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detection via deep metric learning
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Recent deep neural networks have shown superb performance in analyzing bioimages for disease diagnosis

and bioparticle classification. Conventional deep neural networks use simple classifiers such as SoftMax to

obtain highly accurate results. However, they have limitations in many practical applications that require

both low false alarm rate and high recovery rate, e.g., rare bioparticle detection, in which the

representative image data is hard to collect, the training data is imbalanced, and the input images in

inference time could be different from the training images. Deep metric learning offers a better

generatability by using distance information to model the similarity of the images and learning function

maps from image pixels to a latent space, playing a vital role in rare object detection. In this paper, we

propose a robust model based on a deep metric neural network for rare bioparticle (Cryptosporidium or

Giardia) detection in drinking water. Experimental results showed that the deep metric neural network

achieved a high accuracy of 99.86% in classification, 98.89% in precision rate, 99.16% in recall rate and

zero false alarm rate. The reported model empowers imaging flow cytometry with capabilities of

biomedical diagnosis, environmental monitoring, and other biosensing applications.
1. Introduction

Rare bioparticle detection is essential to various applications
such as cancer diagnosis and prognosis, viral infections, and
implementing early warning systems in water monitoring.1–6 In
these applications, the target bioparticles in the sample are
extremely rare with a huge abundance of background particles. For
example, the ratio of the target bioparticle and background bio-
particles could be 1 in 1000 (0.1%) or even less.7 Currently, bio-
image analysis has made a huge progress, benetting from rich-
dataset supervised learning using deep neural networks.4,5,8

However, conventional deep neural networks only use simple
classiers such as SoMax to obtain highly accurate results with
the condence that the deep neural network learns more distinct
features than traditional machine learning in classication. Thus,
they sometimes get unexpected results in many practical
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applications, e.g., rare bioparticle detection7,9–11 and bioparticle
sorting,8,12,13 because it is hard to collect representative image data
in those applications and the input images in inference time may
be distinct from those during training. These applications also
require the model to have a performance of low false alarm as well
as high recovery rate in practical environments. For example,
a large amount of false alarms will introduce high-cost conse-
quential actions.14 Up to now, it remains a great challenge in the
detection of rare bioparticles in practical applications.

Conventional deep neural networks use simple classier to
make the decision of seen/unseen classes. Therefore, they oen
make wrong predictions, and do so condently.15–18 For
example, the conventional deep neural network model predicts
wrongly (it predicts the pollutants as Cryptosporidium or Giar-
dia) with a high condence level (>99.99%) as shown in Fig. 1.
These inaccuracies arise from the conventional classication
Fig. 1 Wrong prediction in conventional deep neural networks.
Conventional deep neural networks often make wrong predictions
and do so confidently when the images are not seen in the training
process. The pollutions are predicted as targets, Giardia or Crypto-
sporidium, with a confidence level >99.99%.
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approaches such as convolutional neural networks (CNNs) with
a linear Somax classier11 (Fig. 2(a)) that limit their ability to
detect novel examples.9,15,17,19,20 As a result, conventional
Somax-based approaches are not suitable for open-set rare
bioparticle detection. For example, a highly accurate algorithm
based on a sophisticated densely connected neural network for
bioparticle classication was developed for rare bioparticle
detection,8 but it only achieved a sensitivity and specicity of
77.3% and 99.5%, respectively.

Deep metric learning10 in Fig. 2(b) provides a possible
direction to improve open-set detection by learning a map from
the input image space to an output embedding features in the
latent space. Instead of using the SoMax classier, this
approach uses semantic similarity such as the Euclidean
distance to constrain the models. It does not rely on the cross-
entropy loss but proposes another class of network loss, i.e., the
contrastive loss. Thus, the sum of the output class probabilities
is not doom to be one and this provides it a generatability.9

Generative model is essentially a metric learning problem
whereby the key is to learn a large margin distance metric
within the latent space when the testing data are usually
disjoint from the training dataset.

Unsupervised deep metric learning is used to learn a low-
dimensional subspace and preserve useful geometrical informa-
tion of the samples. On the other hand, supervised deep metric
learning is used to learn a projection from the sample space to the
feature space and measure the Euclidean metric in this feature
space to discriminate the results. The metric learning is dened to
study a map function f with a dataset c ¼ {x, y, z,.}, whereby
f : c/ℝn is well dened mapping and d: ℝn � ℝn/ℝþ is the
Fig. 2 Deep classification vs. deep metric learning. (a) In deep clas-
sification, the model only studies a boundary. (b) In deep metric
learning, the model studies a more generative representation with
similar classes are close and the unsimilar classes are far away.
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Euclidean distance over ℝn: df(x, y) ¼ d(f(x), f(y)) ¼ kf(x) � f(y)k2 is
close to zero when x and y are similar.

The mathematical denition of Euclidean distance d(x, y)
between x and y is expressed as10

dðx; yÞ ¼ kf ðxÞ � f ðyÞk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf ðxÞ � f ðyÞÞT ðf ðxÞ � f ðyÞÞ2

q
(1)

where x, y ˛ c, and it is assumed that metric
dðx; yÞ: c� c/ℝþ satises the following properties as

d(x, y) $ 0 (2a)

d(x, y) ¼ d(y, x) (2b)

d(x, z) # d(x, y) + d(y, z) (2c)

d(x, x) ¼ 0 (2d)

Deep metric learning is widely applied in signature veri-
cation,21 face verication and recognition,22 and person re-
identication.23

In this paper, a rare bioparticle detection system is demon-
strated (Fig. 3), which consists of an imaging ow cytometry
system to capture the images of all pollutants and create an
image database. A deep neural network based on deep metric
learning and a decision algorithm are designed to detect rare
bioparticles of Cryptosporidium and Giardia. The model lever-
ages convolutional neural network to study the rich features in
the dataset and learning distinct metric by using Siamese
network21 and contrastive loss, which maximizes the distance of
different classes and minimizes the distance of similar classes.
Experimental results showed that the deep metric learning
studies good features and performs better than conventional
deep learning, which was manifested to be a solid network
model for rare bioparticle detection problems.
Fig. 3 Overview of a deep metric neural network for rare bioparticle
detection using an imaging flow cytometry. Water sample is processed
using (a) the imaging flow cytometry system (Amnis® ImageStream®X
Mk II), capturing the images of all pollutants and creating (b) an image
database. (c) Deep metric neural network, and (d) decision algorithms
are used for classification and detection.

© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Siamese network. (a) The structure of Siamese network for
training deep metric learning. The twin networks share the same
network parameters. A loss function is attached to this twin network to
regularize the network. (b) Embedding network. (c) Residual block.

Paper RSC Advances
2. Methods and materials
2.1 Bioparticle proling

First, the samples were imaged using the imaging ow cytom-
etry (Amnis® ImageStream®X Mk II). Bioparticles such as
Cryptosporidium, Giardia, microplastics and other pollutants
such as dirt and cell debris with size ranging from 3 to 14 mm
that naturally exist in drinking water were included in the study.
The naturally existing pollutants were obtained by concentrating
10 litres of drinking water using a water ltration system.
Formalin-treated Cryptosporidium oocysts, Giardia cysts (Water-
borne™ Inc.) and synthetic microplastic beads (Thermo Fisher
Scientic, Duke Scientic and Polysciences Inc.) of different sizes
(1.54 mm, 3 mm, 4 mm, 4.6 mm, 5 mm, 5.64 mm, 8 mm, 10 mm, 12 mm
and 15 mm) were spiked separately in 200 mL water. Bioparticles
were hydrodynamically focused by a sheath ow and owed
through the detection region with phosphate buffered saline
solution (PBS) used as the sheath medium. Single bioparticles
were illuminated with an LED light source, and brighteld images
(Fig. 4) were acquired with a charge-coupled device (CCD) camera24

using a 60� objective in Fig. 3(a).
2.2 Bioparticle image dataset

The raw image sequence les (.RIF) of different samples were
captured. The raw brighteld images were extracted from the
image sequence les by IDEAS soware (accompanying with the
ImageStream) and patched to 120 � 120 pixels as in Fig. 3(b).
From millions of acquired raw images, 89 663 images were
selected to construct the dataset by experts. The image dataset
consists of three classes: Cryptosporidium (2078 images), Giardia
(3438 images), and natural pollutants and beads (84 147 images).
The brighteld images of protozoa had complex patterns, such as
distinct sizes, degree of aggregation and different internal struc-
tures, which complicated the learning task.
2.3 Deep metric learning for rare bioparticle detection

Siamese network21 is the most popular deep metric learning
network structure which is used to train the deep learning
model shown in Fig. 5(a). The base network structure of deep
Fig. 4 Bioparticle image dataset. Each row represents one type of
bioparticle. From the top to bottom are Cryptosporidium, Giardia,
natural pollutants and beads. All subfigures share the same scale bar.

© 2021 The Author(s). Published by the Royal Society of Chemistry
metric learning model is illustrated in Fig. 5(b). The input of
embedding network is a grayscale image with 120 � 120 pixels
and a convolutional layer with a lter size of 7 � 7 is used in the
rst stage. Then, three residual network blocks (RB0 to RB2)25

are attached to the rst convolution neural network layer. The
output of the last residual network block RB2 is attened, and
then followed by a fully-connected layer26 together with a para-
metric ReLU (PReLU) layer.27 Finally, a fully-connected layer
with 2 output units is attached to the PReLU layer to generate
the latent feature vector of bioparticles. The detail parameters
of the embedding network are listed in Table 1.

The rst convolutional 2D layer (Conv2D in Fig. 5(b))28 takes
an h� w� n input feature map Xi, where h is the spatial height,
w is the spatial width and n is the output channels of the feature
map (120 � 120 � 1). The input Xi is transformed into a 60 � 60
� 64 output feature maps Xo and expressed as29

Xo
x;y;z ¼ d

 X
i;j;k

Fi;j;k;zX
i
xþi�1;yþj�1;k þ bz

!
(3)

where z¼ 1, 2,.,m and k¼ 1, 2,., n. The input feature map Xi is
convolved with a number of feature detectors, each of which has
a three-dimensional lter F in the present layer (7� 7� 1), and a bias
b. A ReLU function d(x) is attached to this convolution operator.

Three cascaded residual network blocks (RB0 to RB2 in
Fig. 5(b))25 with down sampling (stride ¼ (2, 2)) are attached to
Table 1 Network parameters of the embedding network

Layer/block Type Output dimension Params

Conv2d Convolution 60 � 60 � 64 9536
RB0 Residual block 30 � 30 � 64 147 968
RB1 Residual block 15 � 15 � 128 525 568
RB2 Residual block 8 � 8 � 256 2 099 712
Pool Average pool 2 � 2 � 256 0
Dense1 Fully connected 256 262 400
PReLU Parametric ReLU 256 1
Dense2 Fully connected 2 514

RSC Adv., 2021, 11, 17603–17610 | 17605
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the rst convolution layer. The RB has two 3 � 3 convolutional
layers and the same number of output channels as shown in
Fig. 5(c). In the end, a batch normalization layer and a ReLU
activation function follow each convolutional layer. In addition,
an identify path is added to connect the input to the output
directly.

The classier is implemented by two fully connected layers
(dense layer in Fig. 5(b)). It takes the last output of RB2 as the
input and applies cascaded matrix multiplications and non-
linear function to the weight matrix F and bias b to produce
a vector with two dimensions in the latent space. The equation
of fully connected layer can be expressed as

Xo ¼ d(FXi + b) (4)

The PReLU layer is used aer the fully-connected layer,
which is expressed as

f ðxiÞ ¼
�

xi; if xi . 0
aixi; if xi # 0

(5)

where xi is the input value and ai is the parameter of the PReLU
layer.
Fig. 6 Deep metric learning based classification. The unknown bio-
particle is classified to correspond classes. Class label is assigned to
classify the unknown particles by the closed cluster center (red).
Confidence level is used to present the similarity of unknown particles
to certain databased collected by Cryptosporidium and Giardia
samples.
2.4 Model training

The model is trained with Siamese network-based structure.
Siamese network is proposed for the signature's verication in
1994 and used for training the neural network. The network
consists of two base embedding networks and a joint output
neuron. Residual network blocks are used as the embedding
networks to extract the features. The two embedding networks
share the same weights, and the identical sub-networks extract
feature vectors from two images simultaneously and the joined
neuron measures the distance between the two feature vectors
in the latent space by using ametric. In the training process, the
similar and dissimilar pairs (xi and xj) are passed through the
network and generate features vector in the latent space named
f(xi) and f(xj). In the loss function, the distance metric d(x, y) ¼
kf(x) � f(y)k2 is regressed to minimize the distance between the
similar pairs and keep the distance of the dissimilar pairs. The
contrastive loss is used to train the Siamese network. For the
pair of input (xi, xj), it is a positive pair if xi and xj are seman-
tically similar and negative pair if they are dissimilar. The
training process of Siamese network deals with minimizing the
contrastive loss, which is expressed as

L
�fW ðmÞ; bðmÞgMm¼1

� ¼ X
ði;jÞ˛S

h
�
df
�
xi ; xj

�� s1
�2

þ
X
ði;jÞ˛D

h
�
s2 � df

�
xi ; xj

��2
(6)

where h(x) ¼ max(0, x) is the hinge loss function, and s1 ¼ 0.9
and s2¼ 1.0 are two positive thresholds with s1 < s2, respectively.
S ¼ fði; jÞg is the similar pair and D ¼ fði; jÞg is the dissimilar
pair.

The deep metric learning model is implemented with deep
learning framework-PyTorch30 and trained over an Ubuntu GPU
server31 with four Nvidia GeForce RTX 2080 cards and the Intel
17606 | RSC Adv., 2021, 11, 17603–17610
Xeon CPU E5-2650. To train and evaluate the performance of the
model, the selected image dataset is randomly split into
a training, validation and testing dataset with 48%, 12% and
40% of the total number of images, respectively. Later, the
images in the training dataset are augmented to 10 000 images,
and each image is randomly sampled from the dataset and
processed by position transformation, horizontal and vertical
ipping, rotation or zooming. The weight of the deep neural
networks is initialized with the Glorot uniform initializer32 at
a mean value of zero and a standard deviation at 10�2, and the
network is trained in an end-to-end fashion using the Adam
stochastic optimizing algorithm.33 The parameters for Adam are
b1 ¼ 0.9, b2 ¼ 0.999, and a learning rate decay is used for
training. The positive or negative pair is generated on the y.
First, it enumerates current image anchor from the image list.
Then, the positive image is randomly selected from rest images
of the same class and the negative image is randomly selected
from the images in rest classes. Early stop is also used to prevent
overtting by stopping the training when the model's perfor-
mance on validation dataset start to degrade.34 A maximum of
300 epochs is used to train the model.

2.5 Deep metric learning based classier

The deep metric network studies a map from the images into
a latent space and cannot be used directly to classify the images.
In order to classify the rare bioparticle images with deep metric
learning model, further processing is needed to be added in the
end of this neural network model. It converts the values in the
latent vector into a target class label and a condence score. As
shown in Fig. 6, the class label is assigned by the closed cluster
center, which can be calculated by either mean latent vectors
(mean center) or Gaussian Mixture Models (GMM)35 of a known
class, such as Cryptosporidium, in the training dataset. The
condence score is used to present the similarity between the
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 7 Visualization on 2D latent space of conventional deep classi-
fication-based model and deep metric learning which mapped by
embedding network. (a) Conventional deep classification-based
model, (b) deep metric learning based model.

Fig. 8 Visual on intermediate layers with t-SNE on deep metric
learning and conventional classification-based model. (a–c) The
lower, middle, and high level of deep metric learning, (d–f) the lower,
middle, and high level of conventional deep classification-based
model.
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target bioparticle to the certain classes, which are collected in
the training phase. The condence score can be calculated by
the distance of the target bioparticle to the center of certain
class on the distribution diagram of the latent space or
a Gaussian estimator.

Gaussian distribution36 is a continuous probability distri-
bution, which has a characteristic with symmetric “Bell curve”
shape that quickly falls off toward 0. GMM is a probabilistic
model, which assumes that the underlying data belong to
a linear combination of several Gaussian distributions. A GMM
model gives a posterior distribution over K Gaussian distribu-
tions, which shows better performance on optimizing model
complexity.37 The GMM can be represented by38

P
�
xjp;m;

X�
¼
XK
i¼1

piN

 
xjmi;

X
i

!
(7)

where N ðxjm; PÞ is a normal distribution, x is a multi-
dimension vector variable, m is the mean of this x and

P
is the

covariance matrix. The N ðxjm; PÞ is given by38

N
�
xjm;

X�
¼ 1

ð2pÞD=2jPj1=2
exp

 
� 1

2
ðx� mÞT

X�1
ðx� mÞ

!

(8)

where D is the number of dimensions of the feature vector.
The pi are mixing coefficients. It satised 0 # pi # 1 andPN
i¼0

pi ¼ 1: With the assumption that xi come from independent

Kmixture distributions insider C, the equation can be expressed as38

P
�
Cjp;m;

X�
¼
YN
n¼1

XK
i¼1

piN

 
xnjmi;

X
i

!
(9)

Expectation-maximization (EM) algorithm is used to nd the
local maximum likelihood and estimates of individual param-
eters in GMM (m and

P
). EM is an iterative algorithm, which

follows the rule that every iteration strictly increases the
maximum likelihood. EM algorithm may not reach the global
optimal point, but it can guarantee to local saddle point. The
EM algorithm consists of two main steps: expectation and
maximization. The expectation step calculates the expectation
of the clusters when each xi ˛ X is assigned to the clusters with
given m,

P
, p. The maximization step maximizes the expecta-

tion in previous step by nd suitable parameters.
First, the program randomly assigned samples X¼ {x1, x2,.,

xn} to components estimated mean m̂1, m̂2, ., m̂k. For example,
m̂1 ¼ x6, m̂2 ¼ x20, m̂3¼ x21, m̂4¼ x33, m̂5¼ x60 when N¼ 100 and K
¼ 5. Then,

P̂
1 ¼

P̂
2 ¼ . ¼ P̂k ¼ CovðxÞ ¼ E½ðX � xÞðX � xÞT �

is assigned where �x ¼ E(X), and all mixing coefficients are set to

a uniform distribution with p̂1 ¼ p̂2 ¼ .̂pk ¼ 1
K
: In the

expectation step, pðCkjxi ;̂pk; m̂k; ŜkÞ is given by38

p

�
Ckjxi ;̂pk; m̂k; Ŝk

	
¼

p̂kN
�
x̂i




m̂k; Ŝk

	
PK
j¼1

p̂jN
�
xijm̂j; Ŝj

	 (10)
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In the maximization step,
ð̂pk; m̂k; ŜkÞðiþ1Þ ¼ argmax

p̂k ;m̂k ;Ŝk

pðCkjxi; ð̂pk; m̂k; ŜkÞiÞ and can be
calculated as38

p̂k ¼
XN
i¼1

p

�
Ckjxi ;̂pk; m̂k; Ŝk

	
N

(11a)

m̂k ¼
PN
i¼1

p

�
Ckjxi ;̂pk; m̂k; Ŝk

	
xi

PN
i¼1

p

�
Ckjxi ;̂pk; m̂k; Ŝk

	 (11b)

Ŝk ¼
PN
i¼1

p

�
Ckjxi ;̂pk; m̂k; Ŝk

	�
xi � m̂k

	�
xi � m̂k

	T

PN
i¼1

p

�
Ckjxi ;̂pk; m̂k; Ŝk

	 (11c)

The whole EM process repeats iteratively until the EM algo-
rithm converges to a point and gives a maximum likelihood
estimate for each p̂k; m̂k; Ŝk:
RSC Adv., 2021, 11, 17603–17610 | 17607



Table 2 Precision, recall and F1 score on test dataset

Methods

Measurement (%)

Accuracy Precision Recall F1 score

Deep classication 99.71 97.84 98.55 98.19
Deep metric learning 99.86 98.84 99.17 99.00

Table 3 Confusion matrix of conventional deep classification

Class

Prediction

Pollutants Cryptosporidium Giardia

Actual Pollutants 29 610 35 14
Cryptosporidium 20 807 4
Giardia 10 8 1357

Table 4 Confusion matrix of deep metric learning-based
classification

Class

Prediction

Pollutants Cryptosporidium Giardia

Actual Pollutants 29 639 17 3
Cryptosporidium 9 820 2
Giardia 6 9 1360

RSC Advances Paper
3. Results and discussions
3.1 Classication evaluation

The output latent vectors of the deep metric neural network are
mapped to a 2D latent space by embedding network as shown in
Fig. 7. Compared with the conventional deep classication
method in Fig. 7(a), the deep metric learning model is trained
using the Siamese network in Fig. 7(b) and the contrastive loss
shows better performance. The dots of the similar images in
deep metric learning are closer and the dissimilar images are
kept far away from others, providing the ability of generat-
ability. Moreover, the t-SNE graphs of RB0 to RB2 from low level
to high level features in Fig. 8 also show that the data is well
separated in the deep metric learning based model in Fig. 8(a)–
Table 5 Cryptosporidium and Giardia detection using deep metric learn

No. Spike Image number Manual counting

1 20C 23 483 7
2 20C 18 422 8
3 20C 21 834 10
4 20G 19 383 7
5 20G 18 320 9
6 20G 24 872 6
7 0 20 000 0
8 0 20 000 0
9 0 20 000 0
10 0 20 000 0
Mean

17608 | RSC Adv., 2021, 11, 17603–17610
(c) even in the shallow layers by comparing with the conven-
tional classication-based method in Fig. 8(d)–(f).

For classication, the GMM model is selected because it can
show how much condence is associated to the target cluster,
and it has the same accuracy of 99.86% with the mean center.
The nal results of the model comparison between deep metric
learning and conventional deep classication are summarized
in Table 2. The model based on deep metric learning is superior
to the model based on conventional deep classication neural
networks in terms of accuracy, precision, recall and F1 score.
The model based on deep metric learning network achieves
99.86% in accuracy, 98.89% in precision rate, 99.16% in recall
rate and 99.02% in F1 score. On the other hand, the model
based on conventional deep classication gives 99.71% in
accuracy, 97.84% in precision, 98.55% in recall and 98.19% in
F1 score. The results in Tables 3 and 4 also show that the
performance of the individual class in deep metric learn-based
model is better when it has a large quantity of training data. For
example, the classication result on contaminated particles is
much better in deep metric learning.
3.2 Model verication using spiked samples

In order to evaluate the performance of the deepmetric learning
model on rare bioparticle detection in real situation, Crypto-
sporidium and Giardia were spiked into the concentrated water
sample to simulate rare bioparticle in contaminated water. In
total, ten testing were run and the captured images were
detected by the soware with a condence level at 0.98 and
veried by biological experts based on their morphologies. The
nal results are summarised in Table 5. The deep metric
learning gives zero false warning signal, which is vital to
implement the early warning system that needs the specicity of
100%. In comparison, the conventional deep classication gives
false positive signal in test 1, 3, 5, 6, 7, 10, especially false
warning signals in test 7 and 10 are not acceptable. Some
confused images are listed in Fig. 9. The rst row shows the
false positive images detected from the background pollution.
They are easy to be identied for human, but failure to be ob-
tained in conventional deep neural network. The second row
shows some examples that Cryptosporidium are classied to
Giardia and vice versa. On the contrary, deep metric learning-
based model serves as a paradigm to deal with the rare cell
ing

Sensitivity Specicity Alarm Recovery rate

85.7% 100% Yes 85.7%
75.0% 100% Yes 75.0%
80.0% 100% Yes 80.0%
100.0% 100% Yes 100.0%
88.9% 100% Yes 88.9%
83.3% 100% Yes 88.3%
— 100% No —
— 100% No —
— 100% No —
— 100% No —
85.5% 100% — 85.5%

© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 9 Wrong prediction in conventional deep neural networks. The
first row shows the false positive images detected from the back-
ground pollution. They are easy to be identified for human, but failure
to be obtained in conventional deep neural network. The second row
shows some examples thatCryptosporidium are classed toGiardia and
vice versa.
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detection. For the recovery rate, the deep metric learning gives
an average of 85.5%.
4. Conclusions

Siamese-based deep metric learning provides a set of new tools
for learning latent vectors by leveraging both convolutional
neural network and deep metric learning. In this paper, we
present a deep neural network based on deep metric learning
for rare bioparticle detection by incorporating Siamese
constraint in the learning process. The model can learn inter-
pretable latent representation that preserves semantic structure
of similar and dissimilar images. The experimental results
demonstrate that Siamese-based deep metric learning can
achieve classication-based accuracy while encoding more
semantic structural information in the latent embedding. Thus,
it is suitable for rare bioparticle detection, and achieves 99.86%
in accuracy and zero false alarm. The model empowers intelli-
gent imaging ow cytometry with the capability of rare bio-
particle detection, beneting the biomedical diagnosis,
environmental monitoring, and other biosensing applications.
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