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Abstract: Chaotic systems implemented by artificial neural networks are good candidates for data
encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and
the Hindmarsh—Rose neurons. The contribution is focused on finding suitable coefficient values
of the neurons to generate robust random binary sequences that can be used in image encryption.
This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate
coefficient values of the mathematical models that produce high positive Lyapunov exponent and
Kaplan—Yorke dimension values, which are computed using TISEAN. The randomness of both the
Hopfield and the Hindmarsh-Rose neurons is evaluated from chaotic time series data by performing
National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is
done using field-programmable gate arrays whose architectures are used to develop an encryption
system for RGB images. The success of the encryption system is confirmed by performing correlation,
histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests.

Keywords: chaos; Hopfield neuron; Hindmarsh—Rose neuron; Lyapunov exponent; image encryption;
correlation; FPGA

1. Introduction

Image encryption is one of the well-known mechanisms to preserve confidentiality over a reliable
unrestricted public channel. However, public channels are vulnerable to attacks and hence efficient
encryption algorithms must be developed for secure data transfer. In [1], the authors surveyed ten
conventional and five chaos-based encryption techniques to encrypt three test images of different sizes
based on various performance metrics, and the important conclusion was that none of the conventional
schemes were designed especially for images and hence none of them have any dependence on the
initial image. In this manner, the topic of image encryption remains open and several researchers
are proposing the use of chaotic systems to mask information that can be transmitted in a secure
channel. In this direction, this paper highlights the usefulness of Hopfield and Hindmarsh-Rose neural
networks to generate chaotic behavior, and its suitability to design random number generators (RNGs)
that are implemented using field-programmable gate arrays (FPGAs).
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In [2] ]J.J. Hopfield introduced the neuron model that nowadays is known as the Hopfield
neural network. Ten years later, a modified model of Hopfield neural network was proposed in [3],
and applied in information processing. Immediately, the Hopfield neural network was adapted to
generate chaotic behavior in [4] where the authors explored bifurcation diagrams. In [5] the simplified
Hopfield neuron model was designed to use a sigmoid as activation function, and three neurons
were used to generate chaotic behavior. In addition, the authors performed an optimization process
updating the weights of the neurons interconnections. The Hopfield neuron was combined with
a chaotic map in [6] to be applied in chaotic masking. More recently, the authors in [7] proposed
an image encryption algorithm using the Hopfield neural network. In the same direction, the authors
in [8] detailed the behavior of Hindmarsh—Rose neuron to generate chaotic behavior. Its bifurcation
diagrams were described in [9], and the results were used to select the values of the model to improve
chaotic behavior. Hindmarsh—-Rose neurons were synchronized in [10], optimizing the scheme of
Lyapunov function with two gain coefficients. In this way, the synchronization region is estimated by
evaluating the Lyapunov stability. Two Hindmarsh-Rose neurons were synchronized in [11], and the
system was used to mask information in continuous time. To show that the neurons generate chaotic
behavior, one must compute Lyapunov exponents, and for the Hindmarsh—Rose neuron they were
evaluated by the TISEAN package in [12].

The Hopfield neural network has been widely applied in chaotic systems [13-15]. This
network consists of three neurons, and the authors in [13] proposed a simplified model by
removing the synaptic weight connection of the third and second neuron in the original Hopfield
network. Numerical simulations were carried out considering values from the bifurcation diagrams,
and Lyapunov exponents were evaluated to conclude that the simplified model exhibits rich nonlinear
dynamical behaviors including symmetry breaking, chaos, periodic window, antimonotonicity and
coexisting self-excited attractors. An FPGA-based modified Hopfield neural network was introduced
in [14], to generate multiple attractors, but there are no details of their hardware design from computer
arithmetic. The authors in [15] showed the existence of hidden chaotic sets in a simplified Hopfield
neural network with three neurons. Similar to the Hopfield neural network, the Hindmarsh—Rose
neuron is quite useful, for example: using the Hindmarsh—-Rose neuron model, the authors in [16]
showed that in the parameter region close to the bifurcation value, where the only attractor of
the system is the limit cycle of tonic spiking type, the noise can transform the spiking oscillatory
regime to the bursting one. The fractional-order version of the Hindmarsh—Rose neuron was used
in [17], for the synchronization of fractional-order chaotic systems. In [18], based on two-dimensional
Hindmarsh—Rose neuron and non-ideal threshold memristor, a five-dimensional neuron model of
two adjacent neurons coupled by memristive electromagnetic induction, was introduced. In a similar
way, the authors in [19] showed the effects of time delay on burst synchronization transitions of
a neural network which was locally modeled by Hindmarsh-Rose neurons. On the one hand, the main
drawback of those works was the lack of statistical tests according to the National Institute of Standard
and Technology (NIST), as done in other chaotic systems given in [20-22], to guarantee the randomness
of the chaotic sequences. On the other hand, and in addition to NIST tests, the authors in [23]
recommend to improve the key space when using chaotic maps, thus enhancing the image encryption
schemes. In this work we show the application of neural networks in the design of random number
generators (RNGs), whose binary sequences are applied to implement an image encryption scheme [24].
This idea has been previously exploited, for example: the Hopfield neural network was used in [25] to
design a RNG, but showed low randomness. In this manner, this paper introduces the selection of
the best coefficients of both Hopfield and Hindmarsh-Rose neurons, from the bifurcation diagram,
to generate robust chaotic sequences that improve NIST tests and enhance chaotic encryption of images.

Section 2 describes both the Hopfield and the Hindmarsh-Rose neuron models, showing their
chaotic behavior. Section 3 shows simulation results of the cases that generate better chaotic time series,
applying the 4th-order Runge-Kutta method. Bifurcation diagrams are generated to select appropriate
values that improve the generation of chaotic times series that are evaluated using TISEAN, in order to
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verify the Lyapunov exponents. Section 4 details the FPGA-based implementation of both Hopfield
and Hindmarsh—Rose neuron models. Section 5 shows the selection of the series with the highest
values of the positive Lyapunov exponent, which are used to generate binary sequences, and whose
randomness is evaluated by performing NIST tests. Section 6 shows the application of the generated
binary sequences to encrypt an image in a chaotic secure communication system, and the success of the
RGB image encryption system is confirmed by performing correlation, histogram, variance, entropy,
and Number of Pixel Change Rate (NPCR) tests. Finally, Section 7 summarizes the main results of
this work.

2. Mathematical Models of Hopfield and Hindmarsh-Rose Neurons

This section describes the mathematical models of both the Hopfield and the Hindmarsh—Rose
neural networks. For instance, the complex dynamics of the Hopfield-type neural network with three
neurons are analyzed in [26], as well as the observation of the stable points, limit circles, single-scroll
chaotic attractors and double-scrolls chaotic attractors. By varying the parameters, the numerical
simulations performed in [27] show that the simple Hopfield neural networks can display chaotic
attractors and periodic orbits for different parameters, and they associate different values of the
Lyapunov exponents and bifurcation plots. The Hindmarsh-Rose neural network is analyzed in [28],
and by using the polynomial model previously introduced in [29], the authors perform a detailed
bifurcation analysis of the full fast-slow system for bursting patterns.

2.1. Hopfield Neuron

The Hopfield neural network can be modeled by Equation (1), where v represents the state
variables, ¢ is a proportional constant, W is the weights matrix, and f(v) is associated to the activation
function [5].

v =—co+ Wf(v). 1)

Commonly, ¢ is made equal to one, and when a chaotic behavior is desired, the activation function
is a hyperbolic tangent function and the weights matrix W is modified, whose size depends on the
number of neurons. In this work, W has size 3 x 3, meaning that the Hopfield neural network has
three state variables, associated with each neuron. That way, Equations (2)—(4), describe the model
of the three neurons, as shown in [5]. In this case, v in (1) is replaced by a three elements vector,
including three state variables, namely: x, y, and z; and the control parameter p is set to 0.0997. This
value is found by exploring values that maximize the positive Lyapunov exponent (LE+). Figures 1
and 2 show the chaotic time series and the attractors obtained by applying the 4th-order Runge-Kutta
method.

x x| f(x)
yl=—|y |+W]| fly) ©)
b4 Ea f(z)
f(x) ] [ tanh(x)
fly) | = | tanh(y) ®
f(z) | | tanh(z)
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W=|19+p 171 115 |. @)

—4.75 0 11

The equilibrium points are obtained by applying the Newton Raphson method G'*!
G' — [J(G)]~Yf(G;), where J(G;) is the Jacobian, because the neural network has nonlinear terms
as tanh(). The Equilibrium points are: EP; = (0,0,0),EP, = (0.4932,0.3658, —3.2666) , EP; =
(—0.4932, —0.3658,3.2666). The eigenvalues are obtained for each equilibrium point evaluating
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[AI—J| = 0, so that the ones associated to EP; are: A1=1.9416 and A,3=-0.0658 =+ j 1.8793.
The eigenvalues associated to EP; and EP; are: A1=-0.9870 and A,3=0.5381 £ j 1.2861.
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Figure 1. Simulation results of the chaotic time series of the state variables: (a) x, (b) y, and (c)
z, of the Hopfield neural network given in [5]. The initial conditions are: xg = 1.951738939809982,
Yo = —1.207112821944644, and zo = —0.284321234701517.

Figure 2. Attractors generated by plotting the state variables shown in Figure 1.

2.2. Hindmarsh—Rose Neuron

The Hindmarsh-Rose neural network can be modeled by three state variables, as given by
Equation (5). This model is used to analyze the charge and discharge of a neuron, and in addition,
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when it provides chaotic behavior, its applications can be extended to cryptography, as shown in
this work.
¥ =—s(—ax®>+x%) —y—bz
=9 -y 5)
z = e(sarx + by — kz).

In Equation (5), x is associated to the membrane voltage, y is the recovery variable associated to
the current, and z is the slow and adaptable current. The coefficients a, b, a1, b1, k, s are parameters of
the neuron, and ¢ and ¢ are associated to the time scale. Their values are setto: ¢ =1,a =0.5,b =1,
ap =—0.1,k=0.2,by = —0.045, ¢ = 0.02, and s = —1.605 [11]. Figure 3 shows the time series of the
state variable x of Hindmarsh—Rose neuron, and Figure 4 shows the phase-space portraits.

0.8r

04r

0 2 4 6 8 10
Iterations x10%

Figure 3. Chaotic time series of state variable x of the Hindmarsh-Rose neuron using xy = 0.1169282607,
Yo = 0.03563851071, and zy = 0.01034665217, as initial conditions.
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Figure 4. Phase-space portraits of the Hindmarsh—-Rose neuron given in Equation (5), using xo =
0.1169282607, yo = 0.03563851071, and zy = 0.01034665217, as initial conditions.
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The equilibrium points from Equation (5) are: EP; = (0.325817,0.106157,0.0364682),
EP, = (0.214038 — j0.902614, —0.7689 — j0.38638, —0.053234 — j0.7243), and EP; = (0.214038 +
j0.902614, —0.7689 + j0.38638, —0.053234 + j0.7243). The eigenvalues associated to each equilibrium
point are: A =0.261784, A, = 0.0204526, A3=- 0.495936 for EP;; and Aq =2.2075 £ j 1.5659, A,=- 0.002488
+j 0.0001127, and A3 = —0.67089 =+ j 0.4012, for EP, and EP;.

3. Bifurcation Diagrams and Selection of the Best Values to Generate Enhanced Chaotic
Time Series

Bifurcation diagrams are quite useful to find appropriate values of the mathematical models of the
neurons, and in this paper, they are generated to find the best Lyapunov exponents and Kaplan-Yorke
dimension, which are considered as appropriate metrics to enhance the generation of chaotic time
series. In the case of the Hopfield neuron, the state variable x is selected to plot the bifurcation with
respect to the control parameter p. This process must be performed following the variation of all
the coefficients of the mathematical model and for all the state variables in various iterations until
some dynamical characteristics of the chaotic system, like the positive Lyapunov exponent (LE+)
and Kaplan—Yorke dimension [30], are improved. Varying the weights matrix W, one can find better
characteristics. For example, in this paper the nine elements in W were varied in the ranges and steps
listed in Table 1. All these cases generated different bifurcation diagrams from which the feasible
values were selected. For example, Figure 5 shows the bifurcation diagram varying W(3,1), where it
can be appreciated that the feasible values to generate chaotic behavior must be chosen with values
lower than —4.5. In this manner, after exploring the bifurcation diagrams by varying the values in the
ranges given in Table 1, three feasible sets of values are given in Table 2, where it can be appreciated
their variations with respect to the original values given in [5]. The chaotic time series associated
with those sets of values, obtained by applying the 4th-order Runge-Kutta method are shown in
Figure 6 for the state variable x. Those chaotic time series are used to evaluate Lyapunov exponents
and Kaplan-Yorke dimension using TISEAN.

3 T T

Figure 5. Bifurcation diagram varying W(3, 1) in the range given in Table 1.
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Table 1. Variation conditions of the elements in W.

Matrix Element Variation Range Step

w(1,1) [-3,3] 0.01
W(1,2) [=2,2] 0.01
W(1,3) [—0.5,0.5] 0.01
W(2,1) [—2.9,29] 0.01
W(2,2) [—2.6,2.6] 0.01
W(2,3) [-1.7,1.7] 0.01
W(3,1) [-5,5] 0.01
W(3,2) [—0.5,0.5] 0.01
W(3,3) [~1.9,1.9] 0.01

Table 2. Proposed sets of values to generate enhanced chaotic behavior using Hopfield neuron.

Matrix Element Sets of Values
Original [5] HNNsetl HNNset2 HNNset3

W(1,1) 2 2 2 1.98
W(1,2) -12 —1.26 -1.26 —1.18
W(1,3) 0 0 0 0.01
W(2,1) 1.9997 1.93 1.93 1.94
W(2,2) 1.71 1.71 1.71 1.72
W(2,3) 1.15 1.2 1.2 1.2
W(3,1) —4.75 —4.76 —4.76 —4.74
W(3,2) 0 0.06 0.06 0.03
W(3,3) 1.1 1.1 —0.11 1.1

N

Table 3 lists all Lyapunov exponents values and their associated Kaplan—Yorke dimension for
each case from Table 2.

Table 3. Lyapunov exponents and Kaplan—Yorke dimension Dy associated to each set of values from
Table 2.

Sets of Values Lyapunov Exponents Dky
Original [5] ~ 9.443281 x 1073 —2.407246 x 1073 —6.072266 x 1072  2.115872
HNNset1 1.769144 x 1072 —2.681429 x 1073 —8.082816 x 10~2  2.185703
HNNset2 1.294477 x 1072 —1.194553 x 107> —7.149536 x 1072 2.164349
HNNset3 1.488237 x 1072 —9.456641e x 107*  —7.905735 x 1072 2.176286

In the case of the Hindmarsh-Rose neural network model given in (5), one can count eight
coefficients that can be varied. In this case, a heuristic process was performed with the goal of
improving the chaotic behavior. Each coefficient ¢, a, b, a1, k, b1, €, and s, was varied in steps of 0.001
and observing the degradation of chaotic behavior. After performing the variations and observing
the bifurcation diagrams, two sets of values were found, which are listed in Table 4. In this manner,
Figure 7 shows the chaotic time series associated with these sets of values.

The simulation of the chaotic time series was performed using the initial conditions xp =
0.1169282607, yo = 0.03563851071, and zy = 0.01034665217, and those series were introduced to
TISEAN to evaluate Lyapunov exponents and Kaplan—Yorke dimension that are given in Table 5.
Since the maximum exponent is positive, then chaotic behavior is guaranteed. In this case, the sets
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of values HRNsetl is the best because the Kaplan-Yorke dimension is 3, i.e., the ideal value for
a three-dimensional dynamical system.
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Figure 6. Chaotic time series generated by using the sets of values listed in Table 2: (a) original,
(b) HNNssetl, (c) HNNset2, and (d) HNNset3, plotting the state variable x.

Table 4. Proposed sets of values to generate enhanced chaotic behavior using the Hindmarsh-Rose neuron.

Coefficient Sets of Values
Original [11] HRNsetl HRNset2
a 0.5 0.5 0.5
b 1 0.99 1.005
@ 1 1 1
a —0.1 —0.095 —0.1
k 0.2 0.15 0.198
by —0.045 —0.045 —0.045
€ 0.02 0.02 0.02

S —1.605 —1.610 —1.607
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Figure 7. Chaotic time series generated by using the sets of values listed in Table 4: (a) original,

(b) HRNset1, and (c) HRNset2, plotting the state variable x.

Table 5. Lyapunov exponents and Kaplan—Yorke dimension Dgy associated to each set of values from

Table 4.

Sets of Values

Lyapunov Exponents

Dky

Original [11] 6212 x 1073 —6.2947 x 1073 —6.3243 x 1073 2.9723
HRNsetl 7.3873 x 1073 6.5024 x 10~4 —7.7942 x 1073 3.0000
HRNset? 35572 x 1073 —1.7318 x 10* —5.2275 x 1073 2.6473
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4. FPGA-Based Implementation of the Neurons

The hardware implementation of both neurons can be performed from the discretized equations
using a specific numerical method. For example, in [31] one can find the discretization of a dynamical
model by applying Forward Euler and 4th-order Runge-Kutta methods. It can be appreciated that
there is a trade-off between exactness and hardware resources. Besides, since the Hopfield neural
network is a small dynamical system, the 4th-order Runge-Kutta method is used herein to develop the
FPGA-based implementation, as shown in Figure 8, which is based on Equations (2)—(4). The details of
the numerical method is sketched in Figure 9, where one can appreciate the block for the hyperbolic
tangent function given in Equation (3), which is implemented as already shown in [31]. The general
architecture shown in Figure 8 consists of a finite state machine (FSM) that controls the iterations of the
numerical method, whose data is saved in the registers (x, y, z). The block labeled Hopfield Chaotic
Neuronal Network contains the hardware that evaluates the 4th-order Runge-Kutta method receiving
the data at iteration (x;, y;, z;) and providing the data at the next iteration (x;;1, ¥i+1, zi+1). The Mux
blocks introduce the initial conditions (xg, Yo, zo) and select the values (xj;1, yit+1, zit1) for all the
remaining iterations. The Reg blocks are parallel-parallel arrays and save the data being processed
within the dynamical system. The output of the whole architecture provide a binary string associated
to a specific state variable (x, y, z).

( )
Sel
l«——z{0}
Mux
z
<
Reg < \(_clk
Ai+1)  [—EN_1 sel
1k
i je——v{0}
- ey -
&) yli+1} |[¢—EN_1 M;x
clk
Re, <
{0} x{ij} [€——EN1 \Iﬁw
— ik =8
l¢«—— x{0}
40 > Mux
X
P2
Reg
\*—dk
—
SR Reg x{i} | x{i+1} x[15:0]
yii} viid —
B {i+1}
Start | Reg 2{i} ] . y
=15 2{i} Hopfield Chaotic
- z{i+1}
dlk EN_3 Neuronal Network
clk )
Fin_rgk
clky |
N
Start —>Sel
S [——>En1
: (V2]
Finrgkf W | —EN2
—>EN_3
clk
e

\.

y

Figure 8. High-level description of the FPGA-based implementation of the Hopfield neural network.
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Figure 9. Details of the implementation of the 4th-order Runge-Kutta method solving the Hopfield
chaotic neural network, whose block is embedded in Figure 8.

The hyperbolic tangent function given in [31] and used in Figure 9, is described by Equations (6)
and (7), with L = 2, B = 1, and 6 = 0.25. Table 6 shows the hardware resources for the implementation
of the four cases given in Table 2 for the Hopfield neuron. The numerical method is the 4th-order
Runge-Kutta and the FPGA Cyclone IV EP4CE115F29C7 is used.

1 L<z
Tanh(z) = Gs(z) = H; —-L<z<lL 6)
-1 z < —L
) z(p—0z) 0<z<L
Hs{z(ﬁ+92) —-L<z<0 @)

Table 6. FPGA resources for the implementation of the Hopfield neuron from the sets of values given

in Table 2.
Resources FPGA Cyclone IV EP4CE115F29C7 and 4th-order Runge-Kutta Available
Original [5] HNNsetl HNNSset2 HNNset3
Logic Elements 5051 5194 5174 5333 114,480
Registers 3979 4037 4033 4091 114,480
9 x 9 bits Multipliers 128 136 136 144 532
Maximum Frequency 55.55 56.14 57.04 55.17 50
(MHz)
Clock Cycles by 40 40 40 40 -
Iteration
Latency by Iteration 800 800 800 800 -
(ns)

In a similar way, the FPGA-based implementation of Hindmarsh—Rose neural network given
in Equation (5), is developed by applying a numerical method. In this case, and applying
Forward-Euler method, the hardware description is shown in Figure 10, where it can be appreciated
the use of a finite state machine (FSM) to control the iterations associated to the numerical method,
the use of multiplexers to process the initial conditions and afterwards the remaining iterations, the use
of registers to save the data of the state variables and blocks to evaluate the discretized equations by
Forward Euler. The whole iterative process to generate the next value of the state variables requires
seven clock (CLK) cycles.

In both FPGA-based implementations for Hopfield and Hindmarsh-Rose neural networks,
the computer arithmetic is performed using fixed-point notation of 5.27 for the Hopfield and 3.29
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for the Hindmarsh—-Rose neural networks. The FPGA resources for the three sets of values of the
Hindmarsh—Rose neural network are listed in Table 7.

»

x{i+1}

R o vz PR T
mux X Fx R Ex

x{0) Reg [— ey
> /H — | clk\—gr‘ *{_q clk
clk clk
Sel RST RST R3T RST
i,_

y{i+1}

En_1
— = i = j+1
it yii+1}
MUXY| Reg Fy Reg By
¥{0} —]
. ok clk
g ok RST el RST
; RST R
o]

2{i+1}

En_1 En i
— ;i_‘ ) = i+ 1}
0 MUX Z Reg 22 Fz Reg Ez
iy oK o aIk
RST RST

A 4

Sel RST RST
CLK
— >
RST | Sel
En_1 T T T En_2
START
FShl

Figure 10. FPGA-based implementation of Hindmarsh-Rose neural network described in Equation (5).

Table 7. FPGA resources for the implementation of the Hindmarsh-Rose neuron from the sets of values

given in Table 4.
Resources FPGA Cyclone IV EP4CE115F29C7 and Forward Euler Avaible
Original [11] HRNSsetl HRNset2

Logic Elements 2161 2172 2171 114,480
Registers 1173 1173 1173 114,480

9 x 9 bits multipliers 104 104 104 532

Maximun Frequency (MHz) 91.73 94.23 92.46 50

Clock cycles by iteration 9 9 9 ——

Latency by iteration (ns) 180 180 180 ——

5. Randomness Test: NIST

In this Section, the results of the NIST tests [32,33] for both neural networks are shown. The four
cases of Hopfield neurons, and using the state variable x with 1000 chaotic time series (binary strings)
of 1 million bits each, generated the NIST tests given in Table 8. The results using the original values
taken from [5], the three sets of values given in Table 2, and the results using the weight matrix
from [14], can be compared. All cases passed NIST tests with proportions around 99%, and the set of
values HNNsset2 generated a higher p-Value average of 0.7065.

The computer arithmetic for the Hindmarsh—-Rose neural network is 3.29 but as the largest
variation occurs in the least significative bits (LSB), then only the 16 LSB of each 32-bit number were
used. The NIST tests were performed using 1000 chaotic time series of 1 million bits each. The results
are summarized in Table 9 including the averages of the p-Values and proportions.
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Table 8. National Institute of Standard and Technology (NIST) tests for the binary sequences generated
by the Hopfield neural network for the state variable x, and for the sets of values given in Table 2.

Test Original [5] HNNsetl HNNset2 HNNset3 [14]
es

p-Value Proportion p-Value Proportion p-Value Proportion p-Value Proportion p-Value Proportion
Frequency 0.6911 991/1000 0.1876 992/1000 0.7339 988/1000 0.4391 989/1000 0.3115 992/1000
(Monobit)

Frequency Test 0.1969 991/1000 0.4318 992/1000 0.5544 992/1000 0.3686 992/1000 0.7617 993/1000
within a Block

Runs 0.5606 991/1000 0.0533 987/1000 0.9830 988/1000 0.1031 993/1000 0.2596 991/1000

Longest-Run-of ~ 0.0046 994 /1000 0.4466 988/1000 0.7887 986/1000 0.3457 988/1000 0.7014 990/1000
Ones in a Block

Binary Matrix 0.4769 993/1000 0.5544 991/1000 0.7096 984/1000 0.2854 991/1000 0.6683 993/1000
Rank

Discrete Fourier ~ 0.7238 989/1000 0.5585 990/1000 0.2911 987/1000 0.4136 985/1000 0.0915 987/1000
Transform

Non-overlapping  0.7868 989/1000 0.9997  988/1000 0.9958 988/1000 0.9858 992/1000 0.9958 993/1000
Template
Matching

Overlapping 0.1274 983/1000 0.8183 989/1000 0.2356 987/1000 0.4336 989/1000 0.4428 997/1000
Template
Matching

Maurer’s 0.0183 987/1000 0.1478 989/1000 0.7519 984/1000 0.7558 986/1000 0.0323 992/1000
“Universal
Statistical”

Linear 0.9191 990/1000 0.9825 995/1000 0.5362 991/1000 0.5852 988/1000 0.8183 988/1000
Complexity
Serial 0.8378 993/1000 0.6434 990/1000 0.7676 989/1000 0.4318 989/1000 0.4172 997/1000

Approximate 0.8645 990/1000 0.0236 989/1000 0.3703 990/1000 0.7399 993/1000 0.4559 995/1000
Entropy

Cumulative 0.4788 993/1000 0.3686 991/1000 0.9432 992/1000 0.3703 991/1000 0.6309 991/1000
Sums

Random 0.7151 610/615 0.7514 607/615 0.9867 616/622 0.8566 613/617 0.8670 641/647
Excursions

Random 0.5491 611/615 0.9103 610/615 0.9501 617/622 0.8400 611/617 0.8019 640/647
Excursions
Variant

Average 0.5301 991/1000 0.5252 990/1000 0.7065 987/1000 0.5303 990/1000 0.5504 992/1000

Table 9. NIST tests for the binary sequences generated by the Hindmarsh-Rose neural network for the
state variable x, and for the sets of values given in Table 4.

Test Original [11] HRNsetl HRNset2

p-Value Proportion p-Value Proportion p-Value Proportion
Frequency (Monobit) 0.33297  995/1000  0.032923  996/1000 0.04037  989/1000
Frequency Test within a Block 0.01188  976/1000  0.39246  983/1000  0.00003  985/1000
Cumulative Sums 0.20119 991/1000 0.87708 992/1000 0.72178 ~ 991/1000
Runs 0.33141 985/1000 0.85964 988/1000 0.21557  989/1000
Longest-Run-of-Ones in a Block 0.56055  993/1000 0.78493 993/1000  0.04090  988/1000
Binary Matrix Rank 0 950/1000 0 964/1000 0 970/1000
Discrete Fourier Transform 0.20663  984/1000  0.50817  992/1000  0.09543  984/1000

Non-Overlapping Template Matching ~ 0.98579 ~ 994/1000  0.99323 ~ 992/1000  0.99715  991/1000
Overlapping Template Matching 0.32521  985/1000 0.27846 989/1000  0.02980  993/1000

Maurer’s “Universal Statistical” 0.01068 979/1000 0.82372 985/1000 0.74790 979/1000
Approximate Entropy 0.71160 996/1000 0.48077 985/1000 0.47691 989/1000
Random Excursions 0.82551 595/604 0.70188 636/648 0.69967 580/587
Random Excursions Variant 0.99464 599/604 0.95355 642/648 0.87820 580/587
Serial 0.58727 991/1000 0.44656 994 /1000 0.80187 984/1000

Linear Complexity 0.91532 990/1000 0.74591 988/1000 0.25312 989/1000

Average 0.46671 985/1000 0.59195 987/1000 0.39991 986/1000
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6. Image Encryption Application

The binary sequences tested in the previous section can be taken as pseudorandom number
generators (PRNGs), and can be used to design a chaotic secure communication system to encrypt
images, as shown in Figure 11. Those PRNGs can be implemented by either the Hopfield or
Hindmarsh—Rose neural networks because both provide high randomness. Both neurons can also
be implemented using memristors, as shown in [34], which constitutes another research direction of
hardware security. For instance, using the four binary sequences from the FPGA-based implementation
of the Hopfield neural network, we show the encryption of three images (Lena, Fruits and Baboon) in
Figure 12. The three RGB images have a resolution of 512 x 512 pixels.

Pseudo-
random bit
generator

Pseudo-
random bit
generator

| Recovered
Image

i

Chaotic Channel

Original
Image

Figure 11. General description of a chaotic secure communication scheme for image encryption based
on pseudorandom number generators (PRNGs) implemented by the Hopfield and Hindmarsh—Rose
neural networks.

Figure 12. Image encryption using the binary sequences from the FPGA implementation of the Hopfield
neuron given in Table 6, and the parameters corresponding to HNNset2. The original image is on the
left, the encrypted in the center and the recovered on the right column, for: (a) Lena, (b) Fruits, and (c)
Baboon images.
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The correlation analysis is performed using [35]: Equation (8)—(10), and it provides the values
given in Table 10. The first row x,y, z, means that the chaotic time series of state x is used to encrypt R
(red), y to G (green) and z to B (blue). The second row means that all R, G and B are encrypted using
the data from x, and so on.

o _E{G-E@)W-E@)} __ covlxy) ©
" (vow) (voly)  (vDW) (VD))
E(x) = gI; Xi )
13 )
E(x) = g1 (v —E())". (10)

Table 10. Correlations between the chaotic channel and the RGB Lena, Fruits and Baboon images using
the sequences generated by the Hopfield neuron for the state variables x, y, and z.

Sets of Values

Image Encryption
Original [5] HNNsetl HNNset2 HNNset3
XY,z 0.00108 0.00140 —0.00054  0.00094
Lena x —0.00221 —0.00257  0.00058  —0.00278
y —0.00139 0.00062 0.00195 0.00483
z 0.00041 0.00150 —0.00119  0.00245
XY,z —0.00036 —0.00073  —0.00055  0.00085
Fruits x 0.00215 —0.00293  —0.00050  —0.00026
y —0.00216 0.00003 0.00076 0.00359
z 0.00175 —0.00026  —0.00110  0.00288
XY,z 0.00008 —0.00015 —0.00062  0.00079
Baboon x —0.00052 —0.00255  —0.00087  —0.00269
y —0.00125 0.00030 0.00167 0.00157
z 0.00176 0.00049 —0.00079  0.00203

Figure 13 shows the histograms of Lena before and after encryption using HNNset2 from
Table 2. To describe the distribution characteristics of the histograms quantitatively, the variance
of the histograms for the three images (Lena, Fruits and Baboon) is calculated according to [36], and the
results are shown in Table 11.

The entropy is evaluated by Equation (11), where P(s;) represents the probability of the datum s;.
Using 8 bits (N = 8), Table 12 shows the entropies for the three images (Lena, Fruits and Baboon).

N1 1
H(s) = l;) P(si)log2mbits. (11)
To verify the encryption capability against differential attacks, the NPCR test is evaluated by
Equations (12) and (13) [37], where C (i, j) and C2(i, j) are two cipher images that are encrypted from
two plain images with only one-bit difference. In this case, using HNNset2 for the Lena, Fruits and
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Baboon images, the NPCR values are: 99.2672 when using state variable x, 99.2886 when using the
state variable y, and 99.3420 when using z. All NPCR results pass the criterium given in [38].

NPCR =) @ x 100% (12)

o)

0 Cli,j) = C2(ij)
1 Clij) # C2(i))
The binary sequences from the FPGA implementation of the Hindmarsh—Rose neural network

shown in Figure 7, were used as PRNG to encrypt the Lena, Fruits and Baboon images, which results
are shown in Figure 14.

D(,j) = (13)

Table 11. Variance of the histograms for the Lena, Fruits and Baboon images using the sequences

generated by HNNset2.
Variance
Encryption Color Lena Fruits Baboon
Original HNNset2 Original HNNset2 Original HNNset2
Image Image Image
R 1,017,334.70 824.77 2,559,535.12 1005.51 331,358.91 1014.40
XYz G 455,718.80 965.59 1,131,488.32 930.56 571,232.16 934.05
B 1,377,355.87 1071.79 338280.76 891.06 319,770.47 1178.41
R 1,017,334.70 824.77 2,559,535.12  1005.51 331,358.91 1014.40
* G 455,718.80 1033.72  1,131,488.32  1096.43 571,232.16 1017.02
B 1,377,355.87  798.66 338,280.76 1233.43 319,770.47 1064.48
R 1,017,334.70  1188.50  2,559,535.12 963.14 331,358.91 1064.51
y G 455,718.80 965.59 1,131,488.32 930.56 571,232.16 934.05
B 1,377,355.87  1107.14 338,280.76 1026.64 319,770.47 1058.48
R 1,017,334.70  1079.58  2,559,535.12  1136.72 331,358.91 1261.09
z G 455,718.80 1055.34  1,131,488.32  1033.53 571,232.16 1133.23
B 1,377,355.87  1071.79 338,280.76 891.06 319,770.47 1178.41

Table 12. Entropies of the original Lena, Fruits and Baboon images and the encrypted ones using the
sets of values HNNset2 from Table 2.

Entropy
Encryption Color Lena Fruits Baboon
Original HNNsset2 Original HNNsset2 Original HNNsset2
Image Image Image
R 7.2531 7.9994 7.0556 7.9994 7.7067 7.9993
XY G 7.5940 7.9993 7.3527 7.9994 7.4744 7.9994
B 6.9684 7.9993 7.7134 7.9993 7.7522 7.9992
R 7.2531 7.9994 7.0556 7.9993 7.7067 7.9993
x G 7.5940 7.9993 7.3527 7.9992 7.4744 7.9993
B 6.9684 7.9995 7.7134 7.9992 7.7522 7.9993
R 7.2531 7.9992 7.0556 7.9993 7.7067 7.9993
y G 7.5940 7.9993 7.3527 7.9994 7.4744 7.9994
B 6.9684 7.9992 7.7134 7.9993 7.7522 7.9993
R 7.2531 7.9993 7.0556 7.9992 7.7067 7.9991
z G 7.5940 7.9993 7.3527 7.9993 7.4744 7.9992
B 6.9684 7.9993 7.7134 7.9994 7.7522 7.9992
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Figure 13. Histograms of the Lena image encrypted using HNNset2 from Table 2. Original images on
the left and the R, G and B encryption on the right.

Figure 14. Image encryption of (a) Lena, (b) Fruits and (c) Baboon, using the binary sequences from
the FPGA implementation of Hindmarsh—Rose neuron with HRNset1 from Table 7. The original image
is on the left, the encrypted in the center and the recovered on the right column.
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The correlation analysis between the images and the sets of values from Table 7, provides the
values given in Table 13. The first row x,y, z, means that the chaotic time series of state x is used
to encrypt R (red), y to G (green) and z to B (blue). The second row means that all R, G and B are
encrypted using the data from x, and so on.

Table 13. Correlations between the chaotic channel and the RGB Lena, Fruits and Baboon images using the
sequences generated by the Hindmarsh—Rose neuron for the state variables x, y, and z.

Sets of Values

Original [11] HRNsetl HRNset2

Image Encryption

XY,z 0.00016 0.00002 0.00147

Lena x 0.00083 0.00075 0.00110
y 0.00093 0.00010 0.00205

z 0.00008 0.00314 0.00024

XY,z 0.00007 0.00066 0.00011

Fruits x 0.00291 0.00245 0.00001
y 0.00036 0.00207 0.00328

z 0.00162 0.00307 0.00089

XY,z 0.00078 0.00102 0.00160

Baboon x 0.00084 0.00069 0.00206
y 0.00120 0.00002 0.00119

z 0.00016 0.00414 0.00111

Figure 15 shows the histogram of the Lena image before and after encryption using HRNset1
from Table 4. The variance of the histograms for the three images (Lena, Fruits and Baboon) using
HRNsetl, is calculated according to [36], and the results are shown in Table 14.

Table 14. Variance of the histograms for the Lena, Fruits and Baboon images using the sequences

generated by HRNset1.
Variance
Encryption Color Lena Fruits Baboon
Original HRNsetl  Original HRNsetl  Original = HRNsetl
Image Image Image
R 1017334.60 969.95 2,559,535.12  954.50 331,358.90 996.01
Yz G 45571880 100258  1,131,488.32 1020.69  571,232.15  1051.16
B 1,377,355.80  995.09 338,280.76 904.91 319,77047  1165.13
R 1,017,334.60  969.95 2,559,535.12  954.50 331,358.90 996.01
X G 455,718.80 118990  1,131,488.32  997.30 571,232.15 1143.03
B 1,377,355.80 1126.64  338,280.76 914.46 319,77047  1071.51
R 1,017,334.60 1005.61  2,559,535.12  943.03 331,358.90  1109.45
y G 455,718.80  1002.58  1,131,488.32 1020.69  571,232.15 1051.16
B 1,377,355.80 1025.56  338,280.76 102520  319,770.47 940.07
R 1,017,334.60 1053.77  2,559,535.12 1044.60  331,358.90  1175.52
z G 455,718.80  1309.57  1,131,488.32 115454  571,232.15 1008.48
B 1,377,355.80  995.09 338,280.76 904.91 319,77047  1165.13
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Figure 15. Histograms of the Lena image encrypted using the set of values HRNset1. Original images

on the left and the R, G and B encryption on the right.

The entropy is evaluated by (11) using HRNset1, and using 8 bits (N = 8), Table 15 shows the
entropies for the three images (Lena, Fruits and Baboon).

Table 15. Entropies of the original Lena, Fruits and Baboon images and the encrypted ones using the
sets of values HRNset1 from Table 4.

Entropy
Encryption Color Lena Fruits Baboon
Original HRNsetl  Original HRNsetl Original  HRNsetl
Image Image Image
R 7.2531 7.9993 7.0556 7.9993 7.7067 7.9993
Yz G 7.5940 7.9993 7.3527 7.9993 7.4744 7.9993
B 6.9684 7.9993 7.7134 7.9994 7.7522 7.9992
R 7.2531 7.9993 7.0556 7.9993 7.7067 7.9993
x G 7.5940 7.9992 7.3527 7.9993 7.4744 7.9992
B 6.9684 7.9992 7.7134 7.9994 7.7522 7.9993
R 7.2531 7.9993 70556 7.9994 7.7067 7.9992
y G 7.594 7.9993 7.3527 7.9993 7.4744 7.9993
B 6.9684 7.9993 7.7134 7.9993 7.7522 7.9994
R 7.2531 7.9993 7.0556 7.9993 7.7067 7.9992
z G 7.5940 7.9991 7.3527 7.9992 7.4744 7.9993
B 6.9684 7.9993 7.7134 7.9994 7.7522 7.9992
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The key space is equal to 160 bits because each datum is encoded by 32 bits, the initial condition
for each state variable counts, the step-size of the numerical method can change and is also encoded
using 32 bits. The NPCR tests results using HRNsetl for the color images, were: 99.60365 when
using the state variable x, 99.49608 when using the state variable y, and 98.49586 when using the state
variable z.

In both FPGA-based implementations for the Hopfield and Hindmarsh—Rose neural networks,
the image is transmitted from a personal computer running MatLab to the FPGA using the serial port
RS-232, as described in [31].

7. Conclusions

The use of two well-known neural networks, the Hopfield and Hindmarsh-Rose ones, for image
encryption applications has been described. With the help of bifurcation diagrams, new feasible sets
of values were proposed in order to generate binary strings with more randomness than the ones
previously published in the literature. We proposed three sets of values for the Hopfield neuron and
two sets of values for the Hindmarsh—Rose neuron. The chaotic time series were analyzed by TISEAN
to compute Lyapunov exponents and Kaplan—Yorke dimension. The proposed sets of values were
much better than the already published ones.

By applying numerical methods, we showed the descriptions of the hardware design of both
neurons and the FPGA resources were listed for the Hopfield and Hindmarsh-Rose neurons,
respectively. The binary strings that were generated by the FPGA-based implementations of both
neurons were taken as PRNGs to perform the encryption of the RGB Lena, Fruits and Baboon images.
The success of the encryption system has been confirmed by the results obtained from correlation,
histogram, variance, entropy, and NPCR tests. This demonstrates that both neurons are very useful for
chaotic image encryption.
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