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Objective: The stratification of neuroblastoma (NBL) prognosis remains difficult.

RNA-based signatures might be able to predict prognosis, but independent

cross-platform validation is still rare.

Methods: RNA-Seq-based profiles from NBL patients were acquired and then

analyzed. The RNA-Seq prognostic index (RPI) and the clinically adjusted RPI (RCPI)

were successively established in the training cohort (TARGET-NBL) and then verified

in the validation cohort (GSE62564). Survival prediction was assessed using a

time-dependent receiver operating characteristic (ROC) curve and area under the

ROC curve (AUC). Functional enrichment analysis of the genes was conducted using

bioinformatics methods.

Results: In the training cohort, 10 gene pairs were eventually integrated into the RPI.

In both cohorts, the high-risk group had poor overall survival (OS) (P < 0.001 and

P < 0.001, respectively) and favorable event-free survival (EFS) (P = 0.00032 and

P = 0.06, respectively). ROC curve analysis also showed that the RPI predicted OS

(60 month AUC values of 0.718 and 0.593, respectively) and EFS (60 month AUC

values of 0.627 and 0.852, respectively) well in both the training and validation cohorts.

Clinicopathological indicators associated with prognosis in the univariate and multivariate

regression analyses were identified and added to the RPI to form the RCPI. The RCPI

was also used to divide populations into different risk groups, and the high-risk group

had poor OS (P < 0.001 and P < 0.001, respectively) and EFS (P < 0.05 and P < 0.05,

respectively). Finally, the RCPI had higher accuracy than the RPI for the prediction of OS

(60 month AUC values of 0.730 and 0.852, respectively) and EFS (60 month AUC values

of 0.663 and 0.763, respectively) in both the training and validation cohorts. Moreover,

these differentially expressed genes may be involved in certain NBL-related events.

Conclusions: The RCPI could reliably categorize NBL patients based on different risks

of death.
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INTRODUCTION

Neuroblastoma (NBL) is a pediatric cancer arising from
neural crest precursor cells of the sympathetic nervous system.
According to the World Health Organization, childhood cancer
is relatively rare, accounting for only 0.5–4.6% of all cancers.
Moreover, NBL is the most prevalent cancer in children after
leukemia and brain cancer (1). NBL is an aggressive cancer
and accounts for more than one in five cancer-related deaths
in children (2), and those between 18 months and 5 years old
are the most severely affected. The diagnosis depends mainly
on histopathological features accompanied by elevated urinary
catecholamine concentrations rather than relying solely on
routine tests, such as laboratory tests, computed tomography,
or magnetic resonance imaging (3, 4). NBL diagnosed in
children often metastasizes, causing accelerated cancer-related
death despite harsh therapies (5). In addition, current treatments
for NBL include rigid chemoradiotherapies, which often leave
lifelong complications for surviving patients. The recognition of
more sensitive and specific signatures for therapy and outcomes
is required and is expected to result in a better choice of risk-
related therapy. The discovery of a preferable signature could
improve the prognosis of high-risk patients and reduce the
burden of constant side effects in surviving children.

There is no doubt that the tumor microenvironment
substantially contributes to the biology of NBL (6). Moreover,
many genes are involved in the initiation and progression of
NBL, such as MYCN (7), ALK (8, 9), and LMO1 (10, 11).
When such a large number of genes are evaluated as outcome
signatures, it is highly possible to detect an association between
gene expression and prognostic classification. The expression
imbalance in certain gene pairs might play a more important role
than individual differentially expressed genes (12). Moreover,
compared to predictors based on individual genes, gene pair-
based predictors are more robust to normalization and have
better predicting or classifying accuracy (13). The gene pair-
based approach has an important advantage in that the score
is calculated based entirely on the gene expression profile of a
sample and can be used in an individualized manner without the
need for normalization (14). Here, we scrutinized the prognostic
significance of gene pairs for predicting outcomes in NBL.

MATERIALS AND METHODS

Data Processing and Computational
Analysis
Two public RNA-Seq data sets from the Therapeutically
Applicable Research to Generate Effective Treatments

Abbreviations: Age, age at diagnosis in days; AUC, area under the receiver

operating characteristic curve; CI, confidence interval; DEG, differentially

expressed gene; EFS, event-free survival; FPKM, fragments per kilobase of

transcript per million fragments mapped; GTEx, Genotype-Tissue Expression;

HR, hazard ratio; INRG, International Neuroblastoma Risk Group; INRGSS,

International Neuroblastoma Risk Group Staging System; NBL, neuroblastoma;

OS, overall survival; RCPI, clinically adjusted RNA-Seq prognostic index; ROC,

receiver operating characteristic; RPI, RNA-Seq prognostic index; RPM, reads

per million; TARGET, Therapeutically Applicable Research to Generate Effective

Treatments; TCGA, The Cancer Genome Atlas.

(TARGET)-NBL database (https://ocg.cancer.gov/programs/
target/data-matrix) and the GSE62564 data set (15) in the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo)
database were retrospectively analyzed to obtain clinical data.
Patients who had inadequate clinical and pathologic information
were excluded. Then, to uncover the practicability and accuracy
of a prognostic gene pair signature for NBL, samples from the
TARGET-NBL and GSE62564 cohorts were applied as training
and validation cohorts, respectively. The Cancer Genome Atlas
(TCGA) TARGET Genotype-Tissue Expression (GTEx) cohort
(version 2016-04-12, https://toil.xenahubs.net) was used to
identify the differentially expressed genes (DEGs), and fragments
per kilobase of transcript per million fragments mapped (FPKM)
data from the TARGET-NBL cohort (version 2018-01-07, https://
ucscpublic.xenahubs.net) and reads per million (RPM) data from
the GSE62564 cohort were used for the survival analysis. The
background was corrected and the quintile was normalized
before the limma package in R language (version 3.28.14) was
applied for the log2-based conversion of raw data. For RNAs
with multiple probes, mean expression values were calculated.

Development and Validation of the
RNA-Seq Prognostic Index (RPI)
The DEGs were selected according to P ≤ 0.05 and |log FC|≥1
(16, 17). The gene expression level in a specific sample or profile
underwent pairwise comparison to generate a score for each gene
pair (18). A gene pair score of 1 was assigned if the score of gene
1 was less than that of gene 2; otherwise, the gene pair score
was 0 (18). Some gene pairs with constant values (0 or 1) in
any individual data set were removed to increase reproducibility.
The prognosis-related gene pairs were selected using the log-
rank test to assess the association between each gene pair and
patient prognosis in the training cohort. Prognostic gene pairs
with a familywise error rate <0.05 were used as candidates to
build the RPI. To minimize the risk of overfitting, we applied a
Cox proportional hazards regression model combined with the
least absolute shrinkage and selection operator (glmnet, version
2.0-5) (19). The penalty parameter was estimated by 10-fold
cross-validation in the TARGET-NBL cohort at 1 SE beyond the
minimum partial likelihood deviance (19). To divide patients
into low- and high-risk groups, the optimal gene pair index cutoff
value was determined by a time-dependent receiver operating
characteristic (ROC) curve (survivalROC, version 1.0.3) (20)
in the TARGET-NBL cohort. We used the nearest neighbor
estimation method to estimate the ROC curve (21). The risk
score was gauged by taking the score of the gene pair and the
correlation coefficient into consideration, and its median was
used as the cutoff to divide all subjects into two different groups:
low- and high-risk groups. The survival package in R software
was applied to perform Kaplan-Meier analysis with the log-rank
test to analyze differences between the high- and low-risk groups.
Heat maps were generated in Tree View, with the normalized z-
score shown within each row (gene pairs). Survival prediction
was assessed using a time-dependent ROC curve, and the area
under the ROC curve (AUC) values were computed with the
ROCR package (version 1.0.-7) (20, 22) to measure prognostic
or predictive accuracy. Subsequently, we analyzed data in a
validation cohort to assess the feasibility and reliability of this RPI

Frontiers in Oncology | www.frontiersin.org 2 December 2019 | Volume 9 | Article 1361

https://ocg.cancer.gov/programs/target/data-matrix
https://ocg.cancer.gov/programs/target/data-matrix
http://www.ncbi.nlm.nih.gov/geo
https://toil.xenahubs.net
https://ucscpublic.xenahubs.net
https://ucscpublic.xenahubs.net
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Prognostic Signature in NBL

FIGURE 1 | The overall workflow of this study.

model in patients with NBL. Finally, we performed a subgroup
analysis in the training and validation cohorts.

Functional Enrichment Analysis
Functional enrichment analysis was used to confirm the
biological relevance of the DEGs in the training cohort using
the Moonlight package in R software (23). The Ensemble gene
IDs were converted to official gene symbols using clusterProfiler
(version 3.3) before functional annotation and analysis. We
performed the analysis in the high- and low-risk groups with
the RPI.

Development and Validation of the
Clinically Adjusted RPI (RCPI)
The possible variables (i.e., clinicopathologic parameters) along
with the RPI used to construct the RCPI were re-evaluated and
then tested by the log-rank test and Cox regression analysis
for the univariate and multivariate analyses, respectively. The
results are presented as hazard ratios (HRs) and associated 95%
confidence intervals (CIs). Based on the results of the univariate
and multivariate analyses, we integrated one or more of age,
stage and the RPI into a composite RCPI by applying Cox
proportional hazards regression in the TARGET-NBL cohort
through My.stepwise (version 0.10), enabling the generation of
a more comparatively steady prognostic model. Different from
the aforementioned method for defining the cutoff for the RPI,
the cutoff value for the RCPI was estimated by medians in the
corresponding cohort. The overall workflow of this study is
shown in Figure 1.

Statistical Analysis
All statistical analyses were performed using R software (version
3.5.3, 2019-03-11), in addition to the above package, survminer
(version 0.4.6), ggsci (version 2.9), tidyverse (version 1.2.1),
cowplot (version 1.0.0), pheatmap (version 1.0.12), and ggplot2
(version 3.2.1) packages were also included. The univariate
analysis of the association of clinical pathologic factors with
prognosis was evaluated using the log-rank test, and the
multivariate analysis was performed with the Cox proportional

hazards regression model. All statistical tests were two-sided, and
P < 0.05 was considered statistically significant.

RESULTS

Identification of the Prognosis-Related
DEGs
There are 1,119 clinical samples in the TARGET-NBL cohort,
and 19,120 samples in the TCGA TARGET GTEx cohort had
RNA-Seq gene expression data. The combination of these data
revealed 10,007 DEGs. Through survival analysis combined with
190 samples from FPKM in the TARGET neuroblastoma cohort,
4,640 RNAs (2,553 RNAs are up-regulated and 2,087 RNAs are
down-regulated), which were based on the DEGs, were found to
be related to prognosis (see Supplementary Data Sheet 1 in the
Supplementary Material for comprehensive table analysis).

Development of the RPI
A total of 651 patients with NBL (153 patients in the TARGET-
NBL cohort and 498 patients in the GSE62564 cohort) were
included in the present study, and the clinical and pathologic
features of the patients are shown in Table 1. A complete
cross-validation using the RPI was performed in the training
cohort to identify a powerful prognostic signature. Through
DEG and prognosis-related RNA analysis, 81 RNAs were used
as candidates to build gene pairs. The strong association of the
31 RNAs (P < 0.01) with OS was assessed in the TARGET-NBL
cohort, resulting in 10 prognostic gene pairs (Table 2). Through
this procedure, the RPI was determined by using L1-penalized
Cox proportional hazards regression, and the usefulness of
outcome prediction was assessed for the first time. The 10 gene
pairs of the RPI were selected at a significantly higher frequency
than were those by different randomizations. On the basis of the
time-dependent ROC curve analysis, the optimal cutoff value that
could be used for the RPI to stratify patients into high or low
risk group was determined to be −4.774 (see Figure 2A). The
regression coefficients from this model were used to construct
the RPI, and a threshold was chosen at the median manually.
The RPI was calculated according to the gene pairs, RPI =
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FIGURE 2 | Characteristics of the RPI and Kaplan-Meier estimates for OS and EFS in the training and validation cohorts. (A) Characteristics of the 10-gene pair

prognostic signature in the training cohort (top: the risk score of each NBL patient in the training cohort; middle: OS and survival status of patients in the training

cohort; bottom: heat map of gene expression profiles of NBL patients in the training cohort). (B) Characteristics of the 10-gene pair prognostic signature in the

validation cohort (top: the risk score of each NBL patient in the validation cohort; middle one: OS and survival status of patients in the validation cohort; bottom: heat

map of gene expression profiles of NBL patients in the validation cohort). (C) OS in the training cohort stratified by the RPI into high- and low-risk groups with the

P-value shown. (D) OS in the validation cohort stratified by the RPI into high- and low-risk groups with the P-value shown. (E) EFS in the training cohort stratified by

the RPI into high- and low-risk groups with the P-value shown. (F) EFS in the validation cohort stratified by the RPI into high- and low-risk groups with the P-value

shown. The black dotted line represents the RPI cutoff dividing patients into high- and low-risk groups, and the P-value was calculated using the log-rank test. RPI,

RNA-Seq prognostic index; OS, overall survival, EFS, event-free survival.
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TABLE 1 | Clinical and pathologic features of patients in the TARGET-NBL and GSE62564 cohorts.

TARGET-NBL (N = 153) GSE62564 (N = 498) Total (N = 651)

Gender

Male 89 (58.17%) 287 (57.63%) 376 (57.76%)

Female 64 (41.83%) 211 (42.37%) 275 (42.24%)

Age at diagnosis in days

≥18 months 124 (81.05%) 193 (38.76%) 317 (48.69%)

<18 months 29 (18.95%) 305 (61.24%) 334 (51.31%)

MYCN status

Amplified 33 (21.57%) 92 (18.47%) 125 (19.20%)

Not Amplified 119 (77.78%) 401 (80.52%) 520 (79.88%)

Unknown 1 (0.65%) 5 (1.01%) 6 (0.92%)

Stage

4 126 (82.35%) 183 (36.75%) 309 (47.47%)

1, 2, 3, 4S 27 (17.65%) 314 (63.05%) 341 (52.38%)

Unknown – 1 (0.20%) 1 (0.15%)

TABLE 2 | Details of 10 gene pairs.

Gene pair Gene 1 Full name Gene 2 Full name Coefficient

ENSG00000074276.

ENSG00000134940

CDHR2 Cadherin related family

member 2

ACRV1 Acrosomal vesicle protein

1

−0.2506935

ENSG00000074317.

ENSG00000182674

SNCB Synuclein beta KCNB2 Potassium voltage-gated

channel subfamily B

member 2

−0.4109996

ENSG00000078725.

ENSG00000092607

BRINP1 BMP/Retinoic acid

inducible neural specific 1

TBX15 T-Box 15 −0.1680958

ENSG00000105642.

ENSG00000180828

KCNN1 Potassium

calcium-activated channel

subfamily N member 1

BHLHE22 Basic helix-loop-helix

family member E22

−0.3840182

ENSG00000108947.

ENSG00000124882

EFNB3 Ephrin B3 EREG Epiregulin −1.482003

ENSG00000130477.

ENSG00000152910

UNC13A Unc-13 homolog A CNTNAP4 Contactin associated

protein like 4

−0.4296052

ENSG00000137142.

ENSG00000140600

IGFBPL1 Insulin like growth factor

binding protein like 1

SH3GL3 SH3 domain containing

GRB2 like 3, endophilin

A3

−0.4248621

ENSG00000137142.

ENSG00000205116

IGFBPL1 Insulin like growth factor

binding protein like 1

TMEM88B Transmembrane protein

88B

−0.8786922

ENSG00000143867.

ENSG00000185294

OSR1 Odd-skipped related

transcription factor 1

SPPL2C Signal peptide peptidase

like 2C

0.00259089

ENSG00000157884.

ENSG00000255245

CIB4 Calcium and integrin

binding family member 4

FXYD6-FXYD2 FXYD6-FXYD2

readthrough

−0.5957467

(−0.250693546 ∗ CDHR2-ACRV1) + (−0.410999623 ∗ SNCB-
KCNB2)+ (−0.168095779 ∗ BRINP1-TBX15)+ (−0.384018203
∗ KCNN1-BHLHE22) + (−1.48200304 ∗ EFNB3-EREG) +

(−0.429605222 ∗ UNC13A-CNTNAP4) + (−0.424862085 ∗

IGFBPL1-SH3GL3) + (−0.878692179 ∗ IGFBPL1-TMEM88B)
+ (0.002590887 ∗ OSR1-SPPL2C) + (−0.595746694 ∗ CIB4-
FXYD6-FXYD2).

All 153 patients in the training cohort were segregated into the
low-risk group (n= 76) and the high-risk group (n= 77), and the
low-risk group exhibited significantly better overall survival (OS)
than the high-risk group according to the RPI cutoff point (P <

0.0001, see Figure 2C). For the low-risk group, the median OS
was not reached, whereas the median OS was 31.5 months (95%
CI: 26.7–45.9) for the high-risk group. The HR for progression
in the low- vs. high-risk group was 0.24 (95% CI: 0.15–0.41, P
< 0.001). Regarding event-free survival (EFS), all 152 patients in
the training cohort (1 patient was removed due to incomplete
information) were similarly segregated into the low- and high-
risk groups, and a low RPI was correlated with significantly
favorable EFS in the TARGET-NBL cohort (P = 0.00032, see
Figure 2E). The median EFS was 58.0 months (95% CI: 36.3–
NA) and 19.2 months (95% CI: 15.4–23.5) for the high- and
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low-risk groups, respectively (HR = 2.11, 95% CI: 1.39–3.21, P
= 0.000435). The subgroup analysis showed that our RPI could
well divide patients into different risk groups and correlated with
prognosis (P < 0.01 for all subgroups except for age <18 months
and stage 1, 2, 3, and 4S subgroups in the validation cohort, see
Figure S1 in the Supplementary Material for the comprehensive
figure analysis).

Validation of the RPI
To examine the robust and realistic application of the RPI, the
performance of the RPI was validated in the validation cohort
(see Figure 2B). The developed model could actively predict OS
and EFS in patients with NBL in the validation cohort. The RPI
significantly stratified patients into low- and high-risk groups in
terms of OS; more specifically, all 498 patients were segregated

into the low-risk group (n = 153) and the high-risk group (n =

345) and showed significantly different OS rates (P = 0.00078)
according to the same risk score cutoff point (−4.774) acquired
from the training cohort (see Figure 2D). The median OS was
not reached in either the low- or high-risk group, and the HR
for progression in the low- vs. high-risk group was 0.43 (95%
CI: 0.26–0.71, P = 0.005). Concerning EFS, all 492 patients in
the training cohort (6 patients were removed due to incomplete
information) were similarly divided into the low- and high-risk
groups, and a low RPI tended to favor favorable EFS (P= 0.06, see
Figure 2F). Themedian EFS was not reached in either the low- or
high-risk group, and the HR for progression in the low- vs. high-
risk group was 1.38 (95% CI: 0.99–1.93, P = 0.0608). Overall, the
RPI appears to independently estimate OS and EFS in patients
with NBL well. However, the subgroup analysis showed that the

FIGURE 3 | Time-dependent ROC curves for OS and EFS predicted with the RPI in the training and validation cohorts. (A) Time-dependent ROC curves for OS

predicted with the RPI in the training cohort. (B) Time-dependent ROC curves for OS predicted with the RPI in the validation cohort. (C) Time-dependent ROC curves

for EFS predicted with the RPI in the training cohort. (D) Time-dependent ROC curves for EFS predicted with the RPI in the validation cohort. AUC values at 12, 36,

and 60 months were used to assess the prognostic accuracy. ROC, receiver operating characteristic; OS, overall survival; EFS, event-free survival; AUC, area under

the ROC curve.
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RPI did not perform well (see Figure S2 in the Supplementary
Material for the comprehensive figure analysis).

Performance Comparison by
Time-Dependent ROC Curve Analysis
Time-dependent ROC curve analysis was performed to compare
the sensitivity and specificity of the prediction of OS and EFSwith
the RPI in the training and validation cohorts. The AUC value
was obtained from ROC curve analysis. Regarding OS, in the
training and validation cohorts, the RPI reached 12 month AUC
values of 0.662 and 0.621, 36 month AUC values of 0.748 and
0.595, and 60 month AUC values of 0.718 and 0.593, respectively
(see Figures 3A,B), demonstrating that the predictive power of
the RPI was credible in both the training and validation cohorts.
Upon calculating the AUC of EFS, we obtained the same results
(see Figures 3C,D).

Correlated Functional Enrichment Analysis
To scrutinize the functional implications of the DEGs in
NBL initiation and progression, bioinformatics analysis was
performed. We found that expression alterations in these genes
could activate alcoholism, systemic lupus erythematosus and
viral carcinogenesis in the high-risk group, whereas antigen
processing and presentation, the chemokine signaling pathway
and the cytokine-cytokine receptor interaction were activated in
the low-risk group (see Figure 4).

Development and Validation of the RCPI
Several of the clinicopathological features mentioned earlier
were considered possible predictors. Univariate and multivariate
analyses were first performed to further investigate which
parameters could be used to better estimate the results. As shown
in Table 3, in the univariate analysis, prognosis was correlated
with age, stage and the RPI in the training cohort and with
age, stage and MYCN in the validation cohort (all P < 0.05).
The multivariate analysis confirmed that the RPI independently
predicted prognosis in the training cohort and age, stage, and
MYCN in the validation cohort (all P < 0.05). In short, we
propose that stage and the RPI are complementary. To further
improve the accuracy, we ultimately combined stage and the RPI
to fit a preferable model in the training cohort and subsequently
validated the model in the validation cohort [RCPI = (stage ∗

1.8445) + (RPI ∗ 1.0563)]. The optimal cutoff value used to
stratify patients was determined based on the median value in the
corresponding cohort. Then, we applied the RCPI in the training
and validation cohorts to test its differentiation, accuracy and
specificity to predict OS and EFS. We found that the RCPI could
well divide patients into high- and low-risk groups that and the
low-risk group had a better prognosis (all P < 0.05, see Figure 5).
As shown in Figure 6, the sensitivity and specificity of the RCPI
increased over time.

DISCUSSION

In the last few decades, significant breakthroughs have deepened
our understanding of the tumorigenesis and development of
NBL. NBL most frequently arises from neuronal cells that fail

FIGURE 4 | Functional enrichment of the DEGs in the training cohort. (A)

Functional enrichment in the high-risk group identified by the RPI. (B)

Functional enrichment in the low-risk group identified by the RPI. RPI,

RNA-Seq prognostic index.

to differentiate into the adrenal medulla but can also develop in
the neck, chest, abdomen, or spine (24), and different sources
have different genomic profiles (25). Based on its molecular
and clinical features, patients are classified into four different
risk groups and have different prognoses (26). However, the
clinical prognosis of patients with NBL remains highly diverse
(25, 27). Hence, it is necessary to determine the biological
characteristics of NBL patients (28). Some genetic susceptibility
factors are strongly associated with NBL. Germline mutations in
ALK explain most hereditary NBLs (8, 9). Germline mutations
in PHOX2B (13) or KIF1Bβ (29) have also been implicated in
familial NBL. MYCN has been found to be amplified in NBL
(7). NBL has been linked to copy number variations within
NBPF10 (30) and single nucleotide polymorphism variations
within FLJ22536 (31) and BARD1 (32), as well as duplicated
segments of LMO1 (10, 11). DOT1L (33), RBPJ and SNW1
(34) are upregulated in NBL and associated with unfavorable
patient outcomes. Patients with advanced-stage NBL who express
high levels of TNIP1 and N4BP1 exhibit poor OS (35). High
levels of RUNX3 result in a preferable prognosis in patients with
NBL (36). Generally, these findings indicate that common DNA
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TABLE 3 | Univariate and multivariate Cox regression analyses of clinicopathological factors.

Datasets Variables
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

TARGET-NBL Gender 1.05 (0.67–1.67) 0.822 0.92 (0.57–1.50) 0.748

Age 4.04 (1.63–10.04) 0.003 1.15 (0.29–4.54) 0.841

Stage 6.46 (2.03–20.52) 0.002 5.44 (0.96–30.65) 0.055

MYCN 1.39 (0.82–2.36) 0.226 1.08 (0.63–1.86) 0.771

RPI 2.91 (1.79–4.74) <0.001 2.91 (1.76–4.81) <0.001

GSE62564 Gender 0.82 (0.55–1.20) 0.299 0.74 (0.50–1.10) 0.138

Age 8.58 (5.26–14) <0.001 3.59 (2.07–6.23) <0.001

Stage 8.54 (5.36–13.6) <0.001 3.37 (1.99–5.72) <0.001

MYCN 7.78 (5.26–11.53) <0.001 3.39 (2.24–5.15) <0.001

RPI 1.53 (0.97–2.42) 0.067 1.03 (0.64–1.65) <0.001

Bold values indicate the statistical difference.

FIGURE 5 | Kaplan-Meier estimates for OS and EFS predicted with the RCPI in the training and validation cohorts. (A) OS in the training cohort stratified by the RCPI

into high- and low-risk groups with the P-value shown. (B) OS in the validation cohort stratified by the RCPI into high- and low-risk groups with the P-value shown. (C)

EFS in the training cohort stratified by the RCPI into high- and low-risk groups with the P-value shown. (D) EFS in the validation cohort stratified by the RCPI into high-

and low-risk groups with the P-value shown. The P-value was calculated using the log-rank test. OS, overall survival; EFS, event-free survival; RCPI, clinically adjusted

RNA-Seq prognostic index.

variations influence NBL and promote the development of a
putative genetic model for this disease (37).

Here, we developed and proposed an RCPI that is significantly
associated with outcome prediction, making it a favorable

and practical tool for risk classification in patients with NBL.
The individualized RCPI is not described in the International
Neuroblastoma Risk Group Staging System (INRGSS), which
was created specifically to constitute one of seven prognostic
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FIGURE 6 | Time-dependent ROC curves for OS and EFS predicted with the RCPI in the training and validation cohorts. (A) Time-dependent ROC curves for OS

predicted with the RCPI in the training cohort. (B) Time-dependent ROC curves for OS predicted with the RCPI in the validation cohort. (C) Time-dependent ROC

curves for EFS predicted with the RCPI in the training cohort. (D) Time-dependent ROC curves for EFS predicted with the RCPI in the validation cohort. AUC values at

12, 36, and 60 months were used to assess the prognostic accuracy. ROC, receiver operating characteristic; OS, overall survival; EFS, event-free survival; RCPI,

clinically adjusted RNA-Seq prognostic index; AUC, area under the ROC curve.

factors in the International Neuroblastoma Risk Group (INRG)
pretreatment classification system (26, 38). The high prognostic
categorization performance of the RCPI is assuredly due to our
idiographic reanalysis strategy. To identify reliable prognostic
biomarkers of NBL, we utilized new methods of multi-gene
analysis. First, only RNA-Seq data were included, which resulted
in the greatest difference observed among all previous studies
(39, 40); thus, our study did not overlook genes that appeared
only in the array. Furthermore, we found that data in the
TARGET-NBL cohort are profiled as FPKM and that data in the
GSE62564 cohort are profiled as RPM. Due to this difference, the
gene pairs were homogenized; therefore, the score was calculated
based entirely on the gene expression profile of a sample and

was used in an individualized manner without the need for
normalization (14). Third, our results indicate that the RPI can
also be applied to the subgroups of sex and MYCN in the
TARGET-NBL cohort. Moreover, because of the RPI, we not only
obtained many clinicopathological features from the univariate
and multivariate analyses that are strongly and significantly
correlated with prognosis and deserve further study but also
further used the same powerful algorithm to generate the RCPI,
a preferable model combining clinicopathological features with
the RPI. With the addition of clinicopathological features, the
prediction of OS and EFS by the RCPI for NBL patients is quite
encouraging; moreover, the longer the prediction time is, the
more accurate the model is.
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Furthermore, functional enrichment analysis indicated that
these DEGs may be involved in certain events that are associated
with NBL. Studies have shown that alcohol use during pregnancy
increases the risk of NBL (41). According to the report, there
is a unique coincidence of neonatal lupus and NBL (42). In
addition, antigen processing and presentation are also involved in
the treatment of NBL (43, 44). The chemokine signaling pathway
(45, 46) and the cytokine-cytokine receptor interaction (47) also
play a role in the occurrence and development of NBL.

There are some limitations to this study, although the RCPI
is robust. First, the public RNA-Seq data sets included in this
analysis were profiled from different platforms: TARGET-NBL
was profiled from FPKM, and GSE62564 was profiled from RPM.
Despite homogenization, bias still exists, which may lead to poor
extrapolation of the findings. Second, limited by the clinical
information included in the data sets, we were not able to single
out the high-risk group, as in a previous study (39). This may
also be the reason why we did not obtain satisfactory results in
the GSE62564 cohort when conducting the subgroup analysis
(i.e., because of the asymmetry of clinical data between the
GSE62564 and TARGET-NBL cohorts). Third, although different
databases were used as the training and validation cohorts, the
clinical sample size of each cohort included in this study was
still relatively small. Therefore, it is still necessary to study
large samples in future studies. Finally, this was a data mining
study; therefore, multicenter, well-designed, prospective studies
are needed to validate these findings. Despite these drawbacks,
independent confirmation and similarities between findings from
the training and validation cohorts provide a high level of
confidence in the overall analysis.

The RCPI may be the first prognostic tool in NBL that
combines clinicopathologic characteristics with laboratory test
indicators. Furthermore, it was proven that the prognostic power
of the RCPI, an optimal signature with outcome prediction, was
acceptable. As such, our RCPI can serve as a personalized, single-
sample estimate of survival in NBL patients andmay be promptly
incorporated into clinical utility. More importantly, this useful
strategy for the vigorous selection of prognostic markers has vast
application potential in other diseases.

CONCLUSIONS

The proposed novel RCPI is a promising prognostic signature in
NBL. Prospective and large-sample studies are needed to further
validate its penetrating precision for estimating prognoses and
to verify its use in clinical practice for the personalized therapy
management of NBL.
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