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Abstract

Activins regulate bone formation by controlling osteoclasts and osteoblasts. We

investigated Activin‐A mechanism of action on human osteoblast mineralization, RNA

and microRNA (miRNA) expression profile. A single 2‐day treatment of Activin‐A at

Day 5 of osteoblast differentiation significantly reduced matrix mineralization.

Activin A‐treated osteoblasts responded with transient change in gene expression, in

a 2‐wave‐fashion. The 38 genes differentially regulated during the first wave (within

8 hr after Activin A start) were involved in transcription regulation. In the second

wave (1–2 days after Activin A start), 65 genes were differentially regulated and

related to extracellular matrix. Differentially expressed genes in both waves were

associated to transforming growth factor beta signaling. We identified which

microRNAs modulating osteoblast differentiation were regulated by Activin‐A. In
summary, 2‐day treatment with Activin‐A in premineralization period of osteoblast

cultures influenced miRNAs, gene transcription, and reduced matrix mineralization.

Modulation of Activin A signaling might be useful to control bone quality for

therapeutic purposes.
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1 | INTRODUCTION

Activins belong to the transforming growth factor‐β (TGF‐β) superfamily

and are formed by dimerization of two inhibin β subunits (Massague,

1998; Vale et al., 2004). Activin‐A binds to transmembrane serine/

threonine kinase receptor type 2 (ACVR2A and ACVR2B), and leads to

the recruitment and activation of receptor type 1B (ACVR1B=ALK4).

The activated receptor induces a cytoplasmic signal transduction

involving SMAD2/3, eventually recruiting the common mediator

SMAD4. Only this phosphorylated complex (SMAD2/3/4) can then

translocate into the nucleus and regulate target gene transcription

(Chen et al., 2006; Derynck, 1998). The Activin‐A signaling cascade

modulates several biological functions, such as cell proliferation,

differentiation, and apoptosis (Chen et al., 2006; Chen, Lui, Lin, Lee, &

Ying, 2002). Activin‐A signaling is modulated by several regulatory

proteins, such as Activin receptors interacting proteins (ARIPs), and

eventually shut off by SMAD ubiquitin regulatory factors (Smurf1 and

Smurf2), that interact with inhibitory SMADs (SMAD6 and SMAD7),
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and mediate the ubiquitin‐dependent degradation of the receptors

(Inoue & Imamura, 2008). SMAD2/3 belongs also to TGF‐β‐signaling,
whereas bone morphogenic protein (BMP) signaling involves

SMAD1,5,8 but it is transduced by receptor type 2, highlighting a

crosstalk between these pathways (Harrison et al., 2004; Tsuchida et al.,

2009). In addition, Activin‐A also signals through SMAD‐independent
pathways, such as p38 mitogen‐activated protein kinase (MAPK),

extracellular signal‐regulated kinase (ERK1/2), and Jun N‐terminal

kinase (JNK) pathways, increasing the complexity of this intracellular

signal (Chen et al., 2006; de Guise et al., 2006). Endogenous inhibitors

such as Follistatin (FST), inhibins and β‐glycan antagonize Activin‐A
signaling (Harrison, Gray, Vale, & Robertson, 2005).

The role of activins and inhibins in bone formation and

metabolism has been extensively studied in the last years. They

regulate skeletal metabolism, by acting on activins, TGF‐βs and

BMPs in bone (Nicks, Perrien, Akel, Suva, & Gaddy, 2009; Perrien

et al., 2006). However, the role of activins in bone metabolism is

still not fully clear. Activin‐A has been detected in human and

bovine bone matrix (Eijken et al., 2007; Nicks et al., 2009; Ogawa

et al., 1992). It has been shown to be secreted by both osteoblasts

and bone marrow cultures during osteoblastogenesis, and during

bone matrix resorption by osteoclasts (Eijken et al., 2007; Funaba

et al., 1996; Gaddy‐Kurten, Coker, Abe, Jilka, & Manolagas, 2002).

Activin‐A has been shown to modulate bone‐cell behavior and

having a pro‐osteoclastogenic effect in vitro (Fuller, Bayley, &

Chambers, 2000; Gaddy‐Kurten et al., 2002; Nicks et al., 2009;

Sakai, Eto, Ohtsuka, Hirafuji, & Shinoda, 1993). Despite this, its

effect on osteoblasts is still controversial. Several studies report

Activin‐A to promote osteogenic differentiation in vitro, and bone

formation and fracture healing in in vivo systems (Gaddy‐Kurten
et al., 2002; Ogawa et al., 1992; Sakai et al., 2000; Sakai, Miwa, &

Eto, 1999). However, we and others have shown the inhibitory

effect of Activin‐A on osteoblast as well as vascular smooth muscle

cells‐mediated mineralization in vitro (Eijken et al., 2007;

Hashimoto et al., 1992; Ikenoue, Jingushi, Urabe, Okazaki, &

Iwamoto, 1999). These findings were also supported by in vivo

studies, in which increased bone mass has been observed after

blocking Activin‐A in murine and primate models (Lotinun et al.,

2010; Pearsall et al., 2008). These controversial findings might be

related to differences in cell‐culture system or in the species that

were used (Ikenoue et al., 1999; Nicks et al., 2009).

We have shown that Activin‐A affected the expression of

extracellular matrix (ECM)‐related genes, influencing the ECM

maturation phase. This resulted in an altered ECM protein composi-

tion that was unable to mineralize. This effect was stronger when

Activin‐A was present during the last days before the onset of

extracellular matrix mineralization (Alves, Eijken, Bezstarosti,

Demmers, & van Leeuwen, 2013; Eijken et al., 2007). In addition,

Activin‐A impaired matrix vesicle secretion at the onset of

extracellular matrix mineralization (Alves et al., 2013). This highlights

the importance of Activin‐A signaling in bone metabolism, but despite

this, the molecular processes underlying Activin A‐driven inhibition

of osteogenic differentiation and mineralization are still unclear.

The aim of the present study was to investigate the impact of a

temporary 2‐day treatment of Activin‐A on osteoblast extracel-

lular matrix mineralization and to unravel the molecular mechan-

isms of Activin‐A signaling during differentiation of human

osteoblasts.

2 | MATERIALS AND METHODS

2.1 | Osteoblast cultures

Human SV‐HFO cells (Simian virus 40‐immortalized osteoblast pre-

cursors) were cultured (1 × 104 vital cells/cm2) in α‐MEM (pH 7.5,

phenol‐red free; GIBCO, Paisley, UK) supplemented with streptomycin/

penicillin, 1.8mM CaCl2 (Sigma, St. Louis, MO), HEPES, and 2%

charcoal‐treated and heat inactivated fetal bovine serum (GIBCO).

After 2 days, medium was supplemented with dexamethasone (100 nM)

and β‐glycerophosphate (10mM; Sigma, St. Louis, MO) to induce

osteogenic differentiation. Activin‐A (50 ng/ml; R&D System, Minnea-

polis, MN) was added at Day 5 of osteogenic differentiation and

removed after 2 days, keeping cultures in osteogenic medium. Medium

was replaced every 2–3 days.

To assess the specificity of the Activin‐A signaling, osteoblasts were

treated with a SMAD inhibitor (SB‐505124; Sigma‐Aldrich, St. Louis,
MO). SB‐505124 selectively inhibits ALK4 kinase activity, repressing

Activin A‐ and TGF‐β‐induced SMAD2 and SMAD3 signaling (Harrison

et al., 2005). SB‐505124 (0.125 µM in dimethyl sulfoxide) was added

30min before Activin‐A, and removed at the same time. Osteoblasts

treated only with SB‐505124 were used as control.

2.2 | Analysis of osteogenic differentiation and
mineralization

Alkaline phosphatase (ALP) activity and extracellular matrix miner-

alization were measured in cell extracts of Activin‐A treated and

untreated osteoblasts at late stages of culture (Day 10, 12, and 14,

see Figure 1 a), as previously described (Eijken et al., 2007).

2.3 | Phospho‐flow cytometry of SMAD3
phosphorylation

Human SV‐HFO cells were seeded in a density of 4,210 vital cells/cm2

and cultured as described above, and SMAD3 phosphorylation was

measured by flow cytometry. Samples were collected from Activin A‐
treated and untreated osteoblasts, at 10min, 20min, 1 hr, 2 hr, 4 hr,

8 hr, 24 hr, and 48 hr after the start of Activin‐A treatment. Cell extracts

were fixed with 4% paraformaldehyde, and permeabilized with 90% ice‐
cold methanol. Samples were incubated with anti‐SMAD3 antibody

(anti‐SMAD3, pS423 + S425; clone ab52903, Abcam, Cambridge, UK;

secondary antibody: anti rabbit IgG, Alexa Fluor® 488 conjugated,

#4412, Cell Signaling Technology) and SMAD3 phosphorylation was

followed over time by flow cytometry (Becton Dickinson FACS‐Canto
and DIVA Flow Cytometry System [BD Bioscience]).
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2.4 | Illumina gene chip‐based expression

Illumina HumanHT‐12 v3 BeadChip (Illumina, Inc.) human whole‐
genome expression arrays were used to analyze gene expression of

Activin A‐treated and untreated osteoblasts. RNA (100 ng) was

collected from three biological replicates for each condition (at

20min, 1 hr, 2 hr, 4 hr, 8 hr, 1 day, 2 days, 3 days, 5 days, 7 days, and

9 days after starting of Activin A treatment). RNA integrity was

checked by RNA 6000 Nano assay on a 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA). RNA was amplified by Illumina

F IGURE 1 A single 2‐day pulse of Activin‐A reduced osteoblast mineralization. (a) Schematic overview of culture conditions. Human
SV‐HFO cells were treated with Activin‐A from Day 5 to Day 7 of osteogenic differentiation. ALP activity, mineralization, gene expression, and
miRNA profile were checked at the indicated time points. (b) ALP activity of Activin A‐treated and untreated osteoblasts at Day 10, 12, and 14

of culture. ALP activity was corrected for protein content at each time point. (c) Calcium deposition by Activin A‐treated and untreated
osteoblasts at Day 10, 12, and 14 of culture. (d) Calcium deposition at Day 14 of culture, in cell extracts of untreated osteoblasts, osteoblasts
treated with Activin‐A, SMAD inhibitor (SB‐505124), and Activin‐A and SMAD inhibitor. Bars indicate mean±SD. (**p<.01; ***p<.001). (e)

Phosphorylation of SMAD3 followed by flow cytometry at the indicated time points, in Activin‐A treated and untreated osteoblasts. Values:
mean±SD. (**p<.01; ***p<.001 relative to untreated cells). ALP, alkaline phosphatase; miRNA, microRNA; SD, standard deviation
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TotalPrep RNA amplification kit (Ambion, Austin, TX), according to

manufacturer's instruction. Briefly, single stranded complementary

DNA (cDNA) was generated by using T7oligo (dT) primer, then

followed by second strand synthesis to generate double stranded

cDNA. Biotin‐labeled cRNA was synthesized by in vitro transcription

using T7 RNA polymerase and column purified. cRNA quality was

assessed on a Bioanalyzer and its concentration by NanoDrop

(Thermo Fisher Scientific). A total of 750 ng of cRNA was hybridized

for each array and detected using standard Illumina protocol with

Streptavidin‐Cy3 (GE). Slides were scanned on iScan and analyzed by

GenomeStudio v2010.1 (both from Illumina, Inc.)

2.5 | Microarray analysis

Raw gene expression data was background subtracted using

Genome Studio v2010 (gene expression module 1.6), and further

processed using the Bioconductor R2.10 lumi package (Du, Kibbe,

& Lin, 2008). Data was transformed by variance stabilization and

quantile normalized.

Probes that were present in at least three samples (Illumina

detection p< .01) were considered to be expressed and further

analyzed. Differentially expressed probes were identified using

the Bioconductor package “limma” (Smyth, 2004) with adjusted p

value (q‐value) to reduce false discovery rate. Differentially

expressed probes in Activin A‐treated samples relative to

untreated samples at the same time point (q< .01) were

considered. Selected genes were further analyzed for enrichment

of gene ontology (GO) terms using Database for Annotation,

Visualization and Integrated Discovery (DAVID) Bioinformatics

Resource v6.7 (Huang da, Sherman, & Lempicki, 2009), against

the whole human genome as background, and by QIAGEN's

Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood

City www.qiagen.com/ingenuity) using the Expression Analysis

tool (Canonical Pathways, Upstream Analysis and Disease and

Function).

2.6 | Quantification of mRNA expression

Total RNA isolation, cDNA synthesis and quantitative polymerase

chain reaction (qPCR) were performed as previously described

(Eijken et al., 2007). Primer sequences (Sigma‐Aldrich) are listed in

Table S1.

2.7 | microRNA array and analysis

Total RNA and small RNA populations were isolated from Activin

A‐treated and untreated osteoblasts, at 4 hr and 1 day after the

start of Activin‐A pulse. RNA (250 ng) was collected from two

biological replicates of each condition. Illumina microRNA

Expression Profiling Assay for BeadChip array (Illumina, Inc.)

was used to analyze microRNA (miRNA) profiling of Activin

A‐treated and untreated osteoblasts, following manufacturer's

instructions.

Probes that were detected above background (detection

p < .01), in at least one time point, in both biological replicates

and annotated to a known miRNA (miRbase www.mirbase.org;

Griffiths‐Jones, Grocock, van Dongen, Bateman, & Enright, 2006),

were considered for further analysis. Probes that were detected

only in Activin A‐treated or untreated osteoblasts and probes

more than two‐fold upregulated or downregulated were further

analyzed (Table 1). miRNAs were analyzed by using DIANA

miRpath v3 (Vlachos et al., 2015), IPA and Targetscan Release 7.1

(Agarwal, Bell, Nam, & Bartel, 2015) as prediction tools. Human

species and predicted interactions derived from TarBase v7.0

were used in DIANA miRpath v3. In Targetscan, all miRNAs were

queried against human genome as background, if possible,

otherwise mouse, and only predicted targets with conserved

sites were considered.

2.8 | Statistical analysis

Data for biochemical analysis were representative of independent

experiments. All values are presented as mean ± (SD) of technical

replicates. Significance was calculated by two‐way analysis of

variance (ANOVA), followed by Bonferroni Post Hoc test, otherwise

indicated elsewhere.

3 | RESULTS

3.1 | A single pulse of Activin‐A is sufficient to
reduce SV‐HFO osteoblast mineralization

Previously, we have shown that Activin‐A reduced matrix miner-

alization of osteoblasts that were continuously treated with Activin‐
A and that the inhibition of mineralization was most effective when

Activin‐A was present in the final 7 days in the premineralization

period (considered up to Day 10 of culture; Eijken et al., 2007). Here

we investigated if a short‐term incubation with Activin‐A from Day 5

to 7 of culture in the premineralization period resulted in the same

effect. Human SV‐HFO osteoblasts were treated for 2 days with

Activin‐A starting at Day 5, and ALP activity and extracellular matrix

mineralization were analyzed at later stages, as represented in Figure

1 a. ALP activity was not affected by Activin‐A (Figure 1 b). Never-

theless, a single 2‐day‐treatment with Activin‐A was able to reduce

the extracellular matrix mineralization at later stages of culture.

Calcium deposition at Day 12 of culture was two‐fold lower in Activin

A‐treated osteoblasts than untreated cells, as shown in Figure 1 c

(p = .0003).

To assess the specificity of Activin A signaling, osteoblasts were

treated with the SMAD‐signaling inhibitor SB‐505124. SB‐505124
counteracted the effect of Activin‐A on mineralization. Matrix miner-

alization by SV‐HFO osteoblasts treated with both Activin‐A and SMAD

inhibitor was significantly higher than in the cells treated with Activin‐A
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only (p = .004) and at comparable levels as that of untreated osteoblasts

(Figure 1 d). SMAD inhibitor did not affect differentiation of the cells, as

SV‐HFO osteoblasts cultured in the presence of SMAD inhibitor

mineralize at similar extend than the untreated cells.

3.2 | SMAD3 phosphorylation reached the
maximum 1 hr after Activin‐A treatment

As SMAD2/3 are downstream signal transducers of Activin‐A, we

analyzed SMAD3 phosphorylation by flow cytometry. Phosphorylation

of SMAD3 was significantly higher in Activin A‐treated SV‐HFO
osteoblasts than in untreated cells, as shown in Figure 1 e. The

Activin‐A pulse increased SMAD3 phosphorylation, with a peak after

1 hr of treatment, which was almost 2‐fold higher in Activin A‐treated
osteoblasts than in untreated cells (p < .001).

3.3 | Activin‐A treatment induced changes in gene
expression in a two‐wave fashion

As a 2‐day treatment of Activin‐A at early stages of osteoblast

differentiation was able to reduce extracellular matrix miner-

alization, we investigated the molecular mechanism by which

Activin‐A would affect osteoblast gene expression. We performed

comparative gene expression profiling of Activin‐A treated and

untreated osteoblasts at various time points using Illumina

Human HT‐12 v3 BeadChip array. Activin‐A treatment induced

a transient change in SV‐HFO osteoblast gene expression in a

two‐wave fashion over time, as shown in Figure 2a. The first wave

consisted of 38 differentially regulated genes (q< .01) and

occurred from 1 hr till 8 hr after the start of Activin‐A treatment

(Table S2). The second wave of differentially regulated genes

TABLE 1 miRNAs modulated by Activin‐A in osteoblasts, 4 hr and 1day after the start of Activin‐A treatment. Intensities are indicated as AVG signal

Mature miRNAs A‐OBs (AVG signal) NT‐OBs (AVG signal) Mature miRNAs A‐OBs (AVG signal) NT‐OBs (AVG signal)

4 hr >2‐Fold upregulated in A‐OBs >2‐Fold downregulated in A‐OBs

miR‐590‐3p 790.81 351.31 miR‐486‐3p 1,788.62 4,489.87

miR‐142‐3p 386.24 178.37 miR‐19a 1,209.74 2,925.18

miR‐18b 609.81 300.37 miR‐33a 122.18 1,942.43

miR‐32 171.06 439.93

miR‐150 142.06 358.49

Detected only in A‐OBs Not detected in A‐OBs

miR‐432* 106.87 miR‐573 84.24

miR‐337:9.1 88.12 miR‐483‐5p 76.06

miR‐33b* 84.37 miR‐1263 75.37

miR‐96 77.87 miR‐371‐3p 70.37

miR‐592 76.87 miR‐186* 69.06

miR‐744* 68.56 miR‐765 66.74

miR‐338‐3p* 67.99 miR‐198 65.06

miR‐517a, b 61.68 miR‐563 63.81

miR‐20b 60.93 miR‐10b 62.18

miR‐645 59.31 miR‐891a 59.18

miR‐580 58.93

miR‐744* 58.68

1 day >2‐Fold upregulated in A‐OBs >2‐Fold downregulated in A‐OBs

miR‐486‐3p 4,929.56 2,055.87 miR‐193a‐3p 963.43 2,079.74

miR‐100* 993.68 453.87 miR‐590‐3p 126.06 432.18

miR‐150 390.12 184.31

miR‐24‐1* 258.74 122.43

Detected only in A‐OBs Not detected in A‐OBs

miR‐18b 203.18 miR‐220b 94.87

miR‐217 107.74 let‐7f‐2* 74.37

miR‐548o 83.43 miR‐431* 69.99

miR‐589* 79.99 miR‐610 67.62

miR‐548f 75.74 miR‐518e 66.06

miR‐181d 71.93 miR‐632 65.74

miR‐218‐2 66.56 miR‐520d‐5p 63.06

miR‐1208 64.37

miR‐921 64.31

miR‐432* 63.56

miR‐563 61.74

miR‐559 57.43

miR‐645 55.68

miR‐517a,b 54.31

miR‐1236 54.06

Abbreviations: A‐OBs, Activin‐A treated osteoblasts; miRNAs, microRNAs; NT‐OBs, non‐treated osteoblasts.
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occurred between 1 and 2 days after the Activin‐A pulse (Table

S3). Moreover, differentially regulated genes were detected at

each time point until Day 2, but once Activin‐A was replaced with

control growth media, no gene expression differences were

observed. The TGF‐β signaling pathway was within the top 10

most enriched canonical pathways of the differentially regulated

genes in both waves (Tables S4 and S5). Moreover, TGF‐β was

within the most enriched upstream regulators in both first and

second wave, as analyzed by IPA and shown in Figure 2b,c by the

predicted target genes (Table S6).

GO analysis of the 38 genes that are differentially regulated in the

first wave showed that these changes were related to transcription

regulation (GO:0045892) and vasculature development (GO:0001944;

p< .05; Figure 3a). In addition, these 38 genes were analyzed using IPA

(Figure 3b and Table S7). “Binding of DNA,” including genes such as

SMAD7, JUNB, and FOSB, was among the most significantly enriched

terms (p=6.49×10−9; Figure 3b). Most of these genes were upregulated

by Activin‐A. Furthermore “Vasculogenesis” (SMAD7, JUNB, and

ANGPTL4) was identified to be significantly enriched (p=5.37×10−9)

among the regulated genes. Interestingly, “differentiation of connective

tissue cells,” including genes such as SMAD7, KLF10, and JUNB, was

significantly enriched (p=9.06 ×10−8). As SMAD7, JUNB, and KLF10 were

involved in most of the identified pathways and have SMAD‐responsive
elements, their regulation was further confirmed by qPCR (Figure 3c).

In the second wave (1–2 days after Activin‐A start), 65 genes

were differentially regulated (q< .01; Table S3). These genes are

involved in vasculature development (GO:0001944), ECM structure

(GO:0031012), cell migration (GO:0030334), and adhesion

(GO:0007155; Figure 4a). Ingenuity Pathway analysis of these 65

genes confirmed our findings by DAVID, as shown in Figure 4b and

Table S8. The functional categories Vasculogenesis (p = 8.85 × 10−8)

including genes such as IGFBP3, FBLN5, and SMAD3, but also

Adhesion of connective tissue cells (p = 2.47 × 10−5) (POSTN, TGFBI,

and BMP4) and Differentiation of osteoblasts (p = 7.56 × 10−6)

(SMAD3, PPARG, POSTN, TGFBI, and CTHRC1), were significantly

enriched. ECM‐related genes involved in these pathways such as

POSTN, TGFB1, upregulated by Activin‐A, and the downregulated

BMP4 were further confirmed by qPCR (Figure 4c).

F IGURE 2 Activin‐A treatment induced a transient change in osteoblast gene expression, in a two‐wave‐fashion over time. (a) Number of
significantly differentially regulated genes in Activin A‐treated osteoblasts compared to untreated cells at each time point (q< .01). (b) TGF‐β is
predicted to target 20 genes within those differentially regulated in the first wave (IPA analysis). (c) TGFβ is the most enriched upstream

regulator, targeting 32 genes within those differentially regulated in the second wave of gene expression changes. In (b) and (c) shades of red:
upregulated genes by Activin‐A (log ratio of Activin A‐treated/untreated cells). Shades of green: downregulated genes. Solid line: predicted
activation; thick solid line: predicted inhibition; dashed line: not predicted effect; dotted line: findings inconsistent with the state of downstream

molecule by IPA. IPA, Ingenuity® Pathway Analysis; TGF‐β, transforming growth factor‐β
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3.4 | Activin‐A treatment modified the microRNA
profile of SV‐HFO osteoblasts

In addition to the mRNA changes that occurred upon Activin‐A
treatment we analyzed the microRNA gene expression profile in SV‐
HFO osteoblasts, 4 hr and 1 day after addition of Activin‐A at Day 5

of culture. Assuming miRNAs as “upstream” regulators of mRNA

expression, and focusing on the second wave of gene expression

changes (Day 1 and Day 2 after Activin‐A addition), we chose 4 hr

and Day 1 respectively to assess the miRNA profiles. A detailed

flowchart of the miRNA profile analysis is presented in Figure S1.

Four hours after starting the Activin‐A pulse, 12 of the 561

miRNAs were uniquely detected in the Activin A‐treated osteoblasts

(Figure 5a). Three miRNAs (miR‐18b, miR‐142‐3p, and miR‐590‐3p)

F IGURE 3 Activin‐A pulse induced changes in gene transcription. (a) GO analysis of the 38 genes of the first wave of gene expression
changes (1–8 hr after Activin A treatment start), that were differentially regulated in Activin A‐treated cells compared to untreated ones. Only

significantly enriched GO terms are shown (Benjamini p < .05). In brackets: number of genes for each GO term. (b) Pathway analysis of these 38
genes: vasculogenesis, binding of DNA, and differentiation of connective tissue cells were significantly enriched. Shades of red: upregulated
genes by Activin‐A (log ratio of Activin A‐treated/untreated cells). Shades of green: downregulated genes. (c) qPCR analysis of selected
transcription factors in Activin‐A treated and untreated osteoblasts at the indicated time points. Bars indicate mean ± SD. GO, Gene Ontology;

SD, standard deviation. (***p < .001)
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were > 2‐fold upregulated in Activin A‐treated osteoblasts compared

with the untreated cells (Figure 5b; Table 1). Furthermore, Activin‐A
decreased the expression of some miRNAs. Of these, 10 miRNAs

were absent in the Activin A‐treated osteoblasts, and five miRNAs

(miR‐19a, miR‐32, miR‐33a, miR‐150, and miR‐486‐3p) were > 2‐fold

downregulated in these cells compared with untreated cells

(Figure 5b; Table 1). The miRNAs that were uniquely detected in

each condition displayed very low expression. We analyzed in which

pathways the targets of these miRNAs were involved using Diana

pathway analysis (Vlachos et al., 2015). Within the enriched

F IGURE 4 Activin A pulse induced changes in ECM composition. (a) GO analysis of the 65 genes that were differentially regulated in the

second wave of gene expression (1 and 2 days after Activin A pulse start) in Activin A‐treated cells. Only significantly enriched GO terms are
shown (Benjamini p < .05). The number of genes for each enriched GO term are reported in brackets. (b) Significantly enriched pathways of the
IPA analysis of the 65 genes of second wave. Shades of red: upregulated genes by Activin‐A (log ratio of Activin A‐treated/untreated cells).

Shades of green: downregulated genes. (c) qPCR analysis of selected ECM proteins in Activin A‐treated and untreated osteoblasts at 1, 2, and 3
days after the start of Activin‐A treatment. Bars indicate mean ± SD. ECM, extracellular matrix; IPA, Ingenuity® Pathway Analysis; GO, Gene
Ontology; qPCR, quantitative polymerase chain reaction; SD, standard deviation. (**p < .01; ***p < .001)
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pathways, we focused on TGF‐β signaling, as it is known to guide

osteoblast differentiation and as shown in Figure 2 gene expression

analyses identified this signaling pathway. TGF‐β signaling was

significantly enriched (p = 1.54 × 10−6), as 9 of the 15 miRNAs

upregulated by Activin‐A targeted 35 genes involved in TGF‐β
signaling. This is supported by the observation that also 29 mRNAs

targeted by eight miRNAs downregulated by Activin‐A, were

involved in the TGF‐β pathway (Table 2). Thus, target genes that

are involved in TGF‐β signaling were targets of miRNAs that were

both upregulated and downregulated by Activin‐A within 4 hr of

treatment.

One day after the start of Activin‐A treatment, 15 miRNAs were

detected being unique in Activin A‐treated osteoblasts, and 546 were

shared with the untreated cells (Figure 5c). Of these 546, two were

more than two‐fold downregulated in Activin A‐treated osteoblasts

(Figure 5d; Table 1). In line with the 4‐hr‐treatment data, TGF‐β
signaling was significantly enriched (p = .0001), as Activin‐A upregu-

lated 8 miRNAs that targeted 17 genes involved in this pathway, as

well as downregulating 5 miRNAs that target 19 genes related to this

signaling pathway (Table 2). Overall, within 1 day of treatment,

Activin‐A modulated miRNAs that are predicted to target genes

involved in TGFβ signaling.

Next, we combined the data of miRNA and mRNA profiling,

hypothesizing that miRNAs that were upregulated by Activin A

treatment (4 hr and 1 day), would target mRNAs that were down-

regulated after 1 and 2 days in the Activin A‐treated osteoblasts (for

analysis scheme see Figure S1). As Activin‐A also downregulated

some miRNAs, we checked if they could target genes found

upregulated in Activin A‐treated osteoblasts.

We considered the genes differentially regulated in the second

wave of gene expression, and that were involved in the top 10 most

enriched canonical pathways (Table S5). Within these pathways, we

analyzed whether the genes that were downregulated by Activin‐A
were also predicted targets of miRNAs upregulated by Activin‐A
(Table S9). Indeed, we identified two miRNAs (miR‐142‐3p and miR‐
432*) that were upregulated by Activin‐A and were predicted to

target the downregulated gene BMP4 (Table 3). In addition, seven

miRNAs (miR‐24‐1*, miR‐181d, miR‐548f, miR‐559, miR‐589*,

F IGURE 5 Osteoblast miRNA expression profiles were modulated by Activin‐A treatment. (a) 12 miRNAs were uniquely detected in Activin

A‐treated osteoblasts, 10 miRNAs uniquely in the untreated cells, and 549 were detected in both conditions, 4 hr after the start of Activin‐A
treatment. (b) miRNAs uniquely detected in Activin A‐treated osteoblasts, untreated osteoblasts, and with more than 2‐fold difference in
detection, 4 hr after the start of Activin‐A treatment. (c) One day after the start of Activin‐A treatment, 15 miRNAs were uniquely detected in
Activin A‐treated osteoblasts, 7 miRNAs uniquely in the untreated ones, and 546 in both conditions. (d) Number of miRNAs uniquely detected

in Activin A‐treated osteoblasts, untreated, and with more than 2‐fold difference in detection, 1 day after the start of Activin‐A. Only probes
detected above background and annotated to known miRNAs are shown (p < .01). A‐OBs, Activin A‐treated osteoblasts; miRNAs, microRNAs;
NT‐OBs, not treated osteoblasts
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miR‐645, and miR‐1236) were identified that downregulated the

expression of SMAD3 (Table 3).

Similarly, we investigated if the genes that were upregulated by

Activin‐A in the second wave of gene expression, were also predicted

targets of miRNAs downregulated by Activin‐A (Table S10). Inter-

estingly, Activin‐A downregulated miRNAs that targeted genes being

upregulated in Activin A‐treated osteoblasts (Table 4). For example,

miR‐32, miR‐486‐3p, miR‐573, and miR‐1263 were downregulated

by Activin‐A, and are predicted to target SMAD7, which was

upregulated by Activin A treatment.

4 | DISCUSSION

In this study, we demonstrated that a short‐term Activin‐A treatment

for only 2 days in the SV‐HFO osteoblast differentiation period

preceding mineralization inhibits matrix mineralization 5–7 days

later. Activin‐A exerts this by affecting mRNA expression in a

biphasic manner as well as regulating miRNA expression within these

2 days.

We took advantage of our previous work in which we demon-

strated that Activin A‐inhibition of matrix mineralization was most

effective when Activin‐A was present in the final 7 days of

premineralization period (Eijken et al., 2007). In line with this, in

this study we provided evidence that Activin A treatment only

between Day 5 and 7 of osteoblast cultures reduced mineralization,

highlighting the importance of timing of Activin‐A presence during

osteoblast differentiation and bone formation. ALP activity was not

affected by Activin‐A at the time points that were analyzed, in

contrast with our previous findings (Alves et al., 2013). Possibly, the

timing of Activin A treatment should be earlier during differentiation

to influence ALP activity. Nevertheless, mineralization was signifi-

cantly reduced by this Activin‐A treatment regimen, implicating that

the effect is independent of changes in ALP activity. This is supported

by earlier observations of Eijken et al. (2007), that the Activin‐A
treatment leads to a change in ECM composition.

The Activin‐A pulse altered osteoblast gene expression in a

biphasic fashion, by modulating genes involved in transcription

regulation and ECM structure. Between 1 and 8 hr after the

treatment, SMAD‐responsive transcription factors, such as ID1,

KLF10, JUNB, and SMAD7 were regulated, highlighting the specificity

of Activin A signaling. The inhibitory SMAD7 was upregulated by

Activin‐A, in line with our previous findings (Eijken et al., 2007). As

SMAD7 is a known inhibitor of BMP‐ and TGFβ‐signaling, and was

shown to reduce mouse osteoblast mineralization (Massague, 1998;

Yano et al., 2012), this confirms our findings in human osteoblast

cultures. SMAD7 was also predicted as target of four miRNAs

upregulated by Activin‐A, thus representing an interesting candidate

for functional analyses of auto‐regulation by Activin‐A signaling.

Unexpectedly, other SMAD‐responsive transcription factors were

upregulated by Activin‐A. KLF10 and JUNB, which are known

inducers of osteogenic differentiation (Kenner et al., 2004; Long,

2012; Subramaniam et al., 2005), were upregulated in human

osteoblasts that were continuously treated with Activin‐A (Eijken

et al., 2007). Yet an explanation is unclear, however, it is tempting to

speculate that these are part of an intricate regulatory network of

genes of which the concerted action eventually leads to the inhibition

of mineralization. In line, Activin‐A was shown to act on many

different proteins, revealing the complexity of its signaling (Alves

et al., 2013), thus maybe explaining these findings.

In the second wave of gene expression changes we detected

genes involved in osteoblast differentiation and ECM composi-

tion. Interestingly, Activin‐A upregulated matricellular proteins

such as POSTN, SPARC/osteonectin (SPOCK1), and growth factors

such as TGF‐β, that promote osteoblast adhesion and bone

structure (Delany, Kalajzic, Bradshaw, Sage, & Canalis, 2003;

Janssens, ten Dijke, Janssens, & Van Hul, 2005; Merle & Garnero,

TABLE 2 Activin‐A modulated miRNAs that are predicted to target genes involved in TGF‐β signaling pathway (DIANA miRpath v3; p < .01)

Time after
Activin‐A pulse KEGG pathway p value # Involved miRNAs # Involved genes

miRNAs unique and upregulated in A‐OBs 4 hr TGFβ signaling 1.54 × 10−5 9(/15) 35

miRNAs absent and downregulated in A‐OBs 5.30 × 10−5 8(/15) 29

miRNAs unique and upregulated in A‐OBs 1 day 1.15 × 10−4 8(/19) 17

miRNAs absent and downregulated in A‐OBs 2.70 × 10−2 5(/9) 19

Abbreviations: A‐OBs, Activin‐A treated osteoblasts; KEGG, Kyoto Encyclopedia of Genes and Genomes; miRNAs, microRNAs; TGF‐β, transforming

growth factor‐β.

TABLE 3 Genes downregulated by Activin‐A in the second wave

of gene expression changes (Day 1 and Day 2) and targets of the
indicated miRNAs upregulated by Activin‐A (IPA, Targetscan
analysis)

Downregulated genes

Target of

miRNAs 4 hr

Target of

miRNAs 1 day

BMP4 miR‐142‐3p miR‐432*
miR‐432*

PPARG miR‐590‐3p miR‐559

SMAD3 miR‐24‐1*
miR‐181d
miR‐548f
miR‐559
miR‐589*
miR‐645
miR‐1236

Abbreviation: miRNAs, microRNAs.
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2012), in line with previous findings showing that Activin‐A
induced ECM‐related genes (Alves et al., 2013; Eijken et al.,

2007). Activin‐A might stimulate initial stages of osteogenesis,

but creating an ECM compartment that fails to induce miner-

alization at later stages. In line with this, the osteogenic

stimulator BMP4 was downregulated by Activin‐A and also

predicted as target of miR‐142 and miR‐432*, that were

upregulated by Activin‐A. Moreover, Heat shock protein family

A member 5 (HSPA5) was upregulated in Activin A‐treated
osteoblasts and predicted as target of Activin A modulated

miRNAs. HSPA5 is involved in unfolded protein response (UPR) to

counteract endoplasmic reticulum (ER) stress. In physiological

conditions ER stress is elevated in osteoblasts, and UPR has been

related to osteoblast differentiation, playing a role during bone

homeostasis and skeletal disorders (Horiuchi, Tohmonda, &

Morioka, 2016). However, further studies are needed to inves-

tigate the impact of Activin‐A in matrix secretion and its relation

to osteoblast management of stress response.

Genes involved in vasculogenesis, such as ANGPTL4, NADPH oxidase

4 (NOX4), and endothelin 1 (EDN1), were upregulated by Activin‐A in

both waves of gene expression changes, indicating consistent regulation

over time. ANGPTL4 is a target of TGFβ and Hypoxia inducible factor

(HIF), and it mediates HIF‐driven bone resorption in the angiogenic‐
osteogenic coupling (Knowles, Cleton‐Jansen, Korsching, & Athanasou,

2010). Conversely, it also promotes osteoblast differentiation in fracture

repair and stimulates vascular endothelial growth factor expression

(Wilson, Wong, Toupadakis, & Yellowley, 2015). Activin‐A is considered

as commitment factor for the differentiation of erythroid progenitors (Yu,

Shao, Vaughan, Vale, & Yu, 1989). Therefore, the role of Activin‐A in

vasculogenesis needs further investigation for future clinical applications

in fracture repair or control of metastatic bone diseases, also based on

the importance of erythropoietin (EPO) on bone formation (Shiozawa

et al., 2010), but also on the HIF‐mediated EPO production by osteoblasts

that contributes to erythropoiesis and hematopoietic stem cell expansion

(Rankin et al., 2012). Our findings showed that Activin‐A upregulated

miRNAs involved in erythropoiesis. For instance, miR‐486‐3p was

upregulated in untreated osteoblasts 4 hr after the treatment, but

became very abundant in Activin A‐treated osteoblasts 1 day after the

treatment. miR‐486‐3p was shown to regulate γ‐globin expression in

erythroid cells, thus maybe representing and interesting candidate for

Activin‐A involvement in vasculogenesis (Lulli et al., 2013). miR‐24 was

shown to directly target ALK4 modulating Activin‐mediated erythropoi-

esis (Wang et al., 2008), and indeed miR‐24‐1* was upregulated in Activin

A‐treated osteoblasts.

Activin‐A was shown to modulate miRNA profile in human

prostate cancer cell lines and human embryonic stem cells (hESCs)

(Ottley, Nicholson, & Gold, 2016; Tsai et al., 2010). Our study

showed that Activin‐A modified also the miRNA profile of SV‐HFO

osteoblasts. For instance, 1 day after the start of the treatment,

miR‐217 was upregulated by Activin‐A. miR‐217 was also

upregulated by Activin‐A in hESCs (Tsai et al., 2010) and it

reduced murine osteoblast mineralization by targeting RUNX2

(Zhang et al., 2012), thus representing an important target for

Activin A‐mediated inhibition of mineralization. Also other

miRNAs, such as miR‐20b, were upregulated by Activin‐A, but

were shown to enhance mineralization (He et al., 2010). The

number of miRNAs that were altered by Activin‐A in osteoblasts

reflects the complexity of Activin‐A signaling. A miRNA profile at

even more time points than the ones we selected may help us

unraveling Activin‐A mechanism in more detail and describe the

Activin A induced intracellular regulatory network.

In summary, we showed that a single two‐day‐pulse of Activin‐A
between Day 5 and 7 of SV‐HFO osteoblast differentiation was able

to reduce extracellular matrix mineralization 5–7 days later. Activin‐
A altered osteoblast gene expression profile in a biphasic fashion,

first acting at transcription level, and subsequently altering ECM‐
related genes. Moreover, Activin A pulse was able to modify the

miRNA profile of SV‐HFO osteoblasts that could be linked to changes

in mRNA expression. The results gave further insights into the

mechanism by which Activin‐A modulates osteoblast behavior and

matrix mineralization. Activin‐A and/or its mRNA and miRNA targets

represent potential candidates for stimulation of bone formation and

future clinical treatment of bone‐related diseases, to control bone

formation and bone quality, but also conditions of ectopic calcifica-

tion such as atherosclerosis (Eijken et al., 2007).
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TABLE 4 Genes upregulated by Activin‐A (Day 1 and Day 2) and
predicted as target of the indicated miRNAs that are downregulated
by Activin‐A (IPA, Targetscan analysis)

Upregulated genes

Target of

miRNAs 4 hr

Target of

miRNAs 1 day

DDIT4 miR‐590‐3p

EDN1 miR‐19a miR‐590‐3p
miR‐33a
miR‐486‐3p
miR‐765

HSPA5 miR‐590‐3p

IGFBP3 miR‐371b‐3p
miR‐563

NOX4 miR‐10b miR‐590‐3p
miR‐32
miR‐33a

PMEPA1 miR‐10b
miR‐23
miR‐186*
miR‐765

SMAD7 miR‐32
miR‐486‐3p
miR‐573
miR‐1263

Abbreviation: miRNAs, microRNAs.
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