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Abstract
Background: As	an	important	non-	apoptotic	cell	death	method,	oncosis	has	been	re-
ported	to	be	closely	associated	with	tumors	in	recent	years.	However,	few	research	
reported the relationship between oncosis and lung cancer.
Methods: In	this	study,	we	established	an	oncosis-	based	algorithm	comprised	of	cluster	
grouping and a risk assessment model to predict the survival outcomes and related 
tumor	immunity	of	patients	with	lung	adenocarcinomas	(LUAD).	We	selected	11	oncosis-	
related	lncRNAs	associated	with	the	prognosis	(CARD8-	AS1,	LINC00941,	LINC01137,	
LINC01116,	AC010980.2,	LINC00324,	AL365203.2,	AL606489.1,	AC004687.1,	HLA-	
DQB1-	AS1,	and	AL590226.1)	to	divide	the	LUAD	patients	into	different	clusters	and	
different risk groups. Compared with patients in clsuter1, patients in cluster2 had a 
survival advantage and had a relatively more active tumor immunity. Subsequently, we 
constructed a risk assessment model to distinguish between patients into different risk 
groups,	in	which	low-	risk	patients	tend	to	have	a	better	prognosis.	GO	enrichment	anal-
ysis revealed that the risk assessment model was closely related to immune activities. In 
addition,	low-	risk	patients	tended	to	have	a	higher	content	of	immune	cells	and	stromal	
cells	 in	 tumor	microenvironment,	 higher	 expression	of	PD-	1,	CTLA-	4,	HAVCR2,	 and	
were	more	 sensitive	 to	 immune	 checkpoint	 inhibitors	 (ICIs),	 including	PD-	1/CTLA-	4	
inhibitors. The risk score had a significantly positive correlation with tumor mutation 
burden	(TMB).	The	survival	curve	of	the	novel	oncosis-	based	algorithm	suggested	that	
low-	risk	patients	in	cluster2	have	the	most	obvious	survival	advantage.
Conclusion: The	novel	oncosis-	based	algorithm	investigated	the	prognosis	and	the	re-
lated	tumor	immunity	of	patients	with	LUAD,	which	could	provide	theoretical	support	
for	customized	individual	treatment	for	LUAD	patients.
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1  |  INTRODUC TION

As	 the	 highest	 incidence	 rate	 among	 all	 malignant	 tumors,	 lung	
cancer	 is	 considered	 the	primary	 reason	 for	cancer-	related	deaths	
worldwide.1	According	to	the	official	forecast	for	2021,	lung	cancer	
is the malignant tumor with the highest fatality rate among men and 
women in the United States, and its incidence rate ranks second.2 
According	to	the	official	forecast	of	China	in	2015,	lung	cancer	is	the	
malignant tumor with the highest incidence and mortality in both 
men and women.3	 More	 than	 half	 of	 non-	small	 cell	 lung	 cancers	
(NSCLC)	 are	 lung	 adenocarcinomas	 (LUAD),	 accounting	 for	 more	
than	85%	of	 lung	 cancers.4	 Although	 recent	 breakthroughs	 in	 im-
munotherapy and targeted therapy have benefited a large number 
of	advanced	NSCLC	patients,	the	5-	year	survival	rate	for	advanced	
NSCLC	patients	with	distant	metastasis	 is	merely	7%.5 Thus, iden-
tifying effective and reliable biomarkers and targets may lay a solid 
foundation	 for	 the	 individualized	 treatment	 of	 advanced	 NSCLC	
patients.

Manifested	as	DNA	damage	and	mitochondrial	 swelling,	onco-
sis is a type of programmed cell death different from apoptosis in 
both morphological changes and internal pathways.6 The swelling 
of oncosis cells is mainly due to the failure of the ion pump on the 
membrane, which leads to water and sodium retention in the cells.7 
Related literature reported that oncosis might be involved in the pro-
cess of tumor progression, including cancer metabolism, immuno-
suppression, and cancer stem cells.8 In addition, studies have proved 
that the oncosis of cancer cells mediated by aquaporin 1 may be a 
feature of malignant tumor metastasis.9	Huang	et	al.10 demonstrated 
that enhanced oncosis could effectively reduce the proliferation of 
bladder	cancer	cell	lines.	Zhao	et	al.11 reported that in human esoph-
ageal squamous cell carcinoma tissues, the enhanced oncosis was 
caused by an insufficient blood supply, and the intensity of oncosis is 
closely related to apoptosis and microvessel density. Some scholars 
proposed that oncosis may be the key to overcoming the main ob-
stacle in cancer treatment— drug resistance.12 In summary, oncosis 
has been implicated in the occurrence and development of malig-
nant tumors.

Recent studies have shown that oncosis may be involved in im-
mune activities. Sarode et al.13 suggested that cell death, includ-
ing oncosis, played an important role in immune defense against 
infectious	 diseases.	 Huang	 et	 al.14 suggested that the oncosis of 
T lymphocytes may be an effective target for the treatment of 
asthma.	Furthermore,	 related	 research	has	demonstrated	 that	on-
cosis has participated in mediating the immunogenic death of tumor 
cells.15 Thus, we speculated that the oncosis of cancer cells was 
closely related to tumor immunity. In the present study, we divided 
the	LUAD	patients	into	different	clusters	and	different	risk	groups	
based	on	the	expression	of	 the	oncosis-	related	 lncRNAs.	We	then	
analyzed the related tumor immunity between different risk groups 
and clusters, and explored the clinical significance of the novel 
oncosis-	based	algorithm.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

According	to	the	flow	chart	(Figure 1),	we	divided	LUAD	patients	into	
different clusters and different risk groups based on the expression of 
orlncRNAs	to	predict	their	survival	outcomes	and	explored	the	clinical	
significance	of	their	prognostic	signature	and	cluster	grouping.	First,	
we	 obtained	 LUAD	 patients'	 transcriptome	 data,	 simple	 nucleotide	
variation,	 and	 clinical	 data	 from	 The	 Cancer	 Genome	Atlas	 (TCGA,	
https://portal.gdc.cancer.gov/)16	 database.	The	 lncRNAs	and	mRNAs	
were distinguished by gene transfer format files. Meanwhile, a list of 
oncosis-	related	genes	(orgenes)	was	acquired	by	searching	for	"oncosis	
cancer"	via	PubMed	(https://pubmed.ncbi.nlm.nih.gov/).17 The orlncR-
NAs	were	 screened	 by	 performing	 the	 Spearman	 correlation	 analy-
sis	 between	 the	 orgenes	 and	 lncRNAs.	 The	 thresholds	were	 set	 as	
|cor| > 0.3 and p <	0.001.	Furthermore,	a	univariate	Cox	analysis	was	
conducted	to	screen	orlncRNAs	closely	associated	with	the	survival	of	
patients	with	LUAD	(p <	0.01).	To	better	illustrate	the	potential	rela-
tionship	between	the	orlncRNAs	and	orgenes,	a	forest	map,	a	network	
diagram, and a heatmap were plotted for visualization.

2.2  |  Construction of the orlncRNAs cluster

Lung adenocarcinoma patients were divided into different molecular 
subtypes to provide individualized treatment by performing consensus 
clustering	with	 R-	x64-	4.0.3	 limma,	 ConsensusClusterPlus	 packages.	
The	 heatmap	 clearly	 exhibited	 the	 expression	 of	 orlncRNAs	 related	
to prognosis and the potential relationship between clusters and clin-
icopathological characteristics. Then, Kaplan– Meier survival analysis 
was	conducted	to	explore	whether	the	overall	survival	(OS)	of	patients	
with	LUAD	in	different	clusters	would	be	statistically	different.

2.3  |  Exploration of the tumor immunity in 
different molecular subtypes

The	 GSEA	 4.0.1	 (https://www.gsea-	msigdb.org/gsea/index.jsp)18 
was performed to find functional pathways that were probably re-
lated to the clusters. The differential expressed genes of patients in 
different clusters were performed on Kyoto Encyclopedia of Genes 
and Genomes19	gene	sets	(p <	0.05	and	false	discovery	rates	[FDR]	
<0.25).	 The	 StromalScore,	 ImmuneScore,	 and	 ESTIMATEScore	
(StromalScore	+	ImmuneScore)	of	LUAD	patients	were	calculated	by	
estimate	package,	and	Wilcoxon	rank-	sum	tests	were	conducted	to	
explore the difference in the content of stromal cells and immune 
cells	 between	 different	 molecular	 subtypes.	 Single-	sample	 gene-	
set	 enrichment	 analysis	 (ssGSEA)	 was	 conducted	 to	 quantify	 the	
relative abundance of various immune cells and the relative inten-
sity	 of	 various	 immune	 activity,	 and	multi-	box	 plots	were	 plotted	

https://portal.gdc.cancer.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://www.gsea-msigdb.org/gsea/index.jsp
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for visualization. To investigate the expression of common immune 
checkpoint	inhibitors	(ICIs)	in	different	clusters,	Wilcoxon	rank-	sum	
tests were performed to detect whether there were statistical dif-
ferences	in	PD-	1,	PD-	L1,	and	HAVCR-	2	expression	between	differ-
ent molecular subtypes by ggpubr packages. The results above were 
marked as follows for visualization: ***<0.001, **<0.01, and *<0.05.

2.4  |  Establishment of the prognostic signature

The	LUAD	patients	were	randomly	assigned	into	the	train	group	and	
the test group evenly. Subsequently, the least absolute shrinkage and 

selection	operator	(LASSO)	regression	was	performed	to	construct	
the optimal prognostic signature. We then exported the regression 
coefficient	of	orlncRNAs	included	in	the	modeling	process	and	cal-
culated	every	LUAD	patients'	risk	score	by	the	following	formula:

Coef	 (n)	 (Table 1)	 and	E(n)	 represent	 the	 regression	coefficient	
and	the	expression	of	the	orlncRNAs	included	by	the	lasso	regres-
sion, respectively. The median risk score in the train group was 

11

Riskscore=
∑

Coef(n)×E(n),

n=1,

F I G U R E  1 The	flowchart	for	constructing	a	novel	oncosis-	based	algorithm	and	its	implication



4 of 16  |     CHEN Et al.

recognized	 as	 the	 cut-	off	 point	 of	 the	 train	 group	 and	 test	 group,	
thus	dividing	the	LUAD	patients	into	different	risk	groups.	To	clar-
ify the correlation between molecular subtypes and risk groups, we 
plotted	a	Sankey	diagram	 for	 visualization.	Then,	 two	1-	year	ROC	
curves	were	plotted	and	the	corresponding	AUC	values	were	calcu-
lated. The risk curves of the train group and test group were plotted 
to	reveal	the	survival	status	of	different	risk	scores.	Next,	Kaplan–	
Meier survival analyses were conducted to explore whether the OS 
of	patients	with	LUAD	in	different	risk	groups	was	statistically	signif-
icant.	Two	heatmaps	exhibited	the	expression	of	the	11	orlncRNAs	
included by the lasso regression in the train group and test group, 
respectively. To investigate whether the risk assessment model was 
a	reliable	independent	prognostic	indicator	for	LUAD	patients,	uni-
variate and multivariate Cox regression analyses were performed in 
the train group and test group, respectively, and four forest maps 
were generated for visualization. To better clarify the relationship 
between the risk groups and common clinicopathological character-
istics	 (e.g.,	age,	gender,	Stage,	T,	M,	N,	 ImmuneScore,	and	cluster),	
a clinical heatmap was plotted for visualization, which was labeled 
as follows: ***<0.001, **<0.01, and *<0.05.	To	screen	the	enriched	
functional pathways, we identified the differential expressed genes 
with	FDR	<0.05	in	different	risk	groups.

2.5  |  Clinical application of the oncosis- based 
prognostic signature

As	 shown	 through	 the	 above	 analyses,	we	demonstrated	 that	 the	
oncosis-	based	prognostic	signature	was	 indeed	a	reliable	 indicator	
to	predict	the	survival	outcomes	of	LUAD	patients.	We	performed	
the GO functional enrichment analysis on the differential expressed 
genes	(p <	0.05	and	FDR	<	0.05)	to	screen	the	differentially	expressed	
functional	pathways	between	different	risk	groups.	In	the	bar-	plot,	
we exhibited the top ten enrichment results of biological process, 
cellular component, and molecular function, respectively. Based on 
the	expression	of	11	orlncRNAs	included	in	the	lasso	regression,	we	

established	oncosis-	based	molecular	subtypes	and	a	risk	assessment	
model	to	evaluate	the	prognosis	and	related	tumor	immunity	of	LUAD	
patients. To better illustrate the potential relationship between the 
tumor	mutation	burden	(TMB),	different	clusters,	and	different	risk	
groups, we calculated the correlation coefficient between the risk 
score and TMB by Spearman correlation analysis and investigated 
whether there were statistical differences in TMB between differ-
ent	risk	groups,	different	clusters	by	Wilcoxon	rank-	sum	tests.	The	
results were exhibited by a scatter plot and two box plots. Then, we 
calculated	the	StromalScore,	ImmuneScore,	and	ESTIMATEScore	of	
LUAD	patients	and	explored	whether	the	three	indicators	associated	
with tumor microenvironment in different risk groups were statisti-
cally	significant.	Next,	we	compared	the	expression	of	common	ICIs	
(e.g.,	 PD-	1,	 CTLA-	4,	 and	HAVCR-	2)	 between	 different	 risk	 groups	
by	Wilcoxon	rank-	sum	tests.	Immunophenoscore	(IPS)	was	an	indi-
cator	that	could	indirectly	reflect	the	efficacy	of	PD-	1	and	CTLA-	4	
inhibitors on cancer patients. We obtained the IPS information from 
The	Cancer	 Immunome	Atlas	 (https://tcia.at/)20 and compared the 
IPS	between	different	risk	groups	by	the	Wilcoxon	rank-	sum	tests.	
To prove that the combination of molecular subtypes and the risk 
assessment model could effectively predict the survival outcomes 
of	LUAD	patients,	we	divided	the	LUAD	patients	 into	four	groups:	
①cluster1	+	low	risk,	②cluster1	+	high	risk,	③cluster2	+ low risk, 
④cluster2	+ high risk, and plotted a survival plot by Kaplan– Meier 
survival analysis.

3  |  RESULTS

3.1  |  Identification of orlncRNAs associated with 
OS of LUAD patients

In the present study, all the results obtained are from samples from 
the	TCGA	database.	We	obtained	54	normal	tissues	and	497	LUAD	
tissues	 from	 the	TCGA-	LUAD	project.	 Subsequently,	we	 collected	
a total of 33 orgenes by checking PubMed. Then, we identified the 
orlncRNAs	by	performing	a	co-	expression	analysis	between	orgenes	
and	lncRNAs.	At	last,	1536	orlncRNAs	were	screened	by	performing	
the	R-	x64-	4.0.3	 language.	We	 screened	out	41	orlncRNAs	closely	
related	 to	 survival	 outcomes	 of	 LUAD	 patients	 for	 subsequent	
clustering and modeling by performing a univariate Cox analysis 
(Figure 2A).	A	network	diagram	(Figure 2B)	was	plotted	for	reveal-
ing	the	connection	between	orgenes	and	lncRNAs,	and	a	heatmap	
(Figure 2C)	was	plotted	for	visualizing	the	expression	of	the	41	orl-
ncRNAs	in	LUAD	samples	and	normal	samples.

3.2  |  Cluster grouping based on orlncRNAs in 
LUAD patients

According	to	the	expression	of	41	orlncRNAs	closely	related	to	the	OS	
of	LUAD	patients,	we	divided	the	LUAD	patients	into	different	clusters.	
In the process of generating the consensus matrix, when we set the k 

TA B L E  1 The	regression	coefficients	of	11	orlnRNAs	included	by	
the lasso regression

ID Coef

CARD8-	AS1 −0.000851001072322576

LINC00941 0.060640793514365

LINC01137 0.022200771858516

LINC01116 0.0349184545656507

AC010980.2 0.0691655030661195

LINC00324 −0.158673264800938

AL365203.2 0.0358159581572812

AL606489.1 0.0412286187481897

AC004687.1 −0.00643358868016261

HLA-	DQB1-	AS1 −0.0239731776316693

AL590226.1 −0.0736257017716491

https://tcia.at/
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F I G U R E  2 Identification	of	the	orlncRNAs	closely	associated	with	the	prognosis	of	lung	adenocarcinomas	(LUAD)	patients.	(A)	The	
univariate	Cox	analysis	identifies	the	41	orlncRNAs	closely	related	to	the	survival	outcomes	of	LUAD	patients.	Red	marks	represent	risk	
lncRNAs,	while	green	represents	protective	lncRNAs.	(B)	The	network	diagram	exhibits	the	connection	between	the	orgenes	and	lncRNAs.	
The	blue	oval	represents	lncRNAs,	and	the	pink	rectangle	represents	oncosis-	related	mRNA.	(C)	The	heatmap	shows	the	expression	of	the	
41	orlncRNAs	in	LUAD	samples	and	normal	samples
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value	to	2,	we	got	a	relatively	better	clustering	effect	(Figure 3A–	C).	
Subsequently,	we	differentiated	the	LUAD	patients	into	cluster1	and	
cluster2	based	on	the	expression	of	these	41	orlncRNAs.	The	heatmap	
showed	the	expression	of	these	41	orlncRNAs,	and	revealed	that	the	
clusters	grouping	was	closely	associated	with	the	N	stage	(Figure 3D).	
Kaplan–	Meier	 survival	 analysis	 revealed	 that	LUAD	patients	 in	 clus-
ter2	had	a	greater	survival	advantage	(Figure 4A).

3.3  |  Cluster grouping was a robust indicator of 
tumor immunity in LUAD patients

Gene-	set	enrichment	analysis	analysis	revealed	that	several	basic	cell	
activities	 (e.g.,	 adherens	 junction,	 cell	 cycle,	 DNA	 replication,	 focal	
adhesion,	proteasome,	and	regulation	of	actin	cytoskeleton)	and	sev-
eral	 signaling	 pathways	 (e.g.,	 p53	 signaling	 pathway,	 pentose	 phos-
phate	pathway,	and	small	cell	 lung	cancer)	were	enriched	in	cluster1	
(Figure 4B).	Patients	in	cluster1	had	a	higher	StromalScore	(Figure 4C),	
ImmuneScore	(Figure 4D),	and	ESTIMATEScore	(Figure 4E)	than	clus-
ter2 patients, indicating that cluster1 patients had a higher content 
of	immune	cells	and	stromal	cells	in	the	tumor	microenvironment.	As	
shown in Figure 4F,G,	common	immune	cells,	including	CD8+ T cells, 
dendritic	cells	(DCs),	immature	DCs	(iDCs),	macrophages,	neutrophils,	
nature	killer	 (NK)	cells,	plasmacytoid	dendritic	cells	 (pDCs),	T	helper	
cells,	 follicular	helper	T	 cells	 (Tfh),	Type	1	T	helper	 (Th1)	 cells,	Type	
1	T	helper	(Th2)	cells,	tumor-	infiltrating	lymphocytes	(TIL),	and	regu-
latory	 T	 cells	 (Tregs)	 were	more	 abundant	 in	 cluster1	 patients,	 and	
common	 immune	 pathways,	 including	 antigen-	presenting	 cell	 (APC)	
co-	inhibition,	APC	co-	stimulation,	clinical	complete	 response,	check-	
point,	cytolytic	activity,	inflammation-	promoting	activity,	major	histo-
compatibility	complex	class	I,	parainflammation,	T	cell	co-	inhibition,	T	
cell	co-	stimulation,	and	type	I	interferons	(type	I	IFN)	response,	which	
were more active in cluster1 patients. Expression analyses suggested 
that	the	expression	of	common	ICIs,	including	PD-	1	(Figure 5A),	PD-	L1	
(Figure 5B),	and	HAVCR-	2	(Figure 5C)	in	cluster1	patients,	was	signifi-
cantly	higher	than	that	of	cluster2	patients,	which	indicated	that	LUAD	
patients in cluster1 were more suitable for immunotherapy targeting 
PD-	1,	PD-	L1,	and	HAVCR-	2.	The	results	above	 indicated	that	LUAD	
patients in cluster1 have relatively more active tumor immunity and 
are more suitable for immunotherapy than cluster2 patients.

3.4  |  Construction of the risk prognostic signature 
based on orlncRNAs in LUAD patients

We	randomly	divided	 the	468	LUAD	patients	 into	 the	 train	group	
and test group evenly. Employing lasso regression, we screened out 
11	orlncRNAs	 among	41	 orlncRNAs	 closely	 associated	with	 prog-
nosis	 for	 subsequent	 modeling	 (Figure 5D,E).	 We	 calculated	 the	
risk score and differentiated the patients in the train group and test 
group into different risk groups by the median risk score in the train 
group. The Sankey diagram revealed the potential relationship be-
tween	clusters	and	risk	groups,	indicating	that	most	of	the	high-	risk	

patients	were	in	cluster1,	and	the	majority	of	LUAD	patients	in	clus-
ter2	tended	to	have	a	lower	risk	score	(Figure 5F).	The	1-	year	AUC	
values	of	the	train	group	and	test	group	were	0.757	(Figure 5G)	and	
0.728	(Figure 5H),	respectively,	which	validated	the	predictive	ability	
of	the	constructed	risk	model.	Kaplan–	Meier	log-	rank	tests	proved	
the	relatively	better	prognosis	of	low-	risk	patients	both	in	the	train	
group	 (Figure 6A,C)	 and	 test	 group	 (Figure 6B,D).	 The	 heatmaps	
show	the	expression	of	the	11	orlncRNAs	included	by	the	lasso	re-
gression	 in	 the	 train	group	 (Figure 6E)	 and	 test	 group	 (Figure 6F).	
The	clinical	heatmap	(Figure 7A)	revealed	the	potential	relationship	
between	 risk	 score	 and	 clinicopathological	 characteristics	 (e.g.,	N,	
T,	 Stage,	 ImmuneScore,	 and	 cluster).	 Univariate	 (Figure 7B,D)	 and	
multivariate	 (Figure 7C,E)	Cox	 regression	analysis	were	conducted	
to	detect	the	relationship	between	the	orlncRNA	signature	and	clin-
icopathological	characteristics,	suggesting	that	the	risk	score	(train	
group:	hazard	ratio	[HR]	=	1.692,	confidence	interval	[CI]	=	1.473–	
1.943,	 p <	 0.001,	 test	 group:	 HR	 =	 1.447,	 [CI]	 =	 1.229–	1.703,	
p <	0.001)	and	Stage	(train	group:	HR	=	1.638,	[CI]	= 1.333– 2.011, 
p <	0.001,	test	group:	HR	=	1.478,	[CI]	=	1.195–	1.830,	p <	0.001),	
were	closely	related	to	the	prognosis	of	LUAD	patients.	In	summary,	
the constructed prognostic signature could be served as independ-
ent	prognostic	indicator	for	LUAD.

3.5  |  Exploration of the clinical significance of the 
constructed risk assessment model

The GO enrichment analysis revealed that a majority of differ-
entially expressed genes in different risk groups were enriched 
in multiple immune functions, such as immunoglobulin produc-
tion, humoral immune response, and so on, which indicated that 
the constructed risk assessment model was closely associated 
with	 tumor	 immunity	 (Figure 8A).	 Therefore,	 we	 conducted	 de-
tailed	tumor	immunity	analyses	of	LUAD	patients	in	different	risk	
groups. The box plots of tumor immune microenvironment showed 
that	the	StromalScore	(Figure 8B),	ImmuneScore	(Figure 8C),	and	
ESTIMATEScore	 (Figure 8D)	 in	 the	 low-	risk	 group	 were	 signifi-
cantly	higher	than	that	of	patients	with	high-	risk	scores.	The	box	
plots	 revealed	 that	 low-	risk	 patients	 had	 a	 higher	 expression	 of	
PD-	1	 (Figure 8E),	CTLA-	4	 (Figure 8F),	and	HAVCR-	2	 (Figure 8G).	
The results of IPS analyses proved the above results, indicating 
that	low-	risk	patients	are	more	sensitive	to	common	clinical	immu-
notherapy,	including	PD-	1	inhibitor	alone	(Figure 9A),	CTLA-	4	in-
hibitor	alone	(Figure 9B),	and	a	combination	of	the	two	(Figure 9C).	
Wilcoxon	signed-	rank	tests	were	performed	to	detect	any	statisti-
cal differences in TMB between different clusters and different 
risk groups, suggesting that TMB was positively associated with 
its	 risk	 score	 and	 high-	risk	 patients	 or	 that	 patients	 in	 cluster1	
tended	 to	 have	 a	 higher	 TMB	 (Figure 9D–	F).	 The	 survival	 curve	
exhibited	the	survival	outcomes	of	the	LUAD	patients	in	different	
risk	 groups	 and	 clusters,	 among	which	 low-	risk	 patients	 in	 clus-
ter2	have	 the	best	prognosis	 (Figure 9G).	As	 shown	 through	 the	
above analyses, we found that clusters had a potential relationship 
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F I G U R E  3 Cluster	analysis	of	lung	adenocarcinomas	(LUAD)	patients	based	on	the	expression	of	the	41	orlncRNAs.	(A–	C)	In	the	process	
of generating the consensus matrix, when we set the k value to 2, the effect of large differences between clusters, but small differences 
within	the	cluster	is	the	best	(A),	the	descending	slope	of	the	cation	diffusion	facilitator	(CDF)	is	the	smallest	(B),	the	delta	area	under	CDF	
curve	is	the	biggest	(C),	which	indicates	that	we	obtained	a	relatively	better	clustering	effect	at	this	time.	(D)	The	heatmap	exhibits	the	
expression	of	the	41	orlncRNAs	in	different	clusters	and	reveals	that	the	clusters	grouping	is	closely	associated	with	the	N
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F I G U R E  4 The	survival	and	related	tumor	immunity	of	lung	adenocarcinomas	(LUAD)	patients	between	different	clusters.	(A)	The	
Kaplan–	Meier	survival	analysis	indicates	that	patients	in	cluster2	have	relatively	better	survival	outcomes.	(B)	GSEA	analysis	reveals	that	
several	basic	cell	activities	and	signal	pathways	are	enriched	in	cluster1.	(C–	E)	The	box	plots	suggested	that	patients	in	cluster1	have	a	
relatively	higher	StromalScore	(C),	ImmuneScore	(D),	and	ESTIMATEScore	(E).	(F	and	G)	The	multi-	box	plots	indicate	that	common	immune	
cells	are	more	abundant	in	cluster1	patients	(F)	and	common	immune	pathways	are	more	active	in	cluster1	patients	(G)
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F I G U R E  5 Construction	and	validation	of	the	11	orlncRNAs	signature.	(a–	c)	The	box	plots	indicated	that	the	expression	of	common	
ICIs,	including	PD-	1	(A),	PD-	L1	(B),	HAVCR-	2	(C)	in	cluster1	patients,	were	significantly	higher	than	those	in	cluster2	patients.	(C)	(D	and	E)	
Lasso	regression	was	performed	on	patients	in	the	train	group.	(F)	The	Sankey	diagram	suggests	that	a	majority	of	high-	risk	patients	were	in	
cluster1,	and	the	majority	of	lung	adenocarcinomas	(LUAD)	patients	in	cluster2	tended	to	have	a	lower	risk	score.	(G	and	H)	The	1-	year	ROC	
curves	indicate	that	the	predictive	ability	of	the	train	group	(G)	and	test	group	(H)	are	satisfactory
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F I G U R E  6 Validation	of	the	11	orlncRNAs	signature.	(A–	D)	The	survival	curves	(A	and	B)	and	scatter	plots	(C	and	D)	indicate	that	the	
low-	risk	patients	in	the	train	group	(A	and	C)	and	test	group	(B	and	D)	exhibit	relatively	better	survival	outcomes.	The	heatmaps	show	the	
expression	of	the	11	orlncRNAs	included	by	the	lasso	regression	in	the	train	group	(E)	and	test	group	(F)
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F I G U R E  7 The	oncosis-	based	prognostic	signature	is	a	reliable	biomarker	for	lung	adenocarcinomas	(LUAD)	patients.	(A)	The	clinical	
heatmap	indicates	that	the	risk	score	is	closely	associated	with	N,	T,	Stage,	ImmuneScore,	and	cluster.	(B–	E)	The	forest	maps	suggested	that	
risk	score	(train	group:	hazard	ratio	[HR]	=	1.692,	confidence	interval	[CI]	=	1.473–	1.943,	p <	0.001,	test	group:	HR	=	1.447,	[CI]	=	1.229–	
1.703,	p <	0.001)	and	Stage	(train	group:	HR	=	1.638,	[CI]	= 1.333– 2.011, p <	0.001,	test	group:	HR	=	1.478,	[CI]	=	1.195–	1.830,	p <	0.001),	
could	serve	as	an	independent	prognostic	indicator	for	LUAD	patients	in	the	train	group	(B	and	D)	and	test	group	(C	and	E)
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F I G U R E  8 Exploration	of	functional	phenotypes	and	related	tumor	immunity	of	the	oncosis-	based	prognostic	signature.	(A)	GO	
enrichment	analysis	shows	that	the	risk	assessment	model	is	closely	associated	with	immune	functions.	(B–	D)	The	box	plots	suggested	that	
the	StromalScore	(B),	ImmuneScore	(C),	and	ESTIMATEScore	(D)	in	low-	risk	patients	were	significantly	higher	than	in	high-	risk	patients.	
(E–	G)	The	box	plots	revealed	that	low-	risk	patients	had	a	higher	expression	of	PD-	1	(E,	p >	0.001),	CTLA-	4	(F,	p >	0.001),	and	HAVCR-	2	
(G,	p >	0.001)
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F I G U R E  9 Exploration	of	the	clinical	significance	of	the	oncosis-	based	prognostic	signature.	(A–	C)	The	box	plots	suggest	that	low-	risk	
patients	have	a	relatively	higher	IPS	of	PD-	1	positive	(A),	CTLA-	4	positive	(B),	and	CTLA-	4	positive	+	PD-	1	positive	(C).	(D)	The	box	plots	
show	that	the	TMB	of	patients	in	cluster1	is	significantly	higher	than	that	of	cluster2	patients.	(E	and	F)	The	scatter	plot	(E)	and	the	box	plot	
(F)	indicate	that	TMB	is	positively	associated	with	the	risk	score,	and	lung	adenocarcinomas	(LUAD)	patients	with	high-	risk	scores	tend	to	
have	a	higher	TMB.	(G)	The	survival	curve	reveals	that	low-	risk	patients	in	cluster2	have	the	best	survival	outcomes
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with risk groups, and the reasonable combination of the two might 
provide theoretical support for individualized treatment of ad-
vanced	LUAD	patients.

4  |  DISCUSSION

Oncosis,	a	non-	ATP-	dependent	active	cell	death,	is	usually	an	adap-
tive response to some form of injuries such as ischemia, hypoxia, or 
toxic factors.21 Some research suggests that oncosis involving ROS 
is closely associated with acute lung injury, liver failure, and stroke.22 
Furthermore,	the	interaction	between	malignant	tumors	and	onco-
sis has been investigated comprehensively in recent years. With 
the	 development	 of	 bioinformatics,	 utilizing	mRNAs	 and	 lncRNAs	
to construct prognostic signatures for predicting the OS of cancer 
patients has become a hot topic of research.23 We can precisely 
predict	a	5-	year	survival	 rate,	 the	efficacy	of	 immunotherapy,	and	
the sensitivity to chemotherapy drugs of patients with malignant tu-
mors	by	detecting	the	expression	of	a	few	genes	or	lncRNA,	which	
provides great convenience for individualized clinical medication. In 
the	present	study,	we	divided	the	LUAD	patients	into	different	risk	
groups and different molecular subtypes based on the expression of 
orlncRNAs,	which	is	a	more	accurate	prediction	than	the	traditional	
risk assessment model and is more in line with the philosophy of 
precision medicine.

In the present study, we collected all orgenes by searching rele-
vant	literature,	obtained	the	orlncRNAs	by	conducting	correlation	
analysis,	 and	 screened	 the	orlncRNAs	 closely	 related	 to	 progno-
sis by performing univariate Cox analysis for subsequent model-
ing.	Next,	we	 conducted	 the	 cluster	 analysis	 to	differentiate	 the	
LUAD	 into	 different	 clusters	 according	 to	 the	 expression	 of	 the	
orlncRNAs	related	to	prognosis	and	found	that	patients	in	cluster2	
usually had a survival advantage, while patients in cluster1 had 
more abundant stromal cells and immune cells, more active immune 
pathways,	higher	expression	of	PD-	1,	PD-	L1,	HAVCR-	2,	and	higher	
TMB.	After	randomly	assigning	LUAD	patients	into	the	train	group	
and the test group, we obtained an optimal model by performing 
the lasso regression, calculated the risk score, performed survival 
analysis, and assessed the predictive ability of the prognostic sig-
nature. The results above were verified by the data of the test 
group.	 According	 to	 the	GO	 enrichment	 analysis,	 we	 speculated	
that the prognostic signature was closely related to tumor immu-
nity.	After	further	exploration	of	the	tumor	immunity	of	the	risk	as-
sessment	model,	we	concluded	that	low-	risk	patients	had	a	better	
survival	outcome,	higher	expression	of	PD-	1,	CTLA-	4,	HAVCR-	2,	
higher abundance of stromal cells and immune cells, and better ef-
ficacy	for	immunotherapy	targeting	PD-	1,	CTLA-	4,	while	patients	
in	 the	 high-	risk	 group	 tended	 to	 have	 a	 higher	 TMB.	 Finally,	we	
performed survival analysis on the algorithm, which indicated that 
low-	risk	patients	in	cluster2	usually	had	the	best	prognosis.

In	 the	 11	 orlncRNAs	 included	 by	 the	 lasso	 regression,	 sev-
eral	orlncRNAs	have	been	demonstrated	to	be	closely	associated	

with	 the	progression	of	multiple	malignant	 tumors.	CARD8-	AS1,	
a	 risk	 lncRNA	of	glioma,	could	 regulate	 the	metastasis	of	glioma	
cell lines.24 Ren et al.25	 demonstrated	 that	 LINC00941	 acted	 as	
a	sponge	to	interact	with	miR-	877-	3p,	suppressed	its	expression,	
and	promoted	angiogenesis	and	progression	of	NSCLC	in	vitro.	In	
addition,	 LINC00941	was	 shown	 to	 be	 involved	 in	 the	 lung	me-
tastasis process of colorectal cancer.26	Up-	regulated	LINC01137	
enhanced the malignant tendency of oral squamous cell carcinoma 
cells and promoted the malignant transformation of oral cells.27 
LINC01116	functioned	as	a	competing	endogenous	RNA	(ceRNA)	
to	 bind	 with	 miR-	744-	5p,	 regulate	 the	 downstream	 CDCA4	 ex-
pression, and accelerate proliferation, migration, invasion, and 
cisplatin	resistance	of	LUAD	cell	lines,28,29 which could be blocked 
by	 the	 AKT	 signaling	 pathway.30	 LINC00324	 acted	 as	 a	 ceRNA	
to	 interact	 with	miR-	139-	5p	 and	 down-	regulated	 its	 expression,	
which	accelerated	the	cell	proliferation	and	invasion	of	NSCLC	cell	
lines.31 Pan et al.32	 have	 also	proved	 that	 LINC00324	promoted	
the	 proliferation	 and	 metastasis	 of	 LUAD	 tissues	 and	 cells	 by	
the	miR-	615-	5p/AKT1	pathway.	However,	 in	 the	 remaining	orln-
cRNAs	of	11	orlncRNAs	(e.g.,	AC010980.2,33– 36	AL365203.2,37–	39 
AL606489.1,34,40	 AC004687.1,41– 43	 HLA-	DQB1-	AS1,44–	47 and 
AL590226.1,48 although there are few experiments to explore 
their relationship with the occurrence and development of malig-
nant tumors, plenty of prognostic signatures have included them 
to predict the OS of patients with various malignant tumors.

We	are	the	first	to	establish	a	novel	oncosis-	based	algorithm	and	
explore the clinical significance of the risk assessment model and 
molecular	subtypes.	Based	on	the	expression	of	orlncRNAs,	we	clas-
sified	 the	 LUAD	patients	 twice,	 namely	 cluster	 analysis	 combined	
with multivariate Cox regression analysis, which is relatively better 
than traditional modeling procedures for individualized management 
of	LUAD	patients.	In	addition,	we	analyzed	the	survival	outcome	and	
tumor	 immunity	of	LUAD	patients	 in	different	risk	groups	and	dif-
ferent clusters, respectively, which could provide solid theoretical 
support for precision medicine.

However,	there	are	several	limitations	to	our	study.	Firstly,	given	
that the data were obtained from the open public database, the 
bias of the profile analyzed should not be neglected. Secondly, we 
utilized	the	data	from	the	TCGA	database	to	perform	internal	veri-
fication for the constructed risk assessment model, rather than con-
ducting	external	 verification	using	data	 sets	other	 than	 the	TCGA	
database. Thirdly, the novel algorithm ultimately served for clinical 
treatment. Whether the predictive ability of the algorithm in the 
clinical	treatment	of	LUAD	patients	is	as	accurate	as	analyzed,	needs	
to	be	further	verified	by	qRT-	PCR.

In conclusion, we established a novel algorithm that combined 
cluster analysis with multivariate Cox regression analysis. We only 
needed	to	detect	the	11	lncRNAs	expressions	to	distinguish	LUAD	
patients into different molecular subtypes and risk groups, to pre-
dict the survival outcomes and related tumor immunity, which 
could	provide	individualized	management	and	treatment	for	LUAD	
patients.
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