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Abstract: Auxin response factors (ARFs) play important roles in plant growth and development;
however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes
were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and
A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly
similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we
obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative
analysis showed that numerous members were closely related to root development. Furthermore, we
comprehensively analyzed the relationship between the root morphology and the expression levels of
AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were
positively correlated with root length, root surface area, and root tip number, suggesting an important
regulatory role of these genes in root architecture and potential application values in peanut breeding.

Keywords: peanut; auxin response factor; genome-wide identification; expression; root morphology

1. Introduction

Auxin is a key hormone that plays an important role throughout the life cycle of plants
from embryogenesis to fruit maturity [1–3]. Auxin response factors (ARFs) play a core role
in auxin-mediated transcriptional regulation and auxin signaling transduction 2a ARF pro-
teins contain three conserved domains. Briefly, the N-terminal DNA-binding domain (DBD)
is responsible for recognizing the auxin-recognized cis-element (AuxRE) within target gene
promoters [4,5]. The C-terminal Phox and Bem1 (PB1) domain mediates ARF–ARF or ARF–
Aux/IAA (Auxin/INDOLE ACETIC ACID) dimerization. The middle domain determines
whether ARF is a transcription activator or a transcription suppressor due to the variety of
amino acids it contains [6,7]. At low-auxin levels, Aux/IAAs inhibit ARF transcriptional
activity through recruit TOPLESS (TPL) and histone deacetylase (HDAC) [8]. With the
increase of auxin and the degradation of Aux/IAA through the SCFTIR1-dependent path-
way, the released ARF transcription factors regulate the expression of downstream targets
and cause auxin-related plant growth and development [9,10].

There are multiple ARF members in different plants. For example, 23 in Arabidopsis,
25 in rice, and 31 members in maize [11–13]. Importantly, the role of some ARF-mediated
auxin signaling in root growth and development has been well studied in both the model
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plant Arabidopsis and some crops. For example, ARF10/16 has been shown to regulate
root cap cell formation and root stem cell identity in Arabidopsis [14]. ARF7/19-mediated
auxin signaling promotes lateral root development by inducing the expression of LATERAL
ORGAN BOUNDARIES DOMAIN (LBD16/18/29) and/or PR-1 homolog (PRH1) in Ara-
bidopsis [15–17]. In soybean, GmARF8a/b negatively regulates lateral root development and
nodule formation [18]. SlARF2 promotes lateral root formation in tomato [19]. Although
ARFs appear to be conserved in seed plants, the question remains whether the functions of
these proteins are also consistent across plant species. Therefore, it is necessary to analyze
the expression pattern, DNA-binding specificity, and the relationship with important traits,
such as root morphology, before replications in breeding [20,21].

Peanut (Arachis hypogaea L.) is one of the most important economic oil crops, grown
in many Asian and African countries with an annual production of about 46 million tons
(http://www.fao.org/faostat; accessed on 2 May 2021). Cultivar peanut (A. hypogaea,
allotetraploid, AABB, 2n = 4x = 40) is assumed from hybridization of two wild diploid
ancestors, Arachis duranensis (AA genome, 2n = 2x = 20) and Arachis ipaensis (BB genome,
2n =2x =20) [22]. Peanut cultivars exhibit extensive phenotypic and genetic variation,
especially the root traits [23,24]. However, due to limited research methods, the regulation
genes of important root traits are rarely identified in peanut. Their application in breeding
is seriously lagging compared with other crops. Despite the importance of ARF proteins
in root development, the role of peanut ARFs has not been characterized. Here, we
identified 63 AhARF, 30 AdARF, and 30 AiARF genes from an allotetraploid peanut cultivar,
A. duranensis, and A. ipaensis, respectively. Comprehensive analysis revealed that numerous
predicted downstream targets of AhARFs are enriched in root development, especially
AhARF14/26/45. Importantly, the expression of these genes is highly correlated with root
architecture, implying the involvement of these members in root growth and development.

2. Results
2.1. Genome-Wide Identification of Peanut ARF Genes

Based on a HMMSCAN and BLASTP search, 30, 30, and 63 ARF genes were identified
in A. duranensis (AdARFs), A. ipaensis (AiARFs), and A. hypogaea (allotetraploid peanut
cultivar; AhARFs), respectively. These AhARF genes were numbered according to their
locations in different chromosomes, and the AdARFs and AiARFs were named according
to their gene IDs (Figure 1). Detailed information for all these genes, including gene ID,
chromosome location, molecular weight (MW), and the isoelectric point (pI) of proteins are
listed in Table S1.

There were 62 AhARF genes mapped to 18 chromosomes (Figure 1), and AhARF63
is located on scaffold 59. Similar to those of A. hypogaea, there was no ARF gene mapped
to chromosome Aradu.A01 or Araip.B01. The number of AhARFs on each chromosome
was approximately the same as that of the corresponding chromosome of A. duranensis and
A. ipaensis. The absence of ARFs located on chromosomes Arahy.01 and Arahy.11 was also
consistent with that of A. duranensis and A. ipaensis.

2.2. Phylogenetic Analysis of Peanut ARFs

An unrooted maximum-likelihood phylogenetic tree was constructed using ARFs
from an allotetraploid peanut and its diploid ancestors. In most cases, a pair of ARFs from
each ancestor and a pair of AhARFs clustered to a clade, and, usually, the two ancestor
ARFs, showed a closer evolutionary relationship (green and blue dots in Figure 2). In
addition, the gene structure of most AhARFs and their orthologs has a high similarity
(Figure 2), mainly reflected in the number and position of introns. Interestingly, according
to the annotation information of A. hypogaea cv. Tifrunner genome, alternative splicing
(AS) events were identified in 15 peanut ARFs (Figure S1). A few AS events occurred
in the untranslated regions (UTRs), which did not affect the protein structure. In fact,
most AS events altered the coding of proteins and even led to a premature termination of
translation (Figure S1). For example, the seventh and eighth exon of the AS1 of AhARF1
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(arahy.Tifrunner.gnm1.ann1.TZ3SVZ.1) were not identified in other AS events, while the
ninth exon corresponded to two exons in other AS events. There were five and four possible
AS events identified in AhARF27 and AhARF60, respectively, and four of them (two for each)
coding proteins with large C-terminal deletions. Considering that the C-terminal domain of
ARFs is responsible for dimerization with other ARFs or Aux/IAA, these truncated ARFs
may play different roles in planta. For example, AtARF3, an atypical ARF lacking the PB1
domain, can directly induce downstream gene expression in the presence of auxin, a more
concise auxin transcriptional regulation mode.

Figure 1. Chromosome distribution of ARFs in cultivar (A) and wild (B) peanuts. Chromosomes
belong to the A sub-genome of A. hypogaea (Arahy.02–10) and their homologues from A. duranensis
are colored in yellow, while the chromosomes that belong to the B sub-genome of A. hypogaea
(Arahy.12–20) and their homologues from A. ipaensis are colored in green. Chromosomes that do not
contain ARFs and ARFs located on the scaffold are not shown.

To clarify which developmental or hormonal signals these ARFs are involved in, we
then examined which cis-acting elements were present in their promoters. According to the
prediction of a database search of plant promoter results, obtained from the PlantCARE
website, auxin response elements were detected in the promoters of 42 peanut ARF genes,
including 23 AhARFs, 9 AdARFs, and 10 AiARFs (Figure 2, black stars). In addition,
other cis-elements were also found to participate in plant hormone responses and stress
responses (Figure 2, inner cycle). In addition, species and the positions of cis-elements in
genes belonging to the same clade are similar. AdARFs and AiARFs are similar to AhARFs,
implying that this family is evolutionarily conservative.
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Figure 2. Phylogenetic tree, cis-elements, and gene structure analysis of ARFs in wild and cultivar
peanuts. Gene structures are shown in the outer cycle, and cis-elements are shown in the cycle inside
the gene names. The red, green, and blue dots represent AhARFs, AdARFs, and AiARFs, respectively.

The function of AhARFs can also be predicted based on the well-characterized function
of their homologous proteins in other species, such as Arabidopsis thaliana, Oryza sativa,
Solanum lycopersicum, and Glycine max [4,6,14–22,24–66]. The phylogenetic analysis and
function prediction results showed that most AhARFs were clustered with plant ARFs
(Figure S2, Table S2). These results revealed that the functions of ARFs in different species
might be conserved, and the well-functioning-identified ARFs in other species have an
important reference value in peanut.
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2.3. Gene Duplication on the Expansion of ARF Genes

The important regulatory roles of gene duplication in evolution and the expansion of
gene families and crop domestication have been well documented. To clarify the evolution
process of the AhARF family after the formation of the allotetraploid peanut, we analyzed
the gene duplication events of AhARFs. As shown in Figure 3A and Table S3, there were
22 orthologous, 14 paralogous, and 5 tandem gene pairs detected in A. hypogaea.

Figure 3. Duplication derived ARFs in wild and cultivar peanuts. (A) The orthologous genes
(black lines), paralogous genes (red), and tandem repeat (blue) in cultivar peanut. (B) The Ks value
distribution of the duplicated orthologous genes between the wild and cultivar peanut.

The substitution rates of nonsynonymous (Ka) versus synonymous (Ks) were subse-
quently calculated to explore the selection pressure of AhARFs, and the results showed that
the Ka/Ks values of all orthologue pairs were less than 1.0, and 88% (22/25) were less than
0.5 (Table 1). This suggests that the orthologous AhARFs undergo intensive purifying selec-
tion pressure and remain conserved in both structure and function. The divergence time
of these five gene pairs (AhARF40–AhARF61, AhARF28–AhARF40, AhARF37–AhARF56,
AhARF36–AhARF57, AhARF39–AhARF58) were estimated to be around 85–107 million years
ago (Mya), while the other pairs were predicted to have diverged nearly 1.32–7.93 Mya.

Table 1. The nonsynonymous (Ka) and synonymous (Ks) substitution rates of orthologue AhARF
pairs in A. hypogaea.

Gene 1 Gene 2 Ka Ks Ka/Ks Divergence
Time (Mya)

AhARF3 AhARF34 0.0377 0.0517 0.7288 6.37
AhARF1 AhARF31 0.0116 0.0166 0.6989 2.04

AhARF18 AhARF46 0.0349 0.0571 0.6102 7.03
AhARF17 AhARF47 0.0083 0.0169 0.4911 2.08
AhARF26 AhARF59 0.0141 0.0304 0.4641 3.74
AhARF6 AhARF37 0.0295 0.0644 0.4585 7.93

AhARF28 AhARF61 0.0045 0.0107 0.4234 1.32
AhARF12 AhARF43 0.0132 0.0320 0.4110 3.94
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Table 1. Cont.

Gene 1 Gene 2 Ka Ks Ka/Ks Divergence
Time (Mya)

AhARF16 AhARF48 0.0165 0.0416 0.3973 5.12
AhARF15 AhARF49 0.0097 0.0323 0.3015 3.98
AhARF25 AhARF58 0.0138 0.0461 0.2984 5.68
AhARF40 AhARF61 0.1741 0.6958 0.2502 85.69
AhARF28 AhARF40 0.1844 0.7419 0.2486 91.36
AhARF37 AhARF56 0.1638 0.6923 0.2367 85.25
AhARF19 AhARF50 0.0049 0.0206 0.2362 2.54
AhARF36 AhARF57 0.1618 0.7533 0.2148 92.77
AhARF14 AhARF45 0.0077 0.0442 0.1741 5.44
AhARF5 AhARF36 0.0025 0.0150 0.1645 1.85

AhARF39 AhARF58 0.1335 0.8681 0.1538 106.91
AhARF11 AhARF42 0.0023 0.0188 0.1234 2.32
AhARF2 AhARF33 0.0025 0.0311 0.0805 3.83

AhARF22 AhARF56 0.0022 0.0273 0.0793 3.36
AhARF8 AhARF38 0.0034 0.0525 0.0647 6.47
AhARF9 AhARF40 0.0013 0.0204 0.0617 2.51

AhARF20 AhARF51 0.0005 0.0329 0.0154 4.06

2.4. Expression Profiles of AhARFs

To explore the possible biological functions of AhARFs, their expression patterns were
analyzed based on RNA-seq data obtained from PeanutBase (https://www.peanutbase.
org/ accessed on 21 April 2021). The AhARFs exhibited diverse expression patterns in
different developmental stages and plant tissues; however, most of the gene pairs showed
a similar expression pattern and were also clustered together in the heatmap (Figure 4).
For example, AhARF16 and AhARF48 are highly similar in sequence and gene structure
(Figure 1), and similarly, their expression patterns are almost identical in 22 plant tissues
and at different developmental stages. However, there are exceptions, such as AhARF1
and AhARF31, which are highly homologous but are expressed differently in peg and
fruit development.

Figure 4. Heatmap illustration of tissue expression patterns of AhARFs based on FPKM values. The
log2 transformation of FPKM values and visualization were performed by TBtools. Scalebar on top
right indicates the levels of gene expression.

https://www.peanutbase.org/
https://www.peanutbase.org/
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2.5. Characterization of Downstream Target Genes of AhARFs

To predict the possible roles of these ARFs, we examined the distribution and func-
tion of target genes that may be regulated by these transcription factors. DR5 and IR8,
two composite motifs, have been shown to be closely involved in the auxin-mediated
transcriptional regulation. Therefore, we searched DR5, IR8, and single AuxRE (TGTCGG)
motif in the 2000 bp upstream of each gene throughout the peanut genome (Figure 5A).
There were 24,380 possible ARF-binding elements detected in 18,190 genes; among them,
single AuxRE (TGTCGG) motif accounts for 65.44% (Table S4). There were also 8426 DR5
or IR8 in 7350 gene promoters, and most of these genes contain only one DR5 or IR8
(Table S4). The highest number of ARF-binding elements (DR5 and IR8 only) was found in
the promoter of a predicted glucose-induced degradation protein (arahy.7YHY0R).

Figure 5. Genome-wide prediction of ARF-binding elements. (A) Definition of DR5 and IR8 elements.
N indicates A, C, G, or T. (B) Number of DR5, IR8, and AuxRE in peanut genomes. (C) GO analysis
of genes carrying DR5, IR8, or AuxRE in their promoters, and only the GO terms of those containing
at least 40 genes are shown here.

Subsequent gene ontology (GO) analysis showed that the predicted target genes
mainly participate in plant hormone responses, biotic/abiotic stress responses, and tis-
sue/organ development (Figure 5C). Besides being involved in auxin polar transport and
auxin response, these targets also relate to seven other well-characterized plant hormones,
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including abscisic acid (ABA), salicylic acid (SA), brassinosteroids (BRs), jasmonic acid (JA),
ethylene (ETH), gibberellins (GAs), and cytokinins (CKs). Notably, the function of these
genes is significantly enriched in plant root development, especially root hair elongation
and root meristem growth (Figure 5C).

2.6. The Possible Regulatory Roles of AhARFs in Peanut Root Morphology

To explore the relationship between the expression of AhARFs and the root morphology
of peanut, we selected 11 peanut varieties (Table S5) and analyzed their root architecture
and the expression levels of ARFs in their roots. Scanning the root systems of different
varieties revealed variable root architectures among them (Figure 6A). For example, JuHua7
(JH7), EHua3 (EH3), and ShanHua11 (SH11) display a long primary root and less lateral
roots, while FengHua 2 (FH2) and Jinkins Jumbo (JK) exhibit a long primary root with more
lateral roots. After quantifying the total root length, root surface area, root mean diameter,
and root tip number, we found that these indexes also differed among varieties (Figure 6B).

According to the expression patterns of AhARFs (Figure 4), seven members (AhARF8/
14/26/38/39/45/56) were selected and their expression levels were further examined in
the roots of these 11 varieties, including JK, Meiyinxuan 41165 (41165), Shixuan 64 (SX64),
Juhua 27 (JH27), FH2, EH3, SH11, and Zhonghua 12 (ZH12). As shown in Figure 6C, these
AhARFs exhibited different expression levels in different varieties, suggesting a possible
link between the gene expression levels and root architecture. Among them, the expression
of AhARF59 showed the greatest difference among different varieties. Subsequently, the
Pearson’s correlation analysis was performed to explore the relationship between root
morphology and the expression levels of the AhARFs (Figure 6D). The results showed that
the expression levels of AhARF26 and AhARF45 are positively correlated with total root
length; AhARF14/26/45 are positively correlated with root surface area; and AhARF26 is
positively correlated with the root tip formation, indicating the important role of these
AhARFs in peanut root development.

Subcellular localization of AhARF14 and AhARF26 proteins were further analyzed in
Nicotiana benthamiana (N. benthamiana) epidermal cells. AhARF26 was specially localized in
the nucleus, while AhARF14 mainly localized in the nucleus and weak signal of AhARF14-
GFP, which was also detected in the cytoplasm (Figure 7). The subcellular localization
of AhARF14 was further analyzed using the online tool DeepLoc-1.0, and it showed a
likelihood of 0.587 to localize in cytoplasm (Figure S4).

Figure 6. Cont.
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Figure 6. Root morphology and their correlation with AhARF expression levels in peanut germplasms.
(A) Root morphology of peanut germplasms. JK, Jinkins Jumbo; 41165, Meiyinxuan 41165; SX64, Shix-
uan 64; JH27, Juhua 27; FH2, Fenghua 2; EH3, Ehua 3; SH11, Shanhua 11; ZH12, Zhonghua 12.
(B) Total root length, root surface area, root mean diameter, and root tip number of peanut
germplasms. Lower case letters (a, b, c, d) indicate statistically significant differences between
cultivars. (C) Relative expression levels of AhARFs in peanut roots. (D) Pearson’s correlation analysis
between root morphology and expression of AhARFs. R2, Pearson’s correlation coefficient.

Figure 7. Subcellular localization analysis of AhARFs in N. benthamiana leaves.
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3. Discussion

A previous study reported that there were 114, 28, and 28 ARFs in Shitouqi (allote-
traploid peanut cultivar), A. duranensis, and A. ipaensis, respectively [67]. Another indepen-
dent study identified 61 AhARFs from A. hypogaea, and then revealed the regulatory roles of
AhARF6 in pod development [68]. Here, we supplemented and improved various data on
this family, identified 63 members of A. hypogaea, and picked up the two missing members
of AhARF1 and AhARF63. Multiple sequence alignment showed that the three AhARF1 AS
formats and AhARF63 belong to the typical ARFs. In addition, we have provided some
valuable information on the upstream regulation of cis-elements and downstream targets.

More importantly, we analyzed the potential relationship between the expression
levels of AhARFs and the root morphology among varieties and found that expression
levels of AhARF14/26/45 are positively correlated with peanut total root length, root
surface area, or root tip number. Peanut is an important protein source and oil crop
that can be grown in poor quality soil [69,70], while peanut yield is greatly restricted by
adverse environmental conditions, such as drought, salt, and nutrient deficiencies [71–73].
Roots are the main organs of plants to absorb water and nutrients from soil. Therefore,
root morphology and their spatial configuration will substantially determine the ability
of a plant to secure edaphic resources [74]. Understanding the molecular mechanisms
that regulate crop root morphology is conducive to improving root traits and increasing
crop yield. Root morphology is a complex trait determined by both environmental and
endogenous factors, and among them, auxin plays an important role [75–78]. Therefore,
genome-wide identification and function prediction are essential to unlock the mechanisms
of AhARF-mediated auxin signaling in peanut root development.

Root morphology traits have long been considered a key target by breeders for crop im-
provement; however, there are many challenges in root system measurement [79]. Although
several root trait QTLs have been observed via analysis of crop populations, important
genes are rarely reported [80–84]. Most favorable root traits are selected directly by visual
test in breeding practices. The selection of germplasms represents better root traits, and
finding their commonalities in genotypes or expression patterns is a promising practice.
Through RNA-seq analysis, we found that seven AhARFs were highly expressed in roots,
implying the involvement of these members in root growth regulation. Importantly, we
showed that the expression levels of AhARF14/26/45 are largely positively correlated with
root architecture. These three peanut genes exhibit high similarity with their homologous
AtARF16, which has been reported to control root cap formation [14]. AhARF8/38, which
were not related to the peanut root traits tested in our work, seem to display different
functions from their homologous AtARF7/19. These results suggest that, although ARFs
are conserved in different plant species, their functions are diversified. The identifica-
tion of germplasms with effective genotypes and linked molecular markers that regulate
root development is beneficial to molecular marker-assisted breeding. The finding that
AhARF14/26/45 modulate peanut root architecture links their expressions to beneficial root
traits, and it can be used directly in the selection of parental germplasms and their hybrid
offspring, especially for drought-resistance and nutrition-efficient breeding. Interestingly, a
weak AhARF14-GFP signal was detected in cytoplasm, which is inconsistent with previous
studies on the subcellular localization of plant ARF proteins [68,85]. This may be caused
by differences between species and may indicate new regulatory mechanisms for ARFs
in peanut.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The A. hypogea L. cultivars and germplasms used in this study were selected from a
natural peanut population with extensive phenotypic and genetic variation preserved by
our group [23]. Mature seeds were soaked in 0.1% H2O2 for 6 h, and then washed 3–5 times
with sterile ddH2O. Sterilized seeds were sown on water-wet degreasing cotton, extended
in seedling cultivation disks to germinate at 26 ◦C in darkness for 3 days. Seedlings were
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then exposed to long-day conditions (16 h light and 8 h dark cycle, 11.4 K LuX light
intensity) for another 2 or 3 days. Two-functional-leaf seedlings were transplanted to the
hydroponic box and cultured with 1/5 Hoagland’s nutrient solution until further use [86].

4.2. Genome-Wide Identification of AhARFs, AdARFs, and AiARFs

Whole-genome sequences of allotetraploid peanut A. hypogaea cv. Tifrunner (version 1) [87] and
the diploid ancestors (A. duranensis and A. ipaensis) [79] were downloaded from PeanutBase
(https://www.peanutbase.org/peanut_genome; accessed on 21 April 2021 ). The protein
sequences of AtARFs were downloaded from the TAIR database (http://www.arabidopsis.
org/, accessed on 21 April 2021), while those of rice, soybean, Medicago truncatula, and
tomato were downloaded from Ensembl Plants (http://plants.ensembl.org/index.html;
accessed on 21 April 2021). The hidden Markov model (HMM) profile of the B3-type DNA-
binding domain (DBD, PF02362), auxin-response domain (PF06507), and Aux-IAA domain
(PF02309) were retrieved from the Pfam database (http://pfam.xfam.org/; accessed on
15 March 2021) and used for peptide-searching through BLASTP analysis. The predicted
peanut ARFs were confirmed using the SMART program (http://smart.embl-heidelberg.
de/; accessed on 21 April 2021) and the Conserved Domain Database (CDD; https://www.
ncbi.nlm.nih.gov/cdd; accessed on 11 April 2021). The protein sequences of peanut ARFs
were submitted to the ProParam tool in ExPASy (https://web.expasy.org/protparam/;
accessed on 30 April 2021) to calculate the molecular weight (MW) and theoretical isoelectric
point (pI).

4.3. Chromosome Distribution, Gene Structure, Phylogenetic Analysis, and cis-Elements Analysis

Information on peanut ARFs loci on chromosome were derived from annotation
gff3 files downloaded from PeanutBase (https://www.peanutbase.org/; accessed on 18
April 2021). The Gene Structure Display Server (https://gsds.cbi.pku.edu.cn/; accessed
on 18 April 2021) was employed for analyzing AhARF structure according to the gff3
data. MEGA7 [88] was used to perform sequence alignment and maximum-likelihood
phylogenetic tree construction with the bootstrap method (number of bootstrap replications
= 1000). To analyze the regulatory region of the AhARFs, the 2000 bp genomic sequences
located upstream of the start codon ATG were analyzed in the PlantCARE website (http:
//bioinformatics.psb.ugent.be/webtools/plantcare/html/; accessed on 18 April 2021).
Visualization and further editing of the phylogenetic tree were performed on the website
tool iTOL (http://itol.embl.de/; accessed on 25 April 2021).

4.4. Syntenic and Genome Duplication Analysis of Peanut ARFs

The Multiple Collinearity Scan toolkit (MCScanX) was used to identify gene duplica-
tion events according to a previous study [89]. The amino acid sequences of duplicated
ARF pairs were aligned first, and then used to guide the alignment of cDNA sequences with
in-house Perl-scripts. The nonsynonymous (Ka) and synonymous (Ks) substitution ratios
were calculated by the Ka/Ks calculator using the YN model. The divergence times (Mya)
of A. hypogaea and the diploid ancestors (A. duranensis and A. ipaensis) were calculated
with the formula T = Ks/2r. The r (neutral substitution rate) was taken to be 8.12 ×10–9

according to a previous study [79].

4.5. Genome-Wide Search for Downstream Targets of AhARFs

Upstream regions (2000 bp upstream of the start codon) of genes in the peanut genome
were used for screening. Searching of the AuxRE (DR5 and IR8) was performed on MEME
Suite (Motif-based sequence analysis tools, http://meme-suite.org/; accessed on 13 May
2021) using Motif Cluster Alignment and Search Tool (MCAST) [90,91]. The match p-value
was set at <10–4. The peptide sequences were downloaded from PeanutBase. The GO anno-
tation of genes carrying AuxRE repeats was performed using OmicsBox (Version 1.4.11).

https://www.peanutbase.org/peanut_genome
http://www.arabidopsis.org/
http://www.arabidopsis.org/
http://plants.ensembl.org/index.html
http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
https://www.ncbi.nlm.nih.gov/cdd
https://www.ncbi.nlm.nih.gov/cdd
https://web.expasy.org/protparam/
https://www.peanutbase.org/
https://gsds.cbi.pku.edu.cn/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://itol.embl.de/
http://meme-suite.org/
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4.6. Expression Analysis of AhARFs

The expression atlas of 22 A. hypogaea tissues was downloaded from PeanutBase (https:
//www.peanutbase.org/gene_expression/atlas; accessed on 21 April 2021) [79]. In these
RNA-Seq data, the normalized reads were mapped to an in silico amphidiploid genome
assembled from the genome of the diploid ancestors A. duranensis and A. ipaensis [92].
BLAST was performed to identify the homologous genes of AhARFs in A. duranensis and
A. ipaensis. Only the AdARFs or AiARFs showed the highest similarity in amino acid se-
quence with AhARF was defined as homologous gene of AhARF. The IDs of the homologous
gene were used to extract the fragments per kilobase of transcript per million mapped
reads (FPKM) values from the tissue expression atlas.

Quick RNA isolation kit (Waryong, Beijing, China) was used to isolate the total
RNA following the manufacturer’s instructions. Samples were quantified by NanoDrop
2000 microvolume spectrophotometry (Thermo, Wilmington, DE, USA), and 1 µg RNA
was reverse-transcribed by the PrimeScript RT reagent Kit with DNA Eraser (Takara Bio,
Dalian, China) following the manufacturer protocol. Total RNA and cDNA were stored at
−80 ◦C and −20 ◦C, respectively. qRT-PCR was performed on an ABI StepOne Real-Time
PCR Systerms (Thermo, Wilmington, DE, USA) using SYBR Premix Ex Taq (Takara, Dalian,
China). Details of primers are provided in Table S6. AhUKN1 was used as the internal
reference [93]. Three technical replicates were included in each biological replicate, and
three biological replicates were performed.

4.7. Root Morphology Analysis

For root morphology analysis, roots of 21-day-old seedlings were harvest and washed
with deionized water. The WinRHIZO LA-S image analysis system (WinRHizo LA-S,
Regent Instr. Inc., Quebec, Canada) was used for scanning and quantization of total root
length (TRL), root surface area (RSA), root mean diameter per plant (ARD), and root
tip number (RTN). Three independent biological replications were performed for each
germplasm, and three technical repeats were included in each biological replication. For
each technical repeat, roots from 6 plants were scanned and analyzed.

4.8. Statistical Analysis

GraphPad Prism version 8.0.2 (GraphPad, San Diego, CA, USA) was used to prepare
the figures. Data analysis was performed by SPSS 21.0 (SPSS Inc., Chicago, IL, USA) using
one-way ANOVA. Differences were considered significant at a probability level of p < 0.05.

4.9. Subcellular Localization Analysis

The full-length CDS of AhARF14 and AhARF26 were amplified from JK using cDNA
as a template. Primers used are listed in Table S6. The purified PCR products were cut by
BamH I and Sal I (TaKaRa, Dalian, China) and cloned into pBI122 vector. The sequenced
pBI122-35S::AhARFs-GFP vectors were transformed into Agrobacterium tumefaciens strain
GV3101 and coinfected into N. benthamiana leaf epidermal cells. Plants were grown at 26 ◦C
for 48–60 h, and GFP signals in the leaves were detected at 488 nm using an LSM 51 confocal
laser scanning microscope (Carl Zeiss, Jena, Germany). The pBI122-35S::GFP vector was
used as a control. Three independent biological repeats were performed. Subcellular
localization of AhARF14 and AhARF26 was predicted using online tool DeepLoc-1.0 (https:
//services.healthtech.dtu.dk/service.php?DeepLoc-1.0; accessed on 21 January 2022).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23105309/s1.
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