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A B S T R A C T

The cerebello-thalamo-cortical circuit (CTCC) has been implicated in schizophrenia. However, this work has
been limited to structural and functional networks, or behavior, and to date, has not been evaluated in clinical
high-risk (CHR) youth, a group at elevated risk for psychosis. Here, we used an innovative learning paradigm
known to activate the CTCC (while limiting potential motor confounds) to evaluate CHR and healthy control
individuals during functional magnetic resonance imaging (fMRI). 20 CHR and 21 healthy control individuals
performed a second-order rule learning task while undergoing fMRI. This was preceded and followed by the
paradigm under dual-task conditions. In addition, all participants underwent structured clinical interviews to
confirm a prodromal syndrome and assess symptom severity. The rate of learning did not differ between groups.
However, the CHR group consistently performed more poorly under dual-task conditions, and exhibited a higher
dual-task cost after learning. Further, learning rate in the CHR group was significantly associated with symptom
severity. Both groups showed activation in regions of the CTCC. During early learning, the CHR group exhibited
greater engagement of regions of the default mode network, suggesting that they were less able to engage the
appropriate task positive networks. During late learning, there were qualitative differences wherein controls
showed more prefrontal cortical activation. Higher order cognitive rule learning is related to symptom severity
in CHR individuals. fMRI revealed that CHR individuals may not reliably disengage the default mode network,
and during late learning high-risk youth may not engage the prefrontal cortex as extensively as controls.

1. Introduction

Understanding the pathophysiology of schizophrenia is critical for
the development of effective interventions, and for prevention prior to
disease onset. One of the leading frameworks for conceptualizing the
wide range of symptoms and the cognitive impairments associated with
schizophrenia is that of cognitive dysmetria (Andreasen et al., 1996,
1998). This theory holds that schizophrenia is associated with un-
coordinated thoughts that result in the disparate symptoms and cog-
nitive difficulties seen in these patients. Seminal work outlining this
theory implicated cerebellar and prefrontal brain regions (Andreasen
et al., 1996), suggesting that the cerebello-thalamo-cortical circuit
(CTCC) may play a key role in cognitive dysmetria. The cerebellum has

been suggested to play a critical role in the coordination of fluid motor
behaviors (Imamizu et al., 2000; Ito, 2008; Ramnani, 2006), though
cerebellar circuitry (Bernard et al., 2012; Dum and Strick, 2003; Kelly
and Strick, 2003; Salmi et al., 2010) allows for a parallel role in the
coordination of thought (Ito, 2008; Ramnani, 2006). Dysfunction in the
CTCC network may therefore contribute to cognitive dysfunction, as
well as symptom severity, particularly disorganized symptoms, as seen
in patients with schizophrenia (Andreasen et al., 1996).

In more recent years, work investigating the CTCC and cerebellum
in patients with schizophrenia has revealed that cerebellar dysfunction
is present in this population (Andreasen et al., 1996, 1998; Andreasen
and Pierson, 2008; Bernard et al., 2017a, 2017b; Bernard and Mittal,
2015; Kim et al., 2014; Shergill et al., 2005). Moreover, our recent work
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demonstrates CTCC dysfunction prior to the onset of psychosis during
the clinical high risk (CHR) period (Bernard et al., 2014; Bernard et al.,
2017a, 2017b; Dean et al., 2013, 2015; Mittal et al., 2014). Notably,
this work demonstrates CTCC dysfunction in a population that is not
impacted by many of the confounds seen in patients with schizo-
phrenia. Further, we recently found that the integrity of CTCC func-
tional circuits was predictive of symptom progression over time
(Bernard et al., 2017a, 2017b). Together, this suggests that CTCC dys-
function may be related to the pathophysiology of psychosis, and that
dysfunction in this circuit may contribute to disease progression.

With that said, the existing perspective of CTCC dysfunction in CHR
populations is limited in several key ways. First, the majority of our
work to date has focused on structure and resting state networks
(Bernard et al., 2014; Bernard et al., 2017a, 2017b; Dean et al., 2013;
Mittal et al., 2013). Evidence for differences in functional activation of
the cerebellum and prefrontal cortex, paralleling what was found by
Andreasen and colleagues in patients with schizophrenia (Andreasen
et al., 1996) is lacking. Support for altered functional engagement prior
to the onset of formal psychosis would provide key evidence suggesting
that CTCC dysfunction is part of the pathophysiology of psychosis.
Second, we have been largely focused on motor behaviors (Bernard
et al., 2014; Dean et al., 2013, 2015; Mittal et al., 2014), while the
cognitive dysmetria theory has been framed in terms of non-motor
behavior.

In our recent work, we suggested that dysfunctional internal models
and deficits in internal model formation may result in dysmetria of
thought in schizophrenia (Bernard and Mittal, 2015). While motor
learning has been the primary domain of investigation for the study of
internal model formation (Imamizu et al., 2000), Balsters et al. (2013)
recently developed a rule-learning task that dissociated motor re-
sponses from the cognitive (second-order) rule that was learned. With
their experimental design and scanning parameters they were able to
separately investigate the activation associated with the second-order
rule from the processing and activation associated with executing a
motor response. They demonstrated activation in the lateral posterior
regions of the cerebellum (Crus I and Crus II) during the learning of
non-motor rules (Balsters et al., 2013). This task allows us to investigate
learning and internal model formation in the non-motor domain. In
doing so, we can test the idea that cognitive dysmetria and dysfunc-
tional internal model formation are present in CHR populations prior to
the onset of formal psychosis. If such deficits are present, this would
then suggest that cerebellar dysfunction, specifically the formation of
internal models, is present prior to the onset of formal psychosis in at-
risk individuals, and may be related to the pathophysiology of psy-
chosis. In what is, to our knowledge, the first fMRI study of cerebellar
function in CHR youth, we used the task developed by Balsters et al.
(2013) to investigate non-motor learning. First, we expected lateral
posterior cerebellar activation during the learning of new cognitive
rules, consistent with Balsters et al. (2013). Second, we expected to see
group activation differences, wherein activation would be decreased in
the CHR group. Behaviorally, we expected to see performance deficits
in the CHR group, particularly under dual-task conditions after
learning, consistent with the extant literature demonstrating cognitive
deficits in CHR populations (Bora and Murray, 2013) and in psychosis.
Finally, we hypothesized that if internal model formation and cognitive
dysmetria were related to disease, we would see correlations with
symptom severity, particularly in disorganized and positive symptoms
(Andreasen et al., 1996, 1998).

2. Methods

2.1. Participants

Here, we investigated 20 adolescent and young adult CHR in-
dividuals (mean age= 20.8 ± 1.54 years, 7 female), and 21 healthy
controls (mean age=21.5 ± 1.83 years, 11 female). See Table 1 for

demographic information. All participants had previously enrolled in a
longitudinal study investigating psychosis risk as part of the Adolescent
Development and Preventative Treatment (ADAPT) research program
at the University of Colorado Boulder. Participants were recruited for
participation in this investigation at the end of their annual study visit,
or were directly contacted over the phone. Prior to beginning the study
all participants signed an IRB-approved consent form. Exclusion criteria
for both groups included a history of head injury, the presence of a
neurological disorder, life-time substance dependence as assessed by
the Structured Clinical Interview for Axis-I DSM IV Disorders (First
et al., 1995), and the presence of any contraindications for the magnetic
resonance imaging environment. In the CHR group, we also excluded
individuals with an Axis I psychotic disorder. In the control sample, we
excluded individuals with any diagnosis of an Axis I disorder. Further,
the presence of a psychotic disorder in first-degree relatives was an
additional exclusion criterion for the control group.

2.2. Symptom assessment

The Structured Interview for Prodromal Syndromes (SIPS) measures
distinct categories of prodromal symptom domains (positive, negative,
disorganized, general) and is scored from 0 to 6 for each symptom.
Inclusion in the CHR group was determined by moderate levels of po-
sitive symptoms (a SIPS score of 3–5 in one or more of the 5 positive
symptom categories), and/or a decline in global functioning in asso-
ciation with the presence of schizotypal personality disorder, and/or a
family history of schizophrenia (Miller et al., 1999). All interviewers
had inter-rater reliabilities that exceeded Kappa ≥80. Because we were
recruiting participants from an ongoing study, if the individual had
been administered the SIPS (and SCID-IV) within one month prior to the
scan, those assessments were used to minimize participant burden. For
those with assessments over one month from the time of scan, in-
dividuals underwent an additional clinical interview. The frequency of
alcohol and marijuana consumption was measured based on self-report
on a scale from 0 to 5 where 0 indicates “never uses” and 5 indicates
“daily use” (Drake et al., 1996).

2.3. Second-order rule learning task

In order to assess non-motor rule learning while targeting the CTCC,
we used a second-order rule learning task developed by Balsters et al.
(2013). This task was designed to dissociate the motoric response to a
visual stimulus from the rule-learning itself. To do so, we used an event-
related imaging design (described in more detail below) wherein we
were able to dissociate the activation associated with the rule itself,
from that associated with the preparation and execution of the motor
response. Because we were particularly interested in cerebellar activa-
tion during learning in a non-motor paradigm in CHR individuals, we
adapted the second-order rule learning condition to investigate group
differences in cerebellar activation during learning. In order to focus on

Table 1
Participant demographics and symptom severity. Mean (± standard deviation).
Significant group differences are also indicated.

CHR Control

N 20 (7 female) 21 (11 female)
Age (years) 20.8 (1.54) 21.5 (1.83)
Parent education (years) 16.55 (1.82) 15.90 (2.96)
Participant education (years) 13.55 (1.32) 14.28 (1.48)
Alcohol use 1.7 (0.47) 1.81 (0.40)
Marijuana use 1.5 (0.51) 1.38 (0.49)
Symptom severity Positive⁎⁎⁎ 12.1 (4.39) 0.38 (0.86)

Negative⁎⁎⁎ 13.5 (8.35) 0.52 (0.75)
Disorganized⁎⁎⁎ 6.65 (3.57) 0.24 (0.54)
General⁎⁎⁎ 8.15 (3.85) 0.38 (0.74)

⁎⁎⁎ p < 0.001.
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learning of the associations over time, we adapted the task such that
participants completed 6 blocks of learning, whereas Balsters et al.
(2013), also included several additional conditions, including a first-
order rule. Just learning blocks allow for the collection of enough data
to look at early versus late learning, and to asses group differences in
both behavior and brain activation during these phases. Further, we
modified this task slightly in terms of timing to work with multi-band
imaging, but were careful to keep task timing as close to the original
paradigm as possible (timing details described below).

Participants were instructed to match an abstract shape with a
color. There were four colors and four shapes. Initial responses were
made by guessing. Participants received feedback about their perfor-
mance after making their responses. During the task, participants were
presented with an abstract shape in green, on a grey background for
460ms (“instruction cue”), with four blanks below it, indicative of the
buttons to be used for responding. This was both preceded and followed
by a variable delay. After the delay, participants were presented with
the word “Go!” written in red on a grey background for 230ms, and
were instructed to make a button-press response following the cue.
Next, participants saw four hourglass shapes, each one a different color
(black, blue, pink, or yellow) from left to right for 920ms (“response
cue”). From left to right, the hourglass shapes corresponded with the
four button box keys. Finally, after the presentation of the response cue,
participants were presented with feedback. They saw either a green
circle (correct response), red circle (incorrect response), or the word
“Missed” presented for 230ms. If participants did not make a button
press during the 920ms “response cue” presentation, they received the
“Missed” screen. Timing of the “Go!” screen, response cue, and feed-
back was variable over a period of 3680ms. All participants completed
6 blocks of the task, each with 25 trials. The variable periods during
both the initial “instruction cue” period and later during the “response”
period were implemented so as to allow for jittering between events
such that fMRI data could be analyzed in an event-related manner.
Jittering during both phases of the task was done over a period of
3680ms (equivalent to 8 TRs). In particular, because we are interested
in the second-order non-motor rule, this allowed us to focus on an in-
vestigation of activation during the “instruction cue” when processing
is of the rule information and the association, as opposed to during the
“response cue”, where processing is related to motor preparation and
execution. While we cannot have a task without an overt motor re-
sponse, we were however able to parse the activation associated with
different components of the task, with the imaging design, consistent
with prior work using this task (Balsters et al., 2013).

To assess the degree to which participants learned the task, parti-
cipants also completed the task under dual-task conditions both before
and after the learning blocks This condition served as a manipulation
check to evaluate learning, and as such was not a condition of interest
with respect to brain activity. During the dual-task condition, all as-
pects of the task remained the same; however, participants were asked
to count backwards by 7, starting from 500. They were asked to count
approximately once per second. We did not record counting accuracy,
though we did encourage participants to continue counting throughout
the task in any instances where the participant paused for> 3 s. As we
were interested in cerebellar activity during learning, all data collection
was conducted in the MRI environment. However, we did not run the
scanner during the pre- and post-learning dual-task blocks. This allowed
the participant to speak without any additional motion confounds, and
enabled us to hear their verbal counting without the background noise
of the scanner. We quantified accuracy and reaction time. Accuracy was
reported as the percent of correct responses, and was computed on a
block by block basis. We also looked at both of these variables during
the pre- and post-learning dual-task blocks. Finally, we quantified the
dual-task cost, in terms of accuracy during the post-learning dual-task
block, as compared to the accuracy during the final learning block.

2.4. Behavioral statistical analysis

Demographic and behavioral variables were analyzed using IBM
SPSS 22 (IBM Corporation Armonk, NY, 2012). Group demographic
differences were investigated using independent-samples t-tests. We
investigated accuracy during the pre- and post-test periods to ensure
that all participants did in fact learn the shape-color associations. We
calculated the difference between post-test accuracy and pre-test ac-
curacy, and excluded any individual who was below 3 standard devia-
tions from the group mean. Using this method, three HC individuals
were excluded from our analyses. 2 of the 3 were below chance in their
post-test responses; the third individual showed poor post-test accuracy,
little change from pre- to post-test, and had below chance accuracy on
blocks 3–6 of the learning task suggesting a lack of compliance with
task instructions.

First, as a manipulation check to test whether learning did indeed
occur, we compared accuracy under dual-task conditions before and
after the learning paradigm using a 2×2 (group x timepoint) mixed
model ANOVA. To investigate learning during the 6 learning blocks
themselves, we took two approaches. First, we used a 2×6 (group x
block) mixed model ANOVA to investigate performance across the task
blocks. We were also interested in investigating the rate of learning,
paralleling approaches taken in motor learning paradigms (Anguera
et al., 2010, 2011). Here, we were especially interested in the initial
early learning phase, as cerebellar engagement has been shown to
change during the early phases of learning (Imamizu et al., 2000). To
determine the early learning phase, we followed the procedures out-
lined by Anguera and colleagues (Anguera et al., 2010, 2011). We
collapsed across groups and calculated the slope for consecutive blocks
of increasing length (e.g., first two blocks, first three blocks), and tested
which combination resulted in a significant drop in slope. We limited
our analyses to the first four blocks, as upon visual inspection, parti-
cipants in both groups began to reach asymptotic performance after
block 4. We then compared the early learning rate between the two
groups.

While the dual-task condition is critical for testing the learning
manipulation, it also allows us to investigate the dual-task cost, which
can provide further insight into the degree to which individuals learned
and automatized a task. Thus, we investigated group differences in the
dual-task cost between the CHR and control groups after learning. Dual-
task cost was operationalized as the difference in accuracy between the
last block of the learning task and the dual-task condition that im-
mediately followed (block 6 accuracy – dual-task accuracy). Positive
values indicate better performance under the single task conditions, and
the higher the value, the greater cost of performing under dual-task
conditions. Finally, as we were interested in whether or not non-motor
learning is related to symptom severity in CHR individuals, we also
investigated correlations between early learning slope, and severity of
positive, negative, and disorganized symptoms in the CHR group.

2.5. fMRI data acquisition

All functional imaging data was collected using a 3T Siemens Magnetom
Tim Trio (software version VB17A; Munich, Germany), using multi-band
functional pulse sequences with a 32-channel head coil. Sequences for multi-
band functional imaging were acquired from the Center for Magnetic
Resonance Research (http://www.cmrr.umn.edu/multiband/index.shtml)
andmodified as needed for the UCB scanner. The multi-band pulse sequences
allow for faster data acquisition, wherein we were able to decrease the TR
while still maintaining the full-brain coverage required to investigate the
cerebellum. Furthermore, these sequences eliminate the need for slice timing
correction, and increases buffering against motion artifacts as multiple slices
are collected in the same time it takes traditional imaging sequences to collect
one (Glasser et al., 2013). The latter motion factor is particularly useful when
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working with adolescent and clinical populations where participants may be
more likely to move in the scanner. Structural images were acquired using a
sagittal T1-weighted interleaved sequence (repetition time (TR)=2400ms,
echo-time (TE)=2.01ms, echo spacing=7.4ms, flip angle=8°, field-of-
view=256mm×256mm×180mm, voxel resolution=0.8mm iso-
tropic). Six runs of multiband EPIs, corresponding to our 6 task blocks
(described above), were acquired in the posterior to anterior direction
with the following parameters (multiband acceleration factor=8, band-
width=2772Hz/Px, TR=460ms, TE=29.0, echo-spacing=0.51ms,
flip-angle=44°, field-of-view=248×248×168mm, voxel resolu-
tion=3.0mm isotropic, number of slices=56, time=4:00min). We also
collected two brief (20 volumes each) scans prior to the functional imaging
runs, using the same EPI parameters but collected in both the anterior-to-
posterior and posterior-to-anterior directions. These scans acquired in order
to estimate and correct for distortion (Andersson et al., 2003). The 6 runs of
functional data were collected while individuals were performing the second-
order learning task.

2.6. fMRI data pre-processing and analysis

As noted above, 3 HC individuals were excluded from our sub-
sequent analyses due to poor performance and a demonstrable lack of
learning during the learning paradigm. As such, our final sample for
analysis included 18 HC individuals, and 20 CHR. The first 6 volumes of

each functional run were removed to allow for scanner equilibrium, and
functional data was corrected for distortions using FSL's topup
(Andersson et al., 2003). Additional FMRI data preprocessing was
carried out using FEAT (FMRI Expert Analysis Tool) Version 6.00, part
of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The fol-
lowing pre-statistics processing was applied: motion correction using
MCFLIRT (Jenkinson et al., 2002); non-brain removal using BET
(Smith, 2002); spatial smoothing using a Gaussian kernel of FWHM
6mm; and grand-mean intensity normalization of the entire 4D dataset
by a single multiplicative factor. Motion artifacts were then removed
using automated ICA-based methods (Pruim et al., 2015). Registration
to high resolution structural and/or standard space images was carried
out using FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001)
with the Boundary Based Registration (BBR) cost function (Greve and
Fischl, 2009). Registration from high resolution structural to standard
space was then further refined using FNIRT nonlinear registration
(Andersson et al., 2007a, 2007b). Registration as completed with FSL
does a particularly good job of normalizing the cerebellum
(Diedrichsen, 2006), and because we were particularly interested in
both cerebellar, as well as whole-brain activation patterns, we used a
whole-brain analysis approach.

First-level time-series statistical analysis was carried out using FILM
(FMRIB's Improved Linear Model) with local autocorrelation correction
(Woolrich et al., 2001). Data were highpass temporal filtered (Gaussian-

Fig. 1. A. Dual-task performance before and after learning suggests both groups learned the associations evidenced by a significant main effect of time-point.
However, there was also a significant main effect of group wherein the UHR group consistent performed worse than the HC group. B. A significant main effect of
block demonstrates improved accuracy over the course of learning across both groups. C. Rate of early learning in the UHR and HC groups. D. Dual-task costs after
learning in the two groups. The UHR group shows a higher dual-task cost, indicated by a greater difference in accuracy from the end of learning to the post-learning
dual-task block. E. Early learning is significantly correlated with disorganized symptoms, and F. with generalized symptoms in the UHR group.
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weighted least-squares straight line fitting, with sigma=45.0 s). The BOLD
response was modeled for correct task response and incorrect task re-
sponses, using a double gamma hemodynamic response function (HRF)
convolution as well as the temporal derivative to account for fluctuations in
the timing of the HRF waveform. Here, given our focus on activation related
to the second-order rule, our events were defined by the “instruction cue” as
this was temporally distinct and dissociable from the response period, and
no motor responses were being made at this time. We time-locked to the
onset of the instruction cue presentation to the participant.

Summary statistics were carried out in two-stages. A fixed effect
model was defined to define contrasts for early and late learning. Early
learning was defined as the mean response in the first two blocks and
late learning was defined as the mean response in the last two blocks.
Contrasts were defined for the mean of early and late learning, as well
as the difference between early and late learning. We limited our
analyses to the data from correct trials only, for all of our contrasts.
Group means and group differences for early and late learning were
calculated using a mixed model using FLAME (FMRIB's Local Analysis
of Mixed Effects). Final group-level Z (Gaussianised T/F) statistic
images were thresholded non-parametrically using clusters determined
by Z > 3.1 and a cluster significance threshold of pFWE < 0.05
(Worsley, 2001) using permutation methods with 5000 permutations
(Winkler et al., 2014). 3-D statistics maps were projected to the mid-
thickness surface (generated by averaging the white and pial surface
coordinates) of the Human Connectome Project 900 subject group
average and visualized using the Connectome Workbench v.1.2.3 (Van
Essen et al., 2017), while subcortical and cerebellar activation was
depicted using FSLeyes (v. 0.21.1), as the Workbench does not re-
present subcortical structures or the cerebellum. Tables were generated
with FSL's autoaq tool, which queries whether regions of clusters belong
or not to one of various atlases available. Atlases used included the
“Cerebellar Atlas in MNI152 space after normalization with FNIRT”,
“Harvard-Oxford Cortical Structural Atlas”, and “Harvard-Oxford Sub-
cortical Structural Atlas.” The cluster size, max z-statistic, and co-
ordinate of the center of mass for each cluster is reported. Cluster names
come from autoaq reports, and for large clusters, we report the top
regions from autoaq along with the mean probabilities (range from 0 to
100). The mean probabilities for each cluster will not add up to 100
where the cluster lies on the outside, or on the edge of, the ROIs

featured in the atlas. Large probabilities were associated with Left or
Right Cerebral Cortex and Left or Right White Matter, but these were
omitted from the tables as they were non-informative.

3. Results

3.1. Behavioral performance

The two groups did not differ on any key demographic factors, in-
cluding self-reported alcohol and marijuana usage (for all factors,
t(39) < 1.39, p > 0.171); however, the groups did show a trend-level
difference in education (t(39) =−1.67, p=0.101). Mean years of
education was slightly higher in the control group, likely due to the fact
that the control group was slightly older than the CHR group (see
Table 1). As expected, there were significant differences in symptom
severity between the two groups (across all symptom domains
t(39) > 7.12, p < 0.001).

With respect to performance on the learning task, dual-task accuracy
before and after the 6 blocks of learning indicates that participants across
groups did indeed learn. Although there was no significant group by time-
point interaction (F(1,36)=0.841, p=0.36), there was a significant main
effect of time-point, such that dual-task performance after learning was
higher than that before learning (F(1,36)=313.31, p < 0.001; Fig. 1a).
There was also a significant main effect of group (F(1,36)=4.46, p=0.04),
wherein the CHR group consistently performed worse under dual-task
conditions. During the task itself, our group by block ANOVA revealed a
significant main effect of block (F(5,36)=42.973, p < 0.001; Fig. 1b) such
that accuracy improved across the learning task. The group x block inter-
action (F(5,36)=0.735, p=0.59), and the main effect of group were not
significant (F(1,36)=0.009, p=0.92).

We determined the early learning period using a repeated measures
ANOVA. We compared the slope based on accuracy calculated with the first
two, three, and four learning blocks respectively. This revealed a significant
main effect of slope calculation (F(2,74)=28.07, p < 0.001). The steepest
slope was calculated over the first two blocks of learning. This was con-
firmed with follow-up paired t-tests, which indicated a significantly lower
slope when calculated using the first three (t(37)=3.98, p < 0.001) or the
first four blocks (t(37)=5.82, p < 0.001). We found no group differences
in the rate of learning (t(37)=0.36, p=0.45; Fig. 1c). With respect to dual-

Fig. 2. Early learning activation in the UHR group demonstrating significant activation in anterior and posterior cingulate regions associated with the default mode
network. Sagittal slices are arranged from x=10 (top left) to x=−10 in increments of 2. The red outline delineates x=0.
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task cost after learning, we found a significant group difference
(t(37)=2.50, p=0.017; Fig. 1d), such that the dual-task cost was greater in
the CHR group. Thus, despite showing a similar rate of learning to controls,
and no overall accuracy difference during the learning blocks, the CHR
group was more impaired under dual-task conditions.

Finally, we were interested in whether or not higher-order rule
learning was related to symptom severity in the CHR group. We focused
on the early learning period, as this is the purported time when error-
related information is being used by the cerebellum to form and refine
new internal models (Imamizu et al., 2000), given that cerebellar
function is of particular interest in our investigation here. There were
no significant associations between early learning rate and positive
symptom severity (r(20) =−0.058, p=0.81), though there was a weak
trend with negative symptoms (r(20) =−0.332, p=0.15). The re-
lationship with disorganized symptom severity (r(20) =−0.572,
p=0.008; Fig. 1e) was however significant. Those with the slowest rate
of learning had the most severe symptoms.

3.2. Brain activation patterns

Examining brain activation during the early phase of learning re-
vealed a significant result in the CHR group alone. CHR participants
showed activation of the rostral anterior cingulate cortex and the pos-
terior cingulate, key regions in the default mode network (DMN),
suggesting that individuals in the CHR group are unable to effectively
disengage the DMN and bring on the appropriate task networks during
early learning (Fig. 2; Table 2). Alternatively, CHR subjects may not
have been engaged in the task during early learning, though this is
unlikely given our behavioral findings. Late learning, however, was
associated with widespread brain activation in both CHR and control
participants in right prefrontal cortex (frontal pole and dorsolateral
prefrontal cortex), bilateral insula, bilateral posterior parahippocampal
gyrus, anterior and posterior cingulate cortex, and bilateral Lobule VI
(Fig. 3; Table 2). Comparing CHR and control participants revealed
greater activation in CHR within bilateral sensorimotor cortex and bi-
lateral superior temporal gyrus (Fig. 4). When comparing early vs. late
learning, there were no regions that showed greater activation for early
compared to late learning. However, both groups showed significantly
greater activation for late vs. early learning, albeit in different regions
(Fig. 5; Table 3). CHR participants showed more activation for late vs.
early learning in motor cortical, subcortical, and cerebellar regions,
while greater activation in controls was present primarily in the pre-
frontal cortex. Despite these qualitative group differences, there were
no statistically significant group differences for the contrast and late
and early learning. Further details of the results are presented in Tables
2 and 3.

4. Discussion

Here, we adapted a novel learning paradigm that dissociates the
learning of a second-order cognitive rule from the associated motoric
responses necessary to capture the learning (Balsters et al., 2013). Using
this experimental approach in a population of CHR individuals and
healthy controls, we investigated higher-order rule learning and the
formation of internal models in the non-motor domain using fMRI.
Notably, this is one of very few fMRI studies to be conducted in this
important high-risk population, and the first of its kind specifically
focused on a learning task that is highly reliant upon the recruitment of
cerebellar resources. Behavioral results demonstrated that although
CHR individuals learn at a similar rate as healthy controls, they are
more negatively impacted by a cognitive challenge under dual-task
conditions after learning. This suggests that with additional cognitive
interference, perhaps these CHR youth are not as able to rely upon the
resulting internal model after learning, or that said model is less effi-
cient. Finally, the rate at which the rules were learned was significantly
associated with symptom severity, providing support for the cognitive

Table 2
Areas of activation for the CHR group during early learning, and the CHR and
healthy control (HC) group during late learning. Early and late learning were
defined as the first two and last two blocks of the learning task, respectively.

Early Learning, CHR Group

Region Voxels Max Z-Stat X Y Z
80% Cingulate Gyrus,
posterior division

277 2.75 -8 38 12

94% Cingulate Gyrus,
anterior division

264 3.09 −6 −44 38

Late Learning, CHR Group

Region Voxels Max Z-Stat X Y Z
Large Cluster, Top Regions
Reported Below

46,722 3.54 24 −40 −48

Top 20 Regions Mean
probability

Bilateral Frontal Pole 5.3
Bilateral Cingulate Gyrus,
anterior division

3.3

Bilateral Cingulate Gyrus,
posterior division

2.9

Bilateral Insular Cortex 2.8
Bilateral Central Opercular
Cortex

2.4

Bilateral Precentral Gyrus 2.2
Right Thalamus 2.0
Bilateral Paracingulate Gyrus 1.8
Left Thalamus 1.8
Left Putamen 1.7
Right Putamen 1.7
Bilateral Postcentral Gyrus 1.5
Right Middle Frontal Gyrus 1.3
Bilateral Temporal Fusiform
Cortex, posterior division

1.3

BilateralLingual Gyrus 1.2
Bilateral Temporal Occipital
Fusiform Cortex

1.1

Bilateral Frontal Orbital
Cortex

1.0

Bilateral Parietal Operculum
Cortex

0.9

Left VI 0.8
Right Temporal Pole 0.8

Late Learning, HC Group

Region Voxels Max Z-Stat X Y Z
Large Cluster, Top Regions
Reported Below

23,978 3.54 −36 −48 −32

Top 10 Regions Mean
Probability

RightFrontal Pole 6.4
Bilateral Cingulate Gyrus,
anterior division

5.0

Bilateral Cingulate Gyrus,
posterior division

4.2

Left Thalamus 3.9
Bilateral Paracingulate Gyrus 3.4
Left Putamen 3.3
Right Putamen 3.2
Right Thalamus 3.2
Right Middle Frontal Gyrus 2.3
Right Superior Frontal Gyrus 1.7
Right Insular Cortex 1.6
Right Lingual Gyrus 1.5
Left Caudate 1.4
Temporal Occipital Fusiform
Cortex

1.3

Right Hippocampus 1.0
Left Pallidum 0.9
Left VI 0.7
Right Frontal Orbital Cortex 0.7
Right Caudate 0.5
Right VI 0.5
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dysmetria prior to disease onset. Perhaps mirroring the similar learning
rates observed for CHR and controls, there were only limited group
differences in brain activation, restricted to early learning. Here, we
will discuss the implications of both the behavioral and brain imaging
findings in turn.

With respect to behavior, our results are illuminating in several
ways. First, it was somewhat surprising that the CHR group learned at a
similar rate as the healthy controls. In our prior work looking at pro-
cedural motor learning, we found that CHR individuals learned more
slowly as compared to healthy controls (Dean et al., 2013). There is
evidence to suggest that cognitive deficits are present in CHR popula-
tions as well (Bora and Murray, 2013; Fusar-Poli et al., 2012) and as
such we had expected to see learning deficits in the cognitive domain.
However, it may be the case that in this sample, though there may be
cognitive deficits (which were not directly assessed, a limitation of this
investigation), they may not be severe enough to impact learning of
second-order rules. Indeed, the impaired dual-task performance, does
suggest that with additional cognitive load the CHR group is more
negatively impacted. Further, the increased dual-task cost after learning
in the CHR group suggests that they did not learn the rules as effectively
as the control group. More active processing is still required under the
dual-task conditions, suggesting that though the CHR group formed an

internal model related to the rules, it was perhaps not as effective, and
cannot be relied upon as automatically as in controls, as we recently
proposed (Bernard and Mittal, 2015). This is suggestive of CTCC dif-
ferences, consistent with what was proposed by Andreasen and col-
leagues in the cognitive dysmetria framework (Andreasen et al., 1996,
1998).

Also of note were the associations between rate of early learning
and symptom severity. During the early learning phase, individuals are
forming new internal models, and relying largely upon error informa-
tion. Though the two groups did not differ in the rate of learning, it
seems to be the case that the CHR group does not form internal models
that are as effective, or efficient. Further, in the CHR group, we found
significant associations between rate of learning, and disorganized
symptoms. In our work looking at postural control, a cerebellar-de-
pendent task, we demonstrated unique associations with negative
symptom severity (Bernard et al., 2014), and importantly, postural
control predicted negative symptom severity over time (Dean et al.,
2015). Thus, only a trend-level relationship with negative symptoms
was somewhat surprising, though this may be due to the cognitive
nature of the task. There are distinct motor and prefrontal (cognitive)
cerebello-thalamo-cortical circuits (Bernard et al., 2012, 2016; Kelly
and Strick, 2003; Salmi et al., 2010) and negative symptoms may be

Fig. 3. Late learning in UHR and control groups. A. Cortical surface projection maps depict lateral surface (top row) and medial surface (second row). B. Sagittal,
coronal and axial views centered on −24,−40,−26. Widespread activation was associated with late learning in both the UHR (left) and control (right) groups. This
pattern of activation included prefrontal cortical areas, parahippocampal gyrus, insula, as well as bilateral Lobule VI in the cerebellum.

Fig. 4. Group differences in activation during late learning in the UHR group relative to controls. Cortical surface projection maps depict the lateral surface Greater
activation was seen in both the bilateral sensorimotor cortex, and superior temporal gyrus.
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more predominantly associated with the motor networks. Here, the task
taps into the cognitive regions of the cerebellum (primarily Crus I and
II) (Balsters et al., 2013), and found associations with disorganized
symptoms. This is particularly interesting, given the assertions of the
cognitive dysmetria framework. It is suggested that thought is un-
coordinated (Andreasen et al., 1996, 1998), and disorganization is just
that. Cognitive learning seems to better tap into these symptoms and is
consistent with what we would expect within the framework of cog-
nitive dysmetria.

Our analysis of learning-related brain activation focused on early
and late learning, defined as the first and last two blocks of the task.
Compared with rest, there was little activation during early learning.
CHR participants activated the DMN, which is typically deactivated
during tasks with cognitive demands (Raichle et al., 2001). This sug-
gests that CHR individuals may not engage task-positive networks ef-
fectively. Related to the symptom associations noted above, it may be
the case that those that better activated task-positive networks (or ef-
fectively suppressed the DMN), are the individuals with the fewest
disorganized symptoms. The map for late learning (in both groups)
resembled that of Balsters et al. (2013), with notably more prefrontal
activation in the current study. Late learning involved a number of
prefrontal regions including anterior and dorsal lateral prefrontal
cortex, anterior cingulate cortex, and inferior frontal gyrus. While
anterior and dorsal lateral prefrontal cortices have been associated with
third- and forth-order rule learning in previous studies (Badre and
D'Esposito, 2007), it was not found by Balsters et al. (2013). CHR
participants showed greater activation of bilateral sensorimotor cortex
compared to controls during late learning. Balsters et al. (2013) found
that this region of cortex was involved in first-order rule learning,
suggesting that perhaps CHR participants used less sophisticated stra-
tegies for learning. Indeed, when comparing late vs. early learning,

controls showed activation of the prefrontal cortex, but CHR partici-
pants did not. Finally, in both groups, activation was seen during late
learning in cerebellar Lobule VI. This region of the cerebellum has been
associated with cognitive processing (E et al., 2012; Stoodley et al.,
2012; Stoodley and Schmahmann, 2009), and based on the patterns of
connectivity of this region (Bernard et al., 2012, 2014), this may be
related to the prefrontal activation we found. Notably, unlike in the
motor learning literature where a decrease in cerebellar activation has
been seen with learning (Doyon et al., 2002; Imamizu et al., 2000), that
was not the case here as demonstrated by the null findings in the
early> late learning contrast. With that said, qualitatively, we see
greater activation extent in the cerebellum in the CHR group, which is
broadly consistent with the idea that cerebellar internal models may
less efficient in this patient group (Bernard and Mittal, 2015).

While our results provide important new insights into CHR popu-
lations and suggests that the CTCC contributes to cognitive dysmetria
before the onset of formal psychosis based on the associations between
learning and disorganization, there are several limitations to consider.
First, while there are very few fMRI studies in CHR samples making our
results very novel and important, it is notable that we had a relatively
small sample. Future work with larger CHR samples is critical. Second,
we only investigated these individuals at one time point. Our results
suggest interesting associations between symptom severity and higher-
order rule learning, and provide insight into CTCC function, but we do
not know whether these results are predictive of future disease state.
Longitudinal work is necessary for a better understanding of the pre-
dictive utility of these behavioral and imaging markers as possible
biomarkers of psychosis.

Here, using state-of-the-art fMRI coupled with a second-order rule
learning task we found that CHR individuals are able to learn higher-
order rules, but are greatly impacted in the presence of a cognitive

Fig. 5. Comparison of late and early learning. A. Cortical surface projection maps depict lateral surface (top row) and medial surface (second row). B. Sagittal,
coronal and axial views with coordinates below the figure. In both groups, more widespread learning was seen during the late learning phase, relative to early
learning. In the UHR group alone (left), greater activation was found in motor and frontal cortical areas, as well as in cerebellar Lobule VI. In the HC group (right),
greater activation was seen primarily in cingulate and premotor regions.
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challenge. This suggests that their internal models are either not as
efficient, or that they are less able to rely upon these internal models,
perhaps due to broader CTCC circuit dysfunction (Bernard et al., 2014).
While imaging findings found few group differences, the findings cau-
tiously support the conclusion that CHR participants employed less
efficient models.
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