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Abstract
Background: As an important non-apoptotic cell death method, oncosis has been re-
ported to be closely associated with tumors in recent years. However, few research 
reported the relationship between oncosis and lung cancer.
Methods: In this study, we established an oncosis-based algorithm comprised of cluster 
grouping and a risk assessment model to predict the survival outcomes and related 
tumor immunity of patients with lung adenocarcinomas (LUAD). We selected 11 oncosis-
related lncRNAs associated with the prognosis (CARD8-AS1, LINC00941, LINC01137, 
LINC01116, AC010980.2, LINC00324, AL365203.2, AL606489.1, AC004687.1, HLA-
DQB1-AS1, and AL590226.1) to divide the LUAD patients into different clusters and 
different risk groups. Compared with patients in clsuter1, patients in cluster2  had a 
survival advantage and had a relatively more active tumor immunity. Subsequently, we 
constructed a risk assessment model to distinguish between patients into different risk 
groups, in which low-risk patients tend to have a better prognosis. GO enrichment anal-
ysis revealed that the risk assessment model was closely related to immune activities. In 
addition, low-risk patients tended to have a higher content of immune cells and stromal 
cells in tumor microenvironment, higher expression of PD-1, CTLA-4, HAVCR2, and 
were more sensitive to immune checkpoint inhibitors (ICIs), including PD-1/CTLA-4 
inhibitors. The risk score had a significantly positive correlation with tumor mutation 
burden (TMB). The survival curve of the novel oncosis-based algorithm suggested that 
low-risk patients in cluster2 have the most obvious survival advantage.
Conclusion: The novel oncosis-based algorithm investigated the prognosis and the re-
lated tumor immunity of patients with LUAD, which could provide theoretical support 
for customized individual treatment for LUAD patients.
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1  |  INTRODUC TION

As the highest incidence rate among all malignant tumors, lung 
cancer is considered the primary reason for cancer-related deaths 
worldwide.1 According to the official forecast for 2021, lung cancer 
is the malignant tumor with the highest fatality rate among men and 
women in the United States, and its incidence rate ranks second.2 
According to the official forecast of China in 2015, lung cancer is the 
malignant tumor with the highest incidence and mortality in both 
men and women.3  More than half of non-small cell lung cancers 
(NSCLC) are lung adenocarcinomas (LUAD), accounting for more 
than 85% of lung cancers.4 Although recent breakthroughs in im-
munotherapy and targeted therapy have benefited a large number 
of advanced NSCLC patients, the 5-year survival rate for advanced 
NSCLC patients with distant metastasis is merely 7%.5 Thus, iden-
tifying effective and reliable biomarkers and targets may lay a solid 
foundation for the individualized treatment of advanced NSCLC 
patients.

Manifested as DNA damage and mitochondrial swelling, onco-
sis is a type of programmed cell death different from apoptosis in 
both morphological changes and internal pathways.6  The swelling 
of oncosis cells is mainly due to the failure of the ion pump on the 
membrane, which leads to water and sodium retention in the cells.7 
Related literature reported that oncosis might be involved in the pro-
cess of tumor progression, including cancer metabolism, immuno-
suppression, and cancer stem cells.8 In addition, studies have proved 
that the oncosis of cancer cells mediated by aquaporin 1 may be a 
feature of malignant tumor metastasis.9 Huang et al.10 demonstrated 
that enhanced oncosis could effectively reduce the proliferation of 
bladder cancer cell lines. Zhao et al.11 reported that in human esoph-
ageal squamous cell carcinoma tissues, the enhanced oncosis was 
caused by an insufficient blood supply, and the intensity of oncosis is 
closely related to apoptosis and microvessel density. Some scholars 
proposed that oncosis may be the key to overcoming the main ob-
stacle in cancer treatment—drug resistance.12 In summary, oncosis 
has been implicated in the occurrence and development of malig-
nant tumors.

Recent studies have shown that oncosis may be involved in im-
mune activities. Sarode et al.13 suggested that cell death, includ-
ing oncosis, played an important role in immune defense against 
infectious diseases. Huang et al.14 suggested that the oncosis of 
T lymphocytes may be an effective target for the treatment of 
asthma. Furthermore, related research has demonstrated that on-
cosis has participated in mediating the immunogenic death of tumor 
cells.15  Thus, we speculated that the oncosis of cancer cells was 
closely related to tumor immunity. In the present study, we divided 
the LUAD patients into different clusters and different risk groups 
based on the expression of the oncosis-related lncRNAs. We then 
analyzed the related tumor immunity between different risk groups 
and clusters, and explored the clinical significance of the novel 
oncosis-based algorithm.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

According to the flow chart (Figure 1), we divided LUAD patients into 
different clusters and different risk groups based on the expression of 
orlncRNAs to predict their survival outcomes and explored the clinical 
significance of their prognostic signature and cluster grouping. First, 
we obtained LUAD patients' transcriptome data, simple nucleotide 
variation, and clinical data from The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov/)16 database. The lncRNAs and mRNAs 
were distinguished by gene transfer format files. Meanwhile, a list of 
oncosis-related genes (orgenes) was acquired by searching for "oncosis 
cancer" via PubMed (https://pubmed.ncbi.nlm.nih.gov/).17 The orlncR-
NAs were screened by performing the Spearman correlation analy-
sis between the orgenes and lncRNAs. The thresholds were set as 
|cor| > 0.3 and p < 0.001. Furthermore, a univariate Cox analysis was 
conducted to screen orlncRNAs closely associated with the survival of 
patients with LUAD (p < 0.01). To better illustrate the potential rela-
tionship between the orlncRNAs and orgenes, a forest map, a network 
diagram, and a heatmap were plotted for visualization.

2.2  |  Construction of the orlncRNAs cluster

Lung adenocarcinoma patients were divided into different molecular 
subtypes to provide individualized treatment by performing consensus 
clustering with R-x64-4.0.3  limma, ConsensusClusterPlus packages. 
The heatmap clearly exhibited the expression of orlncRNAs related 
to prognosis and the potential relationship between clusters and clin-
icopathological characteristics. Then, Kaplan–Meier survival analysis 
was conducted to explore whether the overall survival (OS) of patients 
with LUAD in different clusters would be statistically different.

2.3  |  Exploration of the tumor immunity in 
different molecular subtypes

The GSEA 4.0.1 (https://www.gsea-msigdb.org/gsea/index.jsp)18 
was performed to find functional pathways that were probably re-
lated to the clusters. The differential expressed genes of patients in 
different clusters were performed on Kyoto Encyclopedia of Genes 
and Genomes19 gene sets (p < 0.05 and false discovery rates [FDR] 
<0.25). The StromalScore, ImmuneScore, and ESTIMATEScore 
(StromalScore + ImmuneScore) of LUAD patients were calculated by 
estimate package, and Wilcoxon rank-sum tests were conducted to 
explore the difference in the content of stromal cells and immune 
cells between different molecular subtypes. Single-sample gene-
set enrichment analysis (ssGSEA) was conducted to quantify the 
relative abundance of various immune cells and the relative inten-
sity of various immune activity, and multi-box plots were plotted 

https://portal.gdc.cancer.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://www.gsea-msigdb.org/gsea/index.jsp
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for visualization. To investigate the expression of common immune 
checkpoint inhibitors (ICIs) in different clusters, Wilcoxon rank-sum 
tests were performed to detect whether there were statistical dif-
ferences in PD-1, PD-L1, and HAVCR-2 expression between differ-
ent molecular subtypes by ggpubr packages. The results above were 
marked as follows for visualization: ***<0.001, **<0.01, and *<0.05.

2.4  |  Establishment of the prognostic signature

The LUAD patients were randomly assigned into the train group and 
the test group evenly. Subsequently, the least absolute shrinkage and 

selection operator (LASSO) regression was performed to construct 
the optimal prognostic signature. We then exported the regression 
coefficient of orlncRNAs included in the modeling process and cal-
culated every LUAD patients' risk score by the following formula:

Coef (n) (Table 1) and E(n) represent the regression coefficient 
and the expression of the orlncRNAs included by the lasso regres-
sion, respectively. The median risk score in the train group was 

11

Riskscore=
∑

Coef(n)×E(n),

n=1,

F I G U R E  1 The flowchart for constructing a novel oncosis-based algorithm and its implication
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recognized as the cut-off point of the train group and test group, 
thus dividing the LUAD patients into different risk groups. To clar-
ify the correlation between molecular subtypes and risk groups, we 
plotted a Sankey diagram for visualization. Then, two 1-year ROC 
curves were plotted and the corresponding AUC values were calcu-
lated. The risk curves of the train group and test group were plotted 
to reveal the survival status of different risk scores. Next, Kaplan–
Meier survival analyses were conducted to explore whether the OS 
of patients with LUAD in different risk groups was statistically signif-
icant. Two heatmaps exhibited the expression of the 11 orlncRNAs 
included by the lasso regression in the train group and test group, 
respectively. To investigate whether the risk assessment model was 
a reliable independent prognostic indicator for LUAD patients, uni-
variate and multivariate Cox regression analyses were performed in 
the train group and test group, respectively, and four forest maps 
were generated for visualization. To better clarify the relationship 
between the risk groups and common clinicopathological character-
istics (e.g., age, gender, Stage, T, M, N, ImmuneScore, and cluster), 
a clinical heatmap was plotted for visualization, which was labeled 
as follows: ***<0.001, **<0.01, and *<0.05. To screen the enriched 
functional pathways, we identified the differential expressed genes 
with FDR <0.05 in different risk groups.

2.5  |  Clinical application of the oncosis-based 
prognostic signature

As shown through the above analyses, we demonstrated that the 
oncosis-based prognostic signature was indeed a reliable indicator 
to predict the survival outcomes of LUAD patients. We performed 
the GO functional enrichment analysis on the differential expressed 
genes (p < 0.05 and FDR < 0.05) to screen the differentially expressed 
functional pathways between different risk groups. In the bar-plot, 
we exhibited the top ten enrichment results of biological process, 
cellular component, and molecular function, respectively. Based on 
the expression of 11 orlncRNAs included in the lasso regression, we 

established oncosis-based molecular subtypes and a risk assessment 
model to evaluate the prognosis and related tumor immunity of LUAD 
patients. To better illustrate the potential relationship between the 
tumor mutation burden (TMB), different clusters, and different risk 
groups, we calculated the correlation coefficient between the risk 
score and TMB by Spearman correlation analysis and investigated 
whether there were statistical differences in TMB between differ-
ent risk groups, different clusters by Wilcoxon rank-sum tests. The 
results were exhibited by a scatter plot and two box plots. Then, we 
calculated the StromalScore, ImmuneScore, and ESTIMATEScore of 
LUAD patients and explored whether the three indicators associated 
with tumor microenvironment in different risk groups were statisti-
cally significant. Next, we compared the expression of common ICIs 
(e.g., PD-1, CTLA-4, and HAVCR-2) between different risk groups 
by Wilcoxon rank-sum tests. Immunophenoscore (IPS) was an indi-
cator that could indirectly reflect the efficacy of PD-1 and CTLA-4 
inhibitors on cancer patients. We obtained the IPS information from 
The Cancer Immunome Atlas (https://tcia.at/)20 and compared the 
IPS between different risk groups by the Wilcoxon rank-sum tests. 
To prove that the combination of molecular subtypes and the risk 
assessment model could effectively predict the survival outcomes 
of LUAD patients, we divided the LUAD patients into four groups: 
①cluster1 + low risk, ②cluster1 + high risk, ③cluster2 + low risk, 
④cluster2 + high risk, and plotted a survival plot by Kaplan–Meier 
survival analysis.

3  |  RESULTS

3.1  |  Identification of orlncRNAs associated with 
OS of LUAD patients

In the present study, all the results obtained are from samples from 
the TCGA database. We obtained 54 normal tissues and 497 LUAD 
tissues from the TCGA-LUAD project. Subsequently, we collected 
a total of 33 orgenes by checking PubMed. Then, we identified the 
orlncRNAs by performing a co-expression analysis between orgenes 
and lncRNAs. At last, 1536 orlncRNAs were screened by performing 
the R-x64-4.0.3  language. We screened out 41 orlncRNAs closely 
related to survival outcomes of LUAD patients for subsequent 
clustering and modeling by performing a univariate Cox analysis 
(Figure 2A). A network diagram (Figure 2B) was plotted for reveal-
ing the connection between orgenes and lncRNAs, and a heatmap 
(Figure 2C) was plotted for visualizing the expression of the 41 orl-
ncRNAs in LUAD samples and normal samples.

3.2  |  Cluster grouping based on orlncRNAs in 
LUAD patients

According to the expression of 41 orlncRNAs closely related to the OS 
of LUAD patients, we divided the LUAD patients into different clusters. 
In the process of generating the consensus matrix, when we set the k 

TA B L E  1 The regression coefficients of 11 orlnRNAs included by 
the lasso regression

ID Coef

CARD8-AS1 −0.000851001072322576

LINC00941 0.060640793514365

LINC01137 0.022200771858516

LINC01116 0.0349184545656507

AC010980.2 0.0691655030661195

LINC00324 −0.158673264800938

AL365203.2 0.0358159581572812

AL606489.1 0.0412286187481897

AC004687.1 −0.00643358868016261

HLA-DQB1-AS1 −0.0239731776316693

AL590226.1 −0.0736257017716491

https://tcia.at/
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F I G U R E  2 Identification of the orlncRNAs closely associated with the prognosis of lung adenocarcinomas (LUAD) patients. (A) The 
univariate Cox analysis identifies the 41 orlncRNAs closely related to the survival outcomes of LUAD patients. Red marks represent risk 
lncRNAs, while green represents protective lncRNAs. (B) The network diagram exhibits the connection between the orgenes and lncRNAs. 
The blue oval represents lncRNAs, and the pink rectangle represents oncosis-related mRNA. (C) The heatmap shows the expression of the 
41 orlncRNAs in LUAD samples and normal samples
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value to 2, we got a relatively better clustering effect (Figure 3A–C). 
Subsequently, we differentiated the LUAD patients into cluster1 and 
cluster2 based on the expression of these 41 orlncRNAs. The heatmap 
showed the expression of these 41 orlncRNAs, and revealed that the 
clusters grouping was closely associated with the N stage (Figure 3D). 
Kaplan–Meier survival analysis revealed that LUAD patients in clus-
ter2 had a greater survival advantage (Figure 4A).

3.3  |  Cluster grouping was a robust indicator of 
tumor immunity in LUAD patients

Gene-set enrichment analysis analysis revealed that several basic cell 
activities (e.g., adherens junction, cell cycle, DNA replication, focal 
adhesion, proteasome, and regulation of actin cytoskeleton) and sev-
eral signaling pathways (e.g., p53  signaling pathway, pentose phos-
phate pathway, and small cell lung cancer) were enriched in cluster1 
(Figure 4B). Patients in cluster1 had a higher StromalScore (Figure 4C), 
ImmuneScore (Figure 4D), and ESTIMATEScore (Figure 4E) than clus-
ter2 patients, indicating that cluster1 patients had a higher content 
of immune cells and stromal cells in the tumor microenvironment. As 
shown in Figure 4F,G, common immune cells, including CD8+ T cells, 
dendritic cells (DCs), immature DCs (iDCs), macrophages, neutrophils, 
nature killer (NK) cells, plasmacytoid dendritic cells (pDCs), T helper 
cells, follicular helper T cells (Tfh), Type 1 T helper (Th1) cells, Type 
1 T helper (Th2) cells, tumor-infiltrating lymphocytes (TIL), and regu-
latory T cells  (Tregs) were more abundant in cluster1 patients, and 
common immune pathways, including antigen-presenting cell (APC) 
co-inhibition, APC co-stimulation, clinical complete response, check-
point, cytolytic activity, inflammation-promoting activity, major histo-
compatibility complex class I, parainflammation, T cell co-inhibition, T 
cell co-stimulation, and type I interferons (type I IFN) response, which 
were more active in cluster1 patients. Expression analyses suggested 
that the expression of common ICIs, including PD-1 (Figure 5A), PD-L1 
(Figure 5B), and HAVCR-2 (Figure 5C) in cluster1 patients, was signifi-
cantly higher than that of cluster2 patients, which indicated that LUAD 
patients in cluster1 were more suitable for immunotherapy targeting 
PD-1, PD-L1, and HAVCR-2. The results above indicated that LUAD 
patients in cluster1 have relatively more active tumor immunity and 
are more suitable for immunotherapy than cluster2 patients.

3.4  |  Construction of the risk prognostic signature 
based on orlncRNAs in LUAD patients

We randomly divided the 468 LUAD patients into the train group 
and test group evenly. Employing lasso regression, we screened out 
11 orlncRNAs among 41 orlncRNAs closely associated with prog-
nosis for subsequent modeling (Figure  5D,E). We calculated the 
risk score and differentiated the patients in the train group and test 
group into different risk groups by the median risk score in the train 
group. The Sankey diagram revealed the potential relationship be-
tween clusters and risk groups, indicating that most of the high-risk 

patients were in cluster1, and the majority of LUAD patients in clus-
ter2 tended to have a lower risk score (Figure 5F). The 1-year AUC 
values of the train group and test group were 0.757 (Figure 5G) and 
0.728 (Figure 5H), respectively, which validated the predictive ability 
of the constructed risk model. Kaplan–Meier log-rank tests proved 
the relatively better prognosis of low-risk patients both in the train 
group (Figure  6A,C) and test group (Figure  6B,D). The heatmaps 
show the expression of the 11 orlncRNAs included by the lasso re-
gression in the train group (Figure  6E) and test group (Figure 6F). 
The clinical heatmap (Figure 7A) revealed the potential relationship 
between risk score and clinicopathological characteristics (e.g., N, 
T, Stage, ImmuneScore, and cluster). Univariate (Figure 7B,D) and 
multivariate (Figure 7C,E) Cox regression analysis were conducted 
to detect the relationship between the orlncRNA signature and clin-
icopathological characteristics, suggesting that the risk score (train 
group: hazard ratio [HR] = 1.692, confidence interval [CI] = 1.473–
1.943, p  <  0.001, test group: HR  =  1.447, [CI]  =  1.229–1.703, 
p < 0.001) and Stage (train group: HR = 1.638, [CI] = 1.333–2.011, 
p < 0.001, test group: HR = 1.478, [CI] = 1.195–1.830, p < 0.001), 
were closely related to the prognosis of LUAD patients. In summary, 
the constructed prognostic signature could be served as independ-
ent prognostic indicator for LUAD.

3.5  |  Exploration of the clinical significance of the 
constructed risk assessment model

The GO enrichment analysis revealed that a majority of differ-
entially expressed genes in different risk groups were enriched 
in multiple immune functions, such as immunoglobulin produc-
tion, humoral immune response, and so on, which indicated that 
the constructed risk assessment model was closely associated 
with tumor immunity (Figure 8A). Therefore, we conducted de-
tailed tumor immunity analyses of LUAD patients in different risk 
groups. The box plots of tumor immune microenvironment showed 
that the StromalScore (Figure 8B), ImmuneScore (Figure 8C), and 
ESTIMATEScore (Figure  8D) in the low-risk group were signifi-
cantly higher than that of patients with high-risk scores. The box 
plots revealed that low-risk patients had a higher expression of 
PD-1 (Figure 8E), CTLA-4 (Figure 8F), and HAVCR-2 (Figure 8G). 
The results of IPS analyses proved the above results, indicating 
that low-risk patients are more sensitive to common clinical immu-
notherapy, including PD-1 inhibitor alone (Figure 9A), CTLA-4 in-
hibitor alone (Figure 9B), and a combination of the two (Figure 9C). 
Wilcoxon signed-rank tests were performed to detect any statisti-
cal differences in TMB between different clusters and different 
risk groups, suggesting that TMB was positively associated with 
its risk score and high-risk patients or that patients in cluster1 
tended to have a higher TMB (Figure 9D–F). The survival curve 
exhibited the survival outcomes of the LUAD patients in different 
risk groups and clusters, among which low-risk patients in clus-
ter2 have the best prognosis (Figure 9G). As shown through the 
above analyses, we found that clusters had a potential relationship 
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F I G U R E  3 Cluster analysis of lung adenocarcinomas (LUAD) patients based on the expression of the 41 orlncRNAs. (A–C) In the process 
of generating the consensus matrix, when we set the k value to 2, the effect of large differences between clusters, but small differences 
within the cluster is the best (A), the descending slope of the cation diffusion facilitator (CDF) is the smallest (B), the delta area under CDF 
curve is the biggest (C), which indicates that we obtained a relatively better clustering effect at this time. (D) The heatmap exhibits the 
expression of the 41 orlncRNAs in different clusters and reveals that the clusters grouping is closely associated with the N
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F I G U R E  4 The survival and related tumor immunity of lung adenocarcinomas (LUAD) patients between different clusters. (A) The 
Kaplan–Meier survival analysis indicates that patients in cluster2 have relatively better survival outcomes. (B) GSEA analysis reveals that 
several basic cell activities and signal pathways are enriched in cluster1. (C–E) The box plots suggested that patients in cluster1 have a 
relatively higher StromalScore (C), ImmuneScore (D), and ESTIMATEScore (E). (F and G) The multi-box plots indicate that common immune 
cells are more abundant in cluster1 patients (F) and common immune pathways are more active in cluster1 patients (G)



    |  9 of 16CHEN et al.

F I G U R E  5 Construction and validation of the 11 orlncRNAs signature. (a–c) The box plots indicated that the expression of common 
ICIs, including PD-1 (A), PD-L1 (B), HAVCR-2 (C) in cluster1 patients, were significantly higher than those in cluster2 patients. (C) (D and E) 
Lasso regression was performed on patients in the train group. (F) The Sankey diagram suggests that a majority of high-risk patients were in 
cluster1, and the majority of lung adenocarcinomas (LUAD) patients in cluster2 tended to have a lower risk score. (G and H) The 1-year ROC 
curves indicate that the predictive ability of the train group (G) and test group (H) are satisfactory
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F I G U R E  6 Validation of the 11 orlncRNAs signature. (A–D) The survival curves (A and B) and scatter plots (C and D) indicate that the 
low-risk patients in the train group (A and C) and test group (B and D) exhibit relatively better survival outcomes. The heatmaps show the 
expression of the 11 orlncRNAs included by the lasso regression in the train group (E) and test group (F)
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F I G U R E  7 The oncosis-based prognostic signature is a reliable biomarker for lung adenocarcinomas (LUAD) patients. (A) The clinical 
heatmap indicates that the risk score is closely associated with N, T, Stage, ImmuneScore, and cluster. (B–E) The forest maps suggested that 
risk score (train group: hazard ratio [HR] = 1.692, confidence interval [CI] = 1.473–1.943, p < 0.001, test group: HR = 1.447, [CI] = 1.229–
1.703, p < 0.001) and Stage (train group: HR = 1.638, [CI] = 1.333–2.011, p < 0.001, test group: HR = 1.478, [CI] = 1.195–1.830, p < 0.001), 
could serve as an independent prognostic indicator for LUAD patients in the train group (B and D) and test group (C and E)
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F I G U R E  8 Exploration of functional phenotypes and related tumor immunity of the oncosis-based prognostic signature. (A) GO 
enrichment analysis shows that the risk assessment model is closely associated with immune functions. (B–D) The box plots suggested that 
the StromalScore (B), ImmuneScore (C), and ESTIMATEScore (D) in low-risk patients were significantly higher than in high-risk patients. 
(E–G) The box plots revealed that low-risk patients had a higher expression of PD-1 (E, p > 0.001), CTLA-4 (F, p > 0.001), and HAVCR-2 
(G, p > 0.001)
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F I G U R E  9 Exploration of the clinical significance of the oncosis-based prognostic signature. (A–C) The box plots suggest that low-risk 
patients have a relatively higher IPS of PD-1 positive (A), CTLA-4 positive (B), and CTLA-4 positive + PD-1 positive (C). (D) The box plots 
show that the TMB of patients in cluster1 is significantly higher than that of cluster2 patients. (E and F) The scatter plot (E) and the box plot 
(F) indicate that TMB is positively associated with the risk score, and lung adenocarcinomas (LUAD) patients with high-risk scores tend to 
have a higher TMB. (G) The survival curve reveals that low-risk patients in cluster2 have the best survival outcomes
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with risk groups, and the reasonable combination of the two might 
provide theoretical support for individualized treatment of ad-
vanced LUAD patients.

4  |  DISCUSSION

Oncosis, a non-ATP-dependent active cell death, is usually an adap-
tive response to some form of injuries such as ischemia, hypoxia, or 
toxic factors.21 Some research suggests that oncosis involving ROS 
is closely associated with acute lung injury, liver failure, and stroke.22 
Furthermore, the interaction between malignant tumors and onco-
sis has been investigated comprehensively in recent years. With 
the development of bioinformatics, utilizing mRNAs and lncRNAs 
to construct prognostic signatures for predicting the OS of cancer 
patients has become a hot topic of research.23  We can precisely 
predict a 5-year survival rate, the efficacy of immunotherapy, and 
the sensitivity to chemotherapy drugs of patients with malignant tu-
mors by detecting the expression of a few genes or lncRNA, which 
provides great convenience for individualized clinical medication. In 
the present study, we divided the LUAD patients into different risk 
groups and different molecular subtypes based on the expression of 
orlncRNAs, which is a more accurate prediction than the traditional 
risk assessment model and is more in line with the philosophy of 
precision medicine.

In the present study, we collected all orgenes by searching rele-
vant literature, obtained the orlncRNAs by conducting correlation 
analysis, and screened the orlncRNAs closely related to progno-
sis by performing univariate Cox analysis for subsequent model-
ing. Next, we conducted the cluster analysis to differentiate the 
LUAD into different clusters according to the expression of the 
orlncRNAs related to prognosis and found that patients in cluster2 
usually had a survival advantage, while patients in cluster1  had 
more abundant stromal cells and immune cells, more active immune 
pathways, higher expression of PD-1, PD-L1, HAVCR-2, and higher 
TMB. After randomly assigning LUAD patients into the train group 
and the test group, we obtained an optimal model by performing 
the lasso regression, calculated the risk score, performed survival 
analysis, and assessed the predictive ability of the prognostic sig-
nature. The results above were verified by the data of the test 
group. According to the GO enrichment analysis, we speculated 
that the prognostic signature was closely related to tumor immu-
nity. After further exploration of the tumor immunity of the risk as-
sessment model, we concluded that low-risk patients had a better 
survival outcome, higher expression of PD-1, CTLA-4, HAVCR-2, 
higher abundance of stromal cells and immune cells, and better ef-
ficacy for immunotherapy targeting PD-1, CTLA-4, while patients 
in the high-risk group tended to have a higher TMB. Finally, we 
performed survival analysis on the algorithm, which indicated that 
low-risk patients in cluster2 usually had the best prognosis.

In the 11 orlncRNAs included by the lasso regression, sev-
eral orlncRNAs have been demonstrated to be closely associated 

with the progression of multiple malignant tumors. CARD8-AS1, 
a risk lncRNA of glioma, could regulate the metastasis of glioma 
cell lines.24 Ren et al.25 demonstrated that LINC00941 acted as 
a sponge to interact with miR-877-3p, suppressed its expression, 
and promoted angiogenesis and progression of NSCLC in vitro. In 
addition, LINC00941 was shown to be involved in the lung me-
tastasis process of colorectal cancer.26 Up-regulated LINC01137 
enhanced the malignant tendency of oral squamous cell carcinoma 
cells and promoted the malignant transformation of oral cells.27 
LINC01116 functioned as a competing endogenous RNA (ceRNA) 
to bind with miR-744-5p, regulate the downstream CDCA4 ex-
pression, and accelerate proliferation, migration, invasion, and 
cisplatin resistance of LUAD cell lines,28,29 which could be blocked 
by the AKT signaling pathway.30 LINC00324 acted as a ceRNA 
to interact with miR-139-5p and down-regulated its expression, 
which accelerated the cell proliferation and invasion of NSCLC cell 
lines.31  Pan et al.32 have also proved that LINC00324 promoted 
the proliferation and metastasis of LUAD tissues and cells by 
the miR-615-5p/AKT1 pathway. However, in the remaining orln-
cRNAs of 11 orlncRNAs (e.g., AC010980.2,33–36 AL365203.2,37–39 
AL606489.1,34,40 AC004687.1,41–43 HLA-DQB1-AS1,44–47 and 
AL590226.1,48 although there are few experiments to explore 
their relationship with the occurrence and development of malig-
nant tumors, plenty of prognostic signatures have included them 
to predict the OS of patients with various malignant tumors.

We are the first to establish a novel oncosis-based algorithm and 
explore the clinical significance of the risk assessment model and 
molecular subtypes. Based on the expression of orlncRNAs, we clas-
sified the LUAD patients twice, namely cluster analysis combined 
with multivariate Cox regression analysis, which is relatively better 
than traditional modeling procedures for individualized management 
of LUAD patients. In addition, we analyzed the survival outcome and 
tumor immunity of LUAD patients in different risk groups and dif-
ferent clusters, respectively, which could provide solid theoretical 
support for precision medicine.

However, there are several limitations to our study. Firstly, given 
that the data were obtained from the open public database, the 
bias of the profile analyzed should not be neglected. Secondly, we 
utilized the data from the TCGA database to perform internal veri-
fication for the constructed risk assessment model, rather than con-
ducting external verification using data sets other than the TCGA 
database. Thirdly, the novel algorithm ultimately served for clinical 
treatment. Whether the predictive ability of the algorithm in the 
clinical treatment of LUAD patients is as accurate as analyzed, needs 
to be further verified by qRT-PCR.

In conclusion, we established a novel algorithm that combined 
cluster analysis with multivariate Cox regression analysis. We only 
needed to detect the 11 lncRNAs expressions to distinguish LUAD 
patients into different molecular subtypes and risk groups, to pre-
dict the survival outcomes and related tumor immunity, which 
could provide individualized management and treatment for LUAD 
patients.
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