chosen for this study are provided.

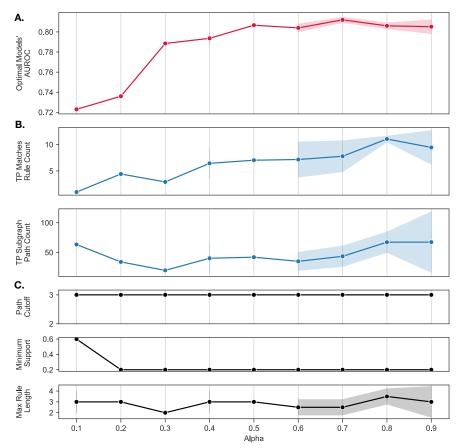


Fig. C2. Influence of decision model's alpha parameter tuning Evaluating decision set models over a spectrum of the decision model's alpha (α) values (0.1-0.9) and variable parameters - Path Cutoff (path_cutoff) $\{2,3\}$, Minimum Support (minsup_ratio) $\{0.2, 0.4, 0.6, 0.8\}$, Max Rule Length (max_rule_length) $\{2,3,4\}$, we highlight the performance and characteristics of the optimal models for each alpha value. This evaluation is performed on the model excluding Phenotype, prone to study bias. Optimal models for each alpha are selected based on mean AUROC from a stratified cross-validation, keeping all within 0.01 of the highest performer to ensure comparable accuracy levels. (A) Mean AUROC of top-performing models evaluated via stratified cross-validation on test sets (B) Measures of explanation complexity for the associated models, calculated from predicted true positive (TP) gene pairs on the test sets: Rule Count measures the mean number of rules per match, and Path Count measures the mean number of paths across all rules, on average per match. (C) Parameter distribution for the corresponding top-performing models.

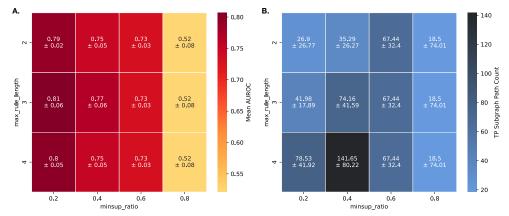


Fig. C3. Influence of minimum support and max rule length parameters tuning. Heatmaps showing the influence of parameters minsup_ratio and max_rule_length on the performance and explanation complexity for decision models trained with paths excluding Phenotype and with fixed parameters: $\alpha=0.5$ and path_cutoff = 3.

(A) Effect on the model performance, evaluated with mean AUROC on a stratified cross-validation. (B) Effect on the model explanation complexity, evaluated with the Path Count measure, measuring the mean number of paths across all rules, on average per True Positive matches.

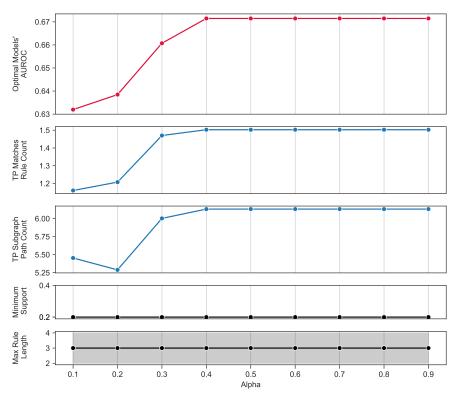


Fig. C4. Influence of decision model's alpha parameter tuning with path_cutoff=2 Evaluating decision set models with a fixed Path Cutoff = 2, over a spectrum of the decision model's alpha (α) values (0.1-0.9) and variable parameters - Minimum Support (minsup_ratio) {0.2, 0.4, 0.6, 0.8}, Max Rule Length (max_rule_length) {2,3,4}, we highlight the performance and characteristics of the optimal models for each alpha value. This evaluation is performed on the model excluding Phenotype, prone to study bias. Optimal models for each alpha are selected based on mean AUROC from a stratified cross-validation, keeping all within 0.01 of the highest performer to ensure comparable accuracy levels. (A) Mean AUROC of top-performing models evaluated via stratified cross-validation on test sets (B) Measures of explanation complexity for the associated models, calculated from predicted true positive (TP) gene pairs on the test sets: Rule Count measures the mean number of rules per match, and Path Count measures the mean number of paths across all rules, on average per match. (C) Parameter distribution for the corresponding top-performing models.

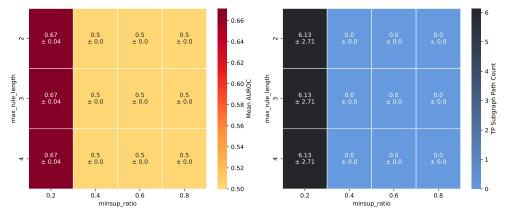


Fig. C5. Influence of minimum support and max rule length parameters tuning, with path_cutoff = 2. Heatmaps showing the influence of parameters minsup_ratio and max_rule_length on the performance and explanation complexity for decision models trained with paths excluding Phenotype and with fixed parameters: $\alpha = 0.5$ and path_cutoff = 2. (A) Effect on the model performance, evaluated with mean AUROC on a stratified cross-validation. (B) Effect on the model explanation complexity, evaluated with the Path Count measure, measuring the mean number of paths across all rules, on average per True Positive matches.

Appendix D Mined rules metrics distribution

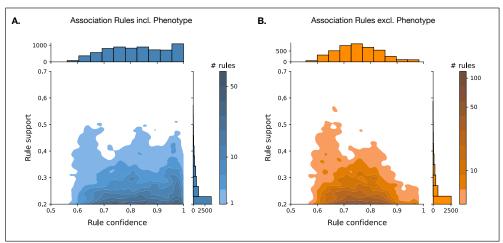


Fig. D1. Distribution of all candidate association rules obtained by mining all disease-causing gene pairs in the training set, according to two metrics: the rule support (*i.e.* the ratio of pathogenic gene pairs associated with the rule pattern) and the rule confidence (*i.e.* the likelihood of a gene pair being pathogenic when it matches the rule pattern). The darkness of the shade increases logarithmically with the number of rules. **A.** Rules mined from paths including Phenotype (*incl. Pheno*). **B.** Rules mined from paths excluding Phenotype (*excl. Pheno*).

Appendix E Overview of the machine-learning model assessment

DOME	Version	1.0
Data	Provenance	OLIDA [1], Mentha [2], STRING db [?], TCSBN [3], GTEx [4], Inter-Pro [4], CORUM [?], Gene Ontology [5], Human Phenotype Ontology [6], dbNSFP [7], HGNC [10], Ensembl [11], UniProt [12]. All these sources are merged as the knowledge graph BOCK. Negative gene pair data are generated from the 1000 genomes Project [?].
	Dataset splits	426 positive instances, 42.600 negative instances for training data. 15 positive instances as validation set.
	Redundancy between data splits	No overlap
	Availability of data	Yes: BOCK knowledge graph at: doi.org/10.5281/zenodo.7185679 and 1000 genome project at: www.internationalgenome.org
	Algorithm	Associative classification with a weighted set cover approach.
	Meta-predictions	No.
Optimization .	Data encoding	Transformation of gene pair paths into metapath-based rules.
· F	Parameters	path cutoff = 3 ; minsup ratio = 0.2 ; max rule length = 3 ; α = 0.5
	Features	Metapath features obtained by aggregating the path information for all gene pairs of the positive set.
	Fitting	To avoid overfitting, rules can only associate 3 different metapaths and needs to be supported by at least 20% of positive training instances.
	Regularization	No
	Availability of configuration	Yes: github.com/oligogenic/bock_rule_mining
Model	Interpretability	White box model (rule-based) with knowledge-based explanations for gene pairs predicted as positive.
	Output	Classification probability (with predicted class) and explanation subgraphs for positively predicted instances
	Execution time	1000 samples in 0.56 seconds on a single Intel i5 core.
	Availability of software	Yes, Github: github.com/oligogenic/bock_rule_mining
	Evaluation method	Both stratified 10-fold cross validation and evaluation on 15 independent validation positive instances
Evaluation	Performance measures	Precision, Recall, ROC AUC, PR AUC
	Comparison	Model with and without phenotype information and the DiGePred model on the independent validation set.
	Confidence	Stability of the ROC AUC measure over different folds of cross-validation (std. 0.03).
	Availability of evaluation	Yes: Github: github.com/oligogenic/bock_rule_mining

Table E1. DOME recommendation table consisting of essential information to assess the machine learning approach [13]. These criteria correspond to the decision set models presented in this study.

Appendix F Predictive performance of a Random Walk with Restart on BOCK

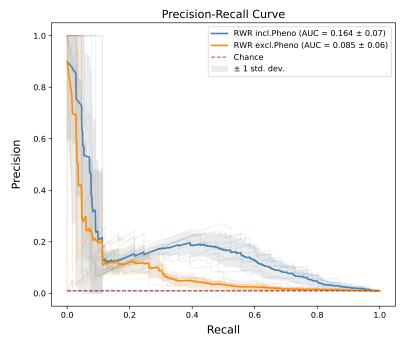


Fig. F1. For baseline comparison, a random walk with restart (with restart probability = 0.7 [14]) was performed on BOCK for all selected gene pairs starting from the gene with the lowest Residual Variant Intolerance Score (RVIS) [8] to the gene with the highest. A logistic regression model trained with the random walk diffusion probability as feature was trained. We evaluated the model performance on predicting gene pair pathogenicity on a 10-fold stratified cross-validation and we report the Precision Recall Curve for random walks including and excluding the traversal of Phenotype nodes.

Appendix G Knowledge biases and the influence of phenotype inclusion

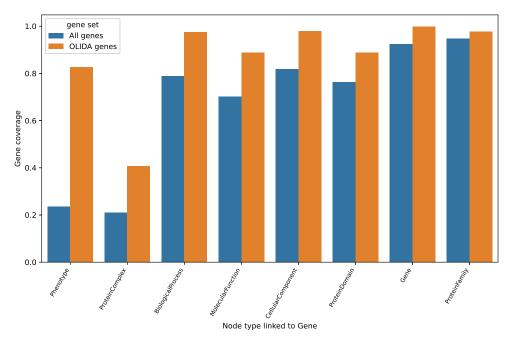


Fig. G1. Gene annotation coverage in OLIDA vs. all genes. Ratio of genes linked to each node types in the knowledge graph (excluding OligogenicCombination and Disease). In blue, this ratio is calculated over all human genes. In orange, it is calculated over all genes involved in a combination in OLIDA. The node types are ordered by decreasing difference between these two ratios.

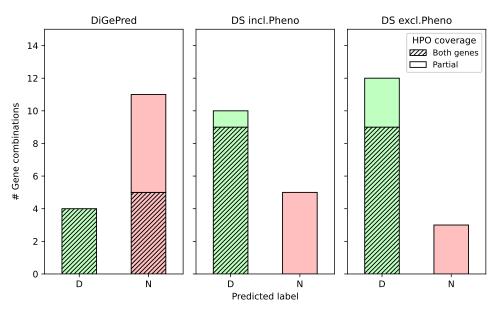


Fig. G2. Comparison of predictions on held-out pathogenic gene pairs with different phenotype annotations. Comparison of three predictive models: "DiGePred" [15] (a gene pair pathogenicity predictor with features at the gene and relationship level, including strong phenotype-based features), "BOCK-DS" (the decision set trained without phenotype-based paths) and "BOCK-DS incl. Phenotype" (the decision set trained with inclusion of paths traversing nodes of type "Phenotype"). The 15 held-out disease-causing gene combinations are evaluated on the three models and the number of gene pairs is shown for each predicted label (D=Disease-causing; N=Neutral); The overlaid stripes indicates that both genes of a combination are annotated with at least one human phenotype ontology (HPO) term.

Gene pair (A,B)	#Pheno. A	#Pheno. B	Phenotype Similarity	$\operatorname{DiGePred}$	DS incl.Pheno	DS excl.Pheno
HOXB3-TG	0	32	0.00	0.00	0.06	0.80
CDCA8-DUOX2	0	38	0.00	0.01	0.92	0.84
MYO7A-SHROOM2	34	0	0.00	0.02	0.98	0.97
MITF-C2orf74	58	0	0.00	0.02	0.06	0.12
JAG1-DUOXA1	96	0	0.00	0.01	0.06	0.12
POLG-PPFIA4	245	0	0.00	0.03	0.06	0.12
BMPR2-NOTCH3	19	133	0.01	0.05	0.98	0.93
MYH7-ANKRD1	171	8	0.05	0.23	1.00	0.97
PKHD1-PKD1	75	27	0.10	0.03	1.00	0.97
CHD7-CDON	217	116	0.10	0.38	1.00	0.84
TRAPPC11-TTN	73	114	0.11	0.26	0.99	0.89
SPG7-SPAST	53	34	0.21	0.66	1.00	0.80
TSHR-SLC26A4	60	35	0.28	0.88	1.00	0.80
SLC20A2-PDGFRB	35	108	0.32	0.72	1.00	0.80
LAMA3-LAMB3	71	74	0.84	0.90	1.00	0.97

Table G3. Independent test set predicted probabilities in relation with phenotype. Table presenting the 15 pathogenic gene pairs held-out as independent test set. For each gene pair, the number of phenotype terms (HPO) linked to to the first and second gene is shown, as well as the Jaccard similarity index between HPO terms of the two genes (Phenotype Similarity). The predicted probabilities are shown for the three benchmarked models: "DiGePred" [15] (a gene pair pathogenicity predictor with features at the gene and relationship level, including strong phenotype-based features), "DS incl.Pheno" (the decision set trained with inclusion of paths traversing nodes of type "Phenotype") and "DS excl.Pheno" (the decision set trained without phenotype-based paths). Green and red colors represent the predicted classification labels, respectively "disease-causing" and "neutral", based on the classification optimal thresholds of these models (DiGePred=0.496; DS incl.Pheno=0.929; DS excl.Pheno=0.788). Rows are ordered by the Phenotype similarity. The influence of phenotype annotations over gene pairs can be observed for the "DiGePred" and the "DS incl.Phenotype" models, both reliant on phenotype-related features.

Appendix H Metaedge ablation study

The biological knowledge graph, BOCK, contains a multitude of biological relationships represented as different types of edges, also referred to as metaedges (as summarised in Table 1). In this experiment, we seek to understand the contribution of each metaedge in both the predictive performance and the complexity of the explanations provided by decision set models, by comparing models trained with different versions of BOCK omitting one metaedge.

We first assessed the baseline performance and complexity on a 10-fold stratified cross-validation, similarly as done when evaluating DS excl. Pheno, described in Results (excluding Phenotype-based metaedges, i.e GaP and PrP metaedges). Using this baseline setting as reference, we evaluate, in a similar manner, decision models based on BOCK excluding an additional metaedge, from the list of remaining metaedges taken into consideration. For each metaedge-excluded model, we report metrics of predictive performance (Figure H1) and explanation complexity (Figure H2), based on the 10 test folds.

Note that explanation complexity here refers to the average number of paths obtained for explanations of True Positive gene pairs. A lower number of path leads to explanations that are easier to interpret.

From this experiment, we can observe that eliminating physical interaction edges (GpG) and associations with biological processes (GaBP) from BOCK adversely affects classifier performance. Removing other metaedges has a negligible effect on predictive performance. Interestingly, omitting gene functional relationships results in a higher average number of paths yielded in explanations, possibly due to an increased prevalence of gene-gene relationships in rules. The removal of the coexpression relationship GeG reduces the number of paths in the provided explanations, likely owing to the high frequency of GeG edges in BOCK.

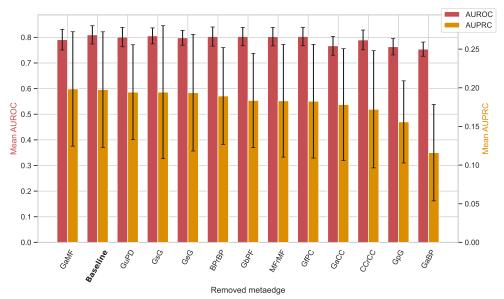


Fig. H1. Influence of BOCK metaedge ablation on performance. Considering a decision set model, its predictive performance is estimated by the Mean Area Under the Receiver Operating Characteristic Curve (AUROC, red) and the Mean Area Under the Precision-Recall Curve (AUPRC, orange). These metrics are evaluated on a 10-fold stratified cross-validation. The 'Baseline' bar (bold) represents the distribution of this metric for a model excluding Phenotype relationship (GaP metaedge). Based on that baseline, all other bars represent models where an additional metaedge (type of edge, as summarised in 1) has been removed from BOCK. Error bars indicate the standard deviation of this metric for all evaluated test folds.

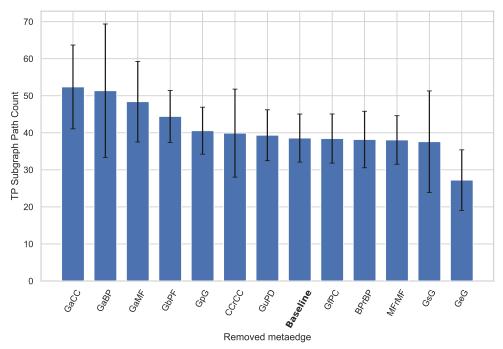
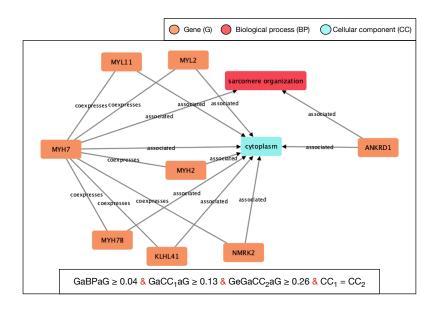
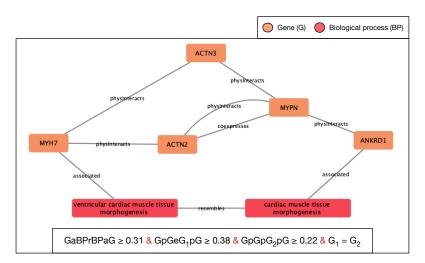


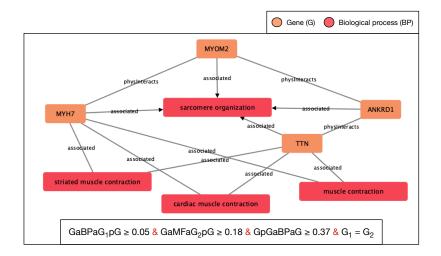
Fig. H2. Influence of BOCK metaedge ablation on explanation complexity. Considering a decision set model, the explanation complexity is estimated by the mean count of paths of explanation subgraphs returned for the True Positive (TP) gene pairs. This metric is evaluated on a 10-fold stratified cross-validation. The 'Baseline' bar (bold) represents the distribution of this metric for a model excluding Phenotype relationship (GaP metaedge). Based on that baseline, all other bars represent models where an additional metaedge (type of edge, as summarised in 1) has been removed from BOCK. Error bars indicate the standard deviation of this metric for all evaluated test folds.

Appendix I Additional predictive explanations

The three figures below showcase the remaining graphical explanations for the 3^{rd} , 4^{th} and 5^{th} rules (in order of predicted probability), matching the digenic gene pair MYH7-ANKRD1 in decreasing order of predicted probability (see Figure 6).







Each rule is written in their abbreviated form (see Table 1) with its conditions separated by &. Indices for node types $(e.g.~G_1)$ are used in unification conditions $(e.g.~G_1=G_2)$ to constrain entities to be the same across different metapaths. The numerical value associated to each metapath $(e.g. \geq 0.31)$ sets the path reliability threshold, which conditions the minimum path reliability score of all underlying paths.

References

- [1] Nachtegael C, Gravel B, Dillen A, Smits G, Nowé A, Papadimitriou S, et al. Scaling up oligogenic diseases research with OLIDA: The Oligogenic Diseases Database. Database. 2022;2022(December 2021):1–15. https://doi.org/10.1093/database/baac023.
- [2] Calderone A, Castagnoli L, Cesareni G.: Mentha: A resource for browsing integrated protein-interaction networks.
- [3] Lee S, Zhang C, Arif M, Liu Z, Benfeitas R, Bidkhori G, et al. TCSBN: A database of tissue and cancer specific biological networks. Nucleic Acids Research. 2018;46(D1):D595–D600. https://doi.org/10.1093/nar/gkx994.
- [4] Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–1330. https://doi.org/10.1126/SCIENCE.AAZ1776.
- [5] The Gene Ontology C, That I, Acencio M, Lægreid A, Kuiper M, Among O. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research. 2019;8(47):D330—-D338. https://doi.org/10.17863/CAM.36439.
- [6] Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Research. 2021;49(D1):D1207-D1217. https://doi.org/10.1093/nar/gkaa1043.
- [7] Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Medicine. 2020 Dec;12(1):1–8. https://doi.org/10.1186/s13073-020-00803-9.
- [8] Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes. PLoS Genetics. 2013 Aug;9(8):e1003709. https://doi.org/10.1371/journal.pgen.1003709.
- [9] Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Vélez M, et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proceedings of the National Academy of Sciences of the United States of America. 2015 Nov;112(44):13615–13620. https://doi.org/10.1073/pnas.1518646112.
- [10] Tweedie S, Braschi B, Gray K, Jones TEM, Seal RL, Yates B, et al. Genenames.org: The HGNC and VGNC resources in 2021. Nucleic Acids Research. 2021;49(D1):D939–D946. https://doi.org/10.1093/nar/gkaa980.
- [11] Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Ridwan Amode M, et al. Ensembl 2021. Nucleic Acids Research. 2021 Jan;49(D1):D884–D891. https://doi.org/10.1093/nar/gkaa942.
- [12] Bateman A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research. 2019;47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049.
- [13] Walsh I, Fishman D, Garcia-Gasulla D, Titma T, Pollastri G, Capriotti E, et al. DOME: recommendations for supervised machine learning validation in biology. Nature Methods. 2021;18(10):1122–1127. https://doi.org/10.1038/s41592-021-01205-4.
- [14] Valdeolivas A, Tichit L, Navarro C, Perrin S, Odelin G, Levy N, et al. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics. 2019 Feb;35(3):497–505. https://doi.org/10.1093/bioinformatics/

bty637.

[15] Mukherjee S, Cogan JD, Newman JH, Phillips JA, Hamid R, Meiler J, et al. Identifying digenic disease genes via machine learning in the Undiagnosed Diseases Network. American Journal of Human Genetics. 2021 Jan;108(10):1946–1963. https://doi.org/10.1016/j.ajhg.2021.08.010.