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3D Reconstruction of cellular 
images from microfabricated 
imagers using fully‑adaptive deep 
neural networks
Hossein Najafiaghdam1*, Rozhan Rabbani1, Asmaysinh Gharia1, 
Efthymios P. Papageorgiou1 & Mekhail Anwar1,2

Millimeter‑scale multi‑cellular level imagers enable various applications, ranging from intraoperative 
surgical navigation to implantable sensors. However, the tradeoffs for miniaturization compromise 
resolution, making extracting 3D cell locations challenging—critical for tumor margin assessment 
and therapy monitoring. This work presents three machine‑learning‑based modules that extract 
spatial information from single image acquisitions using custom‑made millimeter‑scale imagers. The 
neural networks were trained on synthetically‑generated (using Perlin noise) cell images. The first 
network is a convolutional neural network estimating the depth of a single layer of cells, the second is 
a deblurring module correcting for the point spread function (PSF). The final module extracts spatial 
information from a single image acquisition of a 3D specimen and reconstructs cross‑sections, by 
providing a layered “map” of cell locations. The maximum depth error of the first module is 100 µm, 
with 87% test accuracy. The second module’s PSF correction achieves a least‑square‑error of only 4%. 
The third module generates a binary “cell” or “no cell” per‑pixel labeling with an accuracy ranging 
from 89% to 85%. This work demonstrates the synergy between ultra‑small silicon‑based imagers that 
enable in vivo imaging but face a trade‑off in spatial resolution, and the processing power of neural 
networks to achieve enhancements beyond conventional linear optimization techniques.

Visualizing the 3D location of fluorescently labeled tumor cells in vivo is critical for intraoperative navigation 
to identify tumors beneath the tissue surface and harbored in deeper sites such as lymph nodes. Conventionally, 
this process is done post-operation, in a laboratory setting by using targeted fluorescent probes and markers to 
identify any disease from the tumor bed sample. This process is extremely time-consuming, and requires several 
days to return results, potentially putting the outcome of the treatment at risk. Recent engineering advances 
have resulted in several novel imaging platforms that allow this process intraoperatively and concurrent with the 
 surgery1–3. However, these instruments are significantly cumbersome and not practical with today’s minimally 
invasive surgical procedures, especially in complex and hard-to-access tumor cavities. While these large instru-
ments rely on sizeable optics and lenses for their high resolution and reliability, they can’t be miniaturized and 
made practical for surgical settings as a result of the inevitably rigid optical equipment. In addition, such large 
instruments naturally do not allow for assessment of treatment response, where cell migration into tissues is 
important to be monitored in real-time and outside surgical settings—another critical application. Therefore, 
a much less complex imaging platform with a smaller form factor is preferred. Recent advances in microscopy 
such as light-field  microscopy4–8 have enabled imaging of smaller features and imaging within the tissue. How-
ever, these methods require specialized optical equipment incompatible with a minimally invasive procedure.

Miniaturization of these platforms into electronic micro-imagers such  as9 enables placement of imagers in 
hard-to-access regions, unlocking the ability not only to visualize microscopic disease intraoperatively in cavities 
up to several millimeters deep, but also to monitor cell dynamics and assess treatment in real-time and in vivo, 
with a network of wirelessly powered implants. Figures 1a and b illustrate how micro-imagers can provide a 
comprehensive visualization of the tumor of interest, with no disruption to the flow of operation or treatment for 
intraoperative and implantable applications such as  in10,11, respectively. For intraoperative imaging, by rotating 
a surgical fiducial shown in Fig. 1a multiple image acquisitions from different angles of view can be obtained. 
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Similarly, a network of implantable imagers can capture images from different angles of the target as shown in 
Fig. 1b.

While these ultra-small imagers are easy to integrate into surgical environments, unlike their larger counter-
parts, they lack a high enough resolution. Reducing the form-factor of the imager imposes a stringent limit on 
the size of the optical filters and focusing lenses being used, limiting their performance and the image resolu-
tion. Smaller imagers needed for in vivo use have often a higher background level (due to the lower rejection 
performance of smaller optical filters) and a lower focusing capability (due to the limited numerical aperture of 
their lenses). Safety limits also restrict the total photon budget allowed within the system, further constraining 
the capabilities of fluorescence microscopy in vivo. To obtain reliable 3D information using imaging instruments 
with these small form-factors, enhanced custom-made optical filters and lenses are required to replicate the same 
performance as their larger counterparts. These, however, are often difficult to manufacture, and image quality 
remains suboptimal relative to bench-top microscopes. Therefore, computational techniques that can enhance 
images from small form factor devices are in need.

Conventional image processing techniques involve variations of deconvolution, surface projection algorithms 
and noise enhancement methods, and the core of all these methods relies on a linear transformation of the image, 
that does not depend on anything other than the raw image data and the point spread function (PSF) of the 
imaging device and is procedurally blind to any prior knowledge of the specimen being observed.

The PSF, also known as the transfer function of the imaging system in spatial domain, describes the response 
of an imaging system to a point source of  illumination12. In any linear image formation process such as fluores-
cence microscopy, the final image is a linear superposition of a series of point sources convolved with the PSF. 
Therefore, the original object can be retrieved by deconvolving the image with PSF of the imager.

One of the drawbacks of the deconvolution method is the calibration required for deriving parameters of the 
deconvolution function for images taken from each depth which limits image processing speed. This method 
poses difficulties for recovering images consisting of overlaid cell foci from different depths since every parameter 
requires optimization for a certain imaging depth. Moreover, the PSF, as a low pass transfer function, removes 
high frequency components of the original image, hence results in loss of sharpness, hindering generation of 
a fully recovered image after deconvolution. Even for cases where the image is mainly attenuated by the PSF 
response and still retains most of the high frequency components, applying inverse PSF amplifies high frequency 
noise degrading recovery of the original image. Much like deconvolution, every other linear image processing 
technique will suffer from similar issues.

To circumvent these limitations, a more agile approach is needed, namely a non-linear post-acquisition 
processing module that could incorporate the physiological and spatial information of similar tissue specimens 
within itself. The module can leverage this additional knowledge to restore the sharpness and resolution to the 
micro-imager’s suboptimal images, and provide insight into the 3D position of cells. Of all available architectures, 
deep learning modules can be by far the most adept at capturing physiological knowledge of cellular images.

Deep learning combines multiple layers of non-linear transformations, superposed with a complex yet struc-
tured network of coefficients to create powerful processing modules that can perform highly complex tasks, such 

Figure 1.  Concept of multiple visualization of the tumor using micro-imagers: (a) Multiple images taken by 
rotating the micro-imager intraoperatively. (b) Network of implantable micro-imagers to capture multiple 
fields of view. (c) Combination of neural networks and micro-imagers enabling 3D visualization and resolution 
enhancement.
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as image enhancement, image classification and feature extraction. Yin et al.13 investigated characteristics of 
neuronal networks by extracting neuronal culture cluster information from microscopic images of neurons using 
machine learning models, and Chen et al. were successfully able to demonstrate label-free tumor cell classifica-
tion using images of flow  cytometry14. Deep learning allows breaking the tradeoffs of fluorescence microscopy 
and using the computational models to augment hardware complexity and improve upon optical limits, by using 
a large collection of training data to build the  network15. Using adaptive network architectures such as residual 
neural networks  (ResNets16) and convolutional neural networks  (CNNs17), we present several applications for 
cancer imaging utilizing deep learning to enhance the resolution and capability of custom-made micro-imag-
ers18–22. Figure 1c demonstrates how the symbiotic combination of neural networks and micro-imagers can not 
only restore the sharpness and resolution of the image, but also create a 3D visualization of the specimen at no 
additional hardware cost and create a highly reliable intraoperative imaging platform for margin assessment.

A key challenge to using a neural network in 3D cellular imaging of tissue is compiling a training dataset, 
since training deep neural networks requires access to a large set of training data from diseased tissue for each 
specific application. The impracticality of obtaining a large dataset, taken at varying depths, from tissue motivates 
synthesis of a diverse dataset of tumor cell images based on the morphology of real-life tissue samples, to leverage 
prior knowledge of the tumor cells. The synthesis method needs to be parameterizable to allow generation of an 
arbitrary large dataset by random selections of parameters that lead to images which are accurate representa-
tions of actual cells.

To address this, we first present a method to generate a large training set mimicking real-life specimens (a 
single layer of cells on slide), thus allowing our deep neural networks to be trained, as demonstrated in our prior 
 work23. To replicate the 3D structure of the tumor, stacks of multiple layers of cells with 250 µm spacing within 
1 mm from the sensor are generated. Since the lensless custom imager  in24,25 is designed for contact imaging of 
tumor margins, 1 mm was set as the limit to demonstrate proof of concept. Next, we present 3 modules, tasked 
with identifying the depth of cell clusters -measured as the distance of the sample from the imager-, deblurring 
and enhancing the sharpness of the image, and finally, detecting cell presence within each layer of the specimen 
in 3D stacks. The last module incorporates a novel method of imaging using not one but two sensors viewing 
tissue from different angles to allow for three-dimensional imaging of the sample and providing insights into 
the spatial distribution of the cells in the sample.

Materials and methods
Dataset synthesis. To generate images identical to real-life cell foci, a coherent gradient noise generation 
method referred to as Perlin noise is  used26. Perlin noise is a technique generally used to create natural appearing 
procedural textures, such as marble, wood, cloud textures for motion picture visual  effects27.

To locate the tumor cell foci, a binary matrix is generated to represent a tumor mask with high values (> 0.5) 
indicative of tumor and low values (< 0.5) for non-cancerous background. Exploiting the natural structure of 
Perlin noise, a smooth cellular location map is achieved, populated with signal and background intensity values. 
Once the location of the cell foci is determined with the tumor mask, a tumor image is rendered by produc-
ing in-pixel signal and background intensity values based on mean and variance of real tumor images. A close 
correlation with real images is ascertained by making sure the statistical parameters stem from a representative 
range of parameters resulting from real data SNR calculations demonstrated  in23.

Size of the tumor image is chosen to be 51 × 51, a form factor that parallels our lensless chip-scale CMOS 
imager for in vivo intraoperative imaging of  cancer9.

Modules implemented. 

A. Depth Estimator Module
  Nonlinear networks for depth estimation are often used in non-medical contexts, for traffic, navigation 

and security  purposes28–31, and have proven to be quite capable of identifying spatial features and depths if 
properly trained prior to testing. To this end, we have built a convolutional neural network combined with 
a fully connected (FC) network to estimate the depth of images that emulate the custom-made imager’s 
resolution and PSF at various depths, randomly generated from 50 µm to 1.95 mm, with 100 µm increments.

B. Deblurring Module
  Obtaining high resolution images while maintaining a small size for the imager requires information 

beyond the mere raw data of the image, and an advanced knowledge of image contents. Knowing and hav-
ing prior information about the underlying image data allows a more efficient recovery of the un-blurred 
image and insightful clinical information. A convolution/deconvolution neural network is able to absorb 
this information and embed it into the network using an appropriate training dataset.

  Here we created a 6-layer CNN trained to enhance and deblur corrupted images obtained with the custom-
made imager. The training dataset used for this module was a compilation of single layers of emulated cell 
images to which the PSF of the custom-made imager was subsequently applied at different and randomly 
generated depths, ranging from 0 to 1 mm.

C. Cell Detector Module
  Building on the module for depth estimation described in (II.A), this module extends to localization 

of cells from different layers of the tissue and identification of their corresponding depth. The underlying 
advantage of multi-layer depth estimation exploiting machine learning models is distinguishing dim clusters 
of cells closer to the surface of the imager from bright cellular response far away from the device, a task hard 
to achieve without further processing. Multi-layer cell detection from a single 2D image with a precision 
better than 500 µm provides surgeons with high enough resolution to investigate the tumor bed.
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Extracting multi-level depth information from the planar images of our lensless microscope on-chip elimi-
nates the need for bulky optical  lenses32–34. We present separate modules for detecting nonoverlapping and 
overlapping multilayer clusters of cancer cells. To generate the training dataset for nonoverlapping stacks of cells, 
pairs of emulated cell images from 2 different depth values are chosen randomly with a minimum difference 
of 500 µm from 0 to 1 mm. Initial cell images from each layer are convolved with the PSF of the custom-made 
imager and added together spatially to form a multilayer image. The overlapping regions are subtracted from 
the stacked image to ensure separation of the cells from each layer.

In addition to detection of cells in multilayer segregated clusters, 3D information from a more complicated 
structure with overlapping stacks of cells is explored in this manuscript. However, the accuracy of recovering 3D 
information using a single micro-imager is going to be very limited when extracting spatial information from 
farther layers. The decreasing optical signal and increased scattering and absorption and more importantly the 
PSF non-ideality will result in a very low signal-to-background ratio in the farther layers.

As a result, and to mitigate the high error rate of the model, we are proposing adding a second sensor to the 
imaging system, which is made possible by the ultra-small form factor of the sensor itself, allowing it to become 
fully implantable and therefore surgically practical. In our emulated experiments, the two sensors are placed 
1 mm apart, on both sides of the emulated three-dimensional tissue.

Both the single and dual-sensor modules consist of a 6-layer CNN (3 convolution and 3 deconvolution lay-
ers) and their outputs are 4 binary input-sized layers depicting cell presence in each one, where [> 0.5] indicates 
cell presence and [< 0.5] indicates absence of cells. Due to the binary nature of the outputs, we can evaluate the 
accuracy of the outputs in terms of pixels incorrectly “labeled” (“existence” or “absence” of cells)- a metric we 
will later use to compare their performances.

For a reliable 3D imaging of tissue, it is necessary that the module maintains its sensitivity and specificity 
performance across the entire depth of the specimen, and as such, the limited performance of this module will 
preclude it from being used to acquire reliable 3D information and perform deep tissue imaging on samples that 
are more than a few hundred microns thick. In this work, sensitivity is defined by the ratio of pixels accurately 
predicting presence of cells over the total number of cancer cells in the ground truth images. Specificity, on the 
other hand, evaluates performance of the model in predicting absence of cells in the pixels indicated by the 
ground truth images to be empty of cells.

Amongst various applications of cellular level depth estimation, one of the more critical applications of micro-
scopic imagers in oncology is to monitor and observe the movements and dynamics of the cells which represent 
the real-time response of tissues to therapy. The speed, direction, and features of the clusters of cells experiencing 
those dynamics are of significant clinical value, yet due to the complexity, cumbersomeness and optical limita-
tions of intraoperative imagers, clinicians often have no choice but to do away with them. We present in our final 
module a 3D-reconstruction model architecture that is capable of capturing these dynamics. The model is used to 
evaluate the sensitivity to cell dynamics and movement across layers and verified quantitatively with test samples.

Results
Depth estimator module. The training dataset for this network has been compiled by initially generating 
raw and un-blurred images of a single layer of cells, after which the PSF of the microchip imager at different 
depths was applied onto them. The depths were randomly sampled from the range (0, 2 mm), with 100 µm step-
size, thus allowing for 20 distinct depths.

After training, the module was tested on 1000 randomly sampled images at various depths ranging from 
50 µm to 1.95 mm, and the prediction performance is shown in Fig. 2. Figure 2a shows the occurrence of all 
the predictions in the test dataset, and Fig. 2b illustrates the detailed statistical performance of it. The module 
was able to identify the depth of the test images with a maximum error of 100 µm, enough to enable resection 
of tumors, even below the tissue surface.

If the depth resolution is assumed to be 100 µm, then the accuracy rate of this module would be about 87%, 
with the accuracy growing closer to 100% as the specimen is closer and closer to the imager.

Deblurring module. We trained a 6-layer (3 convolution/3 deconvolution) network on a training dataset 
and tested the performance of the module on 1000 test samples and Fig. 3 illustrates the performance of the 
module. This module is able to extract the un-blurred image from a blurred input and restore sharpness and 
original resolution to the image, by relying on embedded prior image information and content-aware non-linear 
transformations. A sample test performance is shown in Fig. 3a.

The statistical accuracy of this module is illustrated in Fig. 3b which shows the average normalized deviation 
of pixels from their correct value is about 0.04, which translates to 4% estimation error.

Cell detector module. 

A. Non-overlapping Multi-layer Depth Estimation
  Similarly, a 6-layer (3 convolution/3 deconvolution) network is trained on the dataset and the performance 

is evaluated on 1000 test samples. Figure S1 shows the overlaid image from the stacks, the corresponding 
depth map and finally the depth map predicted by the model. Figure S1 depicts the error distribution of the 
depth map predicted by this network with an average normalized deviation of pixels from their correct value 
to be about 6% with a standard deviation of 10%. Having established a model that successfully identifies two-
layer depth map of tumor cells within a normal tissue background, we aim to show that we can generalize 
3D localization to a more comprehensive case discussed in the next section.

B. Overlapping Multi-layer Detection
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 i. CNN with single sensor: The first multi-layer cell detection module is based on a single sensor, 
observing a stack of 4 layers of cells that are randomly spaced between 0 and 1 mm away from the 
sensor itself, where each layer is at least 200 µm away from the adjacent layer- to allow full coverage 
of the [0,1 mm] three-dimensional space with only 4 layers. Individual layers are uncorrelated, and 
have randomly generated intensities and background levels, allowing for a realistic emulation of 
tissue. Upon applying the corresponding PSF to each layer, the 4 images are summed and combined 
into one final image that constitutes the sensor’s output and will serve as raw input to the module.

   After training, the module evaluated over 1000 distinct test inputs, and the corresponding input 
and outputs for one sample image are shown in Fig. S2. The distribution of the performance is also 
shown in Fig. S2. Our performance metric reveals that the first layer, which is the closest to the 
sensor, has a lower error rate of 28%, and the performance degrades with farther layers, with the 
rate of inaccuracy remaining well above 37%.

   The distribution of the performance illustrated in Fig. S2 is shaped by the random overlap of 
cells in the four layers. A deeper analysis of the individual data confirmed that the cases with lower 

Figure 2.  Performance of the depth estimator module: (a) Predicted values for every depth in the test dataset. 
(b) Test accuracy and loss for depths ranging from 50 µm to 1.95 mm with 100 µm step sizes.

Figure 3.  Performance of the deblurring module: (a) Network input and output images for a test sample in 
comparison with the corresponding ground truth image. (b) Distribution of average pixel error for 1000 test 
samples with a mean error of 4.2%.
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counts of incorrect pixels observed in the far layers (seen in Fig. S2) are caused by the subsequent 
cell layers overlapping significantly with the closest one, resulting in special cases and lower than 
usual error rates.

 ii. CNN with two sensors: The effect of adding the second imager, which is possible with the current 
form factors of these imagers, to the opposite side of the target under test is explored with the 
generalized 4-layer case and the improvement of accuracy is reported.

 iii. Similar to its single-sensor counterpart, and using the exact same network, we evaluated the module 
over 1000 distinct test inputs and the corresponding inputs and outputs for one sample image set is 
shown in Fig. 4a. The impact of adding a second sensor can be observed by comparing the outputs 
shown in Fig. S2 and Fig. 4a, quantified in Fig. 4b. Figure 4b illustrates the performance distribution 
of the 2-sensor module, and as expected, the first and last layers have very similar performances, as 

Figure 4.  Evaluation of the CNN with two sensors: (a) Overlaid input images from 4 raw images corresponding 
to each layer before applying the PSF, network output images and ground truth depth maps. (b) Distribution 
of average pixel error for each layer with averaged error rates of 12.2%, 18.1%, 18.4% and 12% for layers 1 
to 4, respectively. (c) Spatial (3D) reconstruction (using network outputs) of the sample test input, where 
black, yellow and red respectively represent blank (empty of cells) spaces, regions containing cells, and sensor 
locations.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7229  | https://doi.org/10.1038/s41598-022-10886-6

www.nature.com/scientificreports/

do the two middle ones, and this network can achieve a 12% error rate (in the two closest layers), 
which is less than half of the error rate of its single-sensor counterpart. Adding a second sensor 
reduces the error in the two middle layers – farthest from the sensor – reducing it from 40 to 18%.

   Upon extracting and identifying the regions in each layer that include cancer cells, we are then 
able to reconstruct a spatial representation of the stacked sample in space and provide a 3D visu-
alization of the specimen being imaged. Illustrated in Fig. 4c, using the outputs shown in Fig. 4a, 
we have reconstructed the stacked sample, identifying the zones where cancer cells were detected 
in each layer. For a complete representation of the proposed imaging platform, the two sensors are 
also shown in Fig. 4c, separated by the 1 mm thick stack of cell layers in between.

 iv. ResNet + CNN with two sensors: Here we present a module that can not only identify cell clus-
ters across all depths but is also very sensitive to small changes in the specimen, i.e., resulting 
from cluster movements. Using a more enhanced neural network, this module is able to identify 
cluster movements between layers and help visualize the dynamics within the specimen. In the 
previous section we introduced a two-sensor architecture to significantly improve the accuracy 
of the module. Here we preceded a 2-layer CNN network with a pre-trained 18-layer ResNet 
 architecture35, and after training, evaluated the performance of the compounded network on 
the test dataset. The architecture of the network and its input images and output depth maps are 
shown in Fig. S3. The test dataset includes 100 distinct and randomly generated group images, 
in which a cluster of cells within the three-dimensional space moves across the different layers, 
going from sensor A towards sensor B, thus replicating a physiological dynamic of a real-life 
migrating cluster of cells (such as immune cells migrating into a tumor, or a metastatic deposit 
migrating or dividing within tissue). Figure 5a shows the diagram of the described scenario and 
how the cluster (and only the cluster) moves across the layers.

The performance distribution of this module is shown in Fig. S4 and it can be seen that the two closest layers 
have a very low error rate (~11%) while the two middle ones have slightly higher rates (~16%). However, both 
show noticeable improvements compared to the CNN-only network case.

The performance and outputs of the compounded module are shown in Fig. 5b. Figure 5b includes 4 sections, 
each one of which includes the raw (unblurred) images at different depths, the network outputs, the ground 
truth image and the two sensor images captured that serve as input to the module. The cluster of cells marked 
in Fig. 5b moves across the 4 layers (from left to right), altering the 2 sensor images every time a layer change 
occurs. The module tracks the cluster with an average sensitivity of 72.6% and specificity of 91.7% for all of the 
4 layers as shown in Fig. 6a. The Receiver Operating Characteristic (ROC) for the average performance of the 
model across all layers is shown in Fig. 6b.

Discussion
The modules presented in this work demonstrate the capabilities of neural networks in providing real-time 
enhanced image resolution and valuable 3D clinical information from currently available imaging systems and 
platforms. This project incorporates 3 modules featuring identification of the depth of a single image, deblurring 
and enhancement, and localizing cancer cell foci within each layer in both overlapping and non-overlapping 
stacks of cells. A novel method to synthesize a large representative dataset of real-life chip-scale images of the 
tumor is utilized for training deep neural networks. We presented a novel imaging platform by placing two sen-
sors on both sides of a tissue stack to improve the error rate of our depth estimation algorithm compared to the 
case with only sensor. The performance of the three modules described in this work have been summarized in 
Table S1, illustrating that the addition of a second sensor to a 6-layer CNN significantly reduces the error rate 
in the middle layers -by up to 55%. In addition to that, we also trained a 2-layer CNN preceded by an 18-layer 
pretrained ResNet and the introduction of the ResNet network further reduced the average error rate from 15.2% 
to 13.5%. Table 1 summarizes the performance of the image enhancement and depth estimation techniques pre-
sented in this work in comparison with state-of-the-art supervised monocular depth estimation models for single 
images from NYU depth  dataset36. Depth estimation for indoor environments eliminates the need for detecting 
stacks of overlapping  objects37–39 while it is instrumental in detecting cell clusters in tissue samples. The cellular 
level depth estimation work presented  in40 relies on multiple acquisitions from different depths of focus, challeng-
ing for intraoperative applications. This work achieved accuracies of 87% for single depth estimation for depths 
ranging from 0 to 2 mm, 95.8% for deblurring and resolution enhancement of images taken up to 1 mm away 
from the imager, 93.8% and 86.5% for cell localization and depth estimation of non-overlapping and overlapping 
stacks of multiple layers of cells within 1 mm of the device, respectively. To verify the performance of the model 
in dynamic applications, the network was also tested for identification of moving cell foci within multi-layer 
stacks of cells. The module was able to identify presence of the cluster with a sensitivity and specificity of 72.6% 
and 91.7%, respectively, achieving minimal “bleed-through” between adjacent layers. Having demonstrated the 
synergetic performance of the system containing our customized image  sensor9 with the computation power of 
neural networks, for future work, a more comprehensive study is needed to optimize architecture of the neural 
network using structures such as encoder-decoder based  CNNs41 or self-attention feedback  networks42.

There are several limitations to our work. While we ensured our datasets replicated as close as possible to a 
real-life sample set, a synthesized dataset was used. However, our goal is to demonstrate proof of concept with 
this technique, and this approach can be repeated for any available cell imaging data set by retraining the neural 
networks on that dataset. Nonetheless, despite the synthetic dataset, the final model (ResNet + CNN) is still able 
to achieve a high level of performance when applied to real-life images, as seen in Fig. 7. While gathering a large 
size of real-life images of cancer cells is beyond the scope of this work, we have applied the module on a limited 
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number of cancer cell slides. These specimens have first been imaged on high-resolution fluorescence microscope 
(shown in the first column in Fig. 7), after which each one has been assigned a randomly selected depth and was 
applied the corresponding PSF. After applying the PSF, all 4 layers were combined (added) to generate the sensor 
image. A similar procedure is also carried out for the second sensor. The sensor images obtained are shown in 
the second column of Fig. 7. The network output -illustrating regions where cells were detected in each layer- is 
shown in the third column, and an overlay composite image of the outputs with the microscope images is also 
shown in the rightmost column in Fig. 7, showing an almost perfect level of localized cell detection.

An additional limitation of this work involves partial modeling of optical path non-idealities. While the PSF 
accounts for the optical divergence of the light path, it does not take account for the scattering and absorption 
of the tissue medium. A further enhanced version of the module can be trained on a dataset that incorporates 
the effect and impact of scattering, absorption, motion deformation, non-uniformity of the laser beam and addi-
tive noise in the tissue as described  in43. While an improvement, those effects can however largely be mitigated 
by using a longer wavelength process with the corresponding fluorophores, such as an ICG or IR-800 dye, as 
reported  in44–46.

Figure 5.  (a) Test setup for modeling dynamics of a moving cell cluster. (b) Outputs of the compounded 
module with the moving cell foci at each layer including the deblurred images at each depth, the two sensor 
images captured that serve as input to the module, the network outputs and the ground truth cell maps at each 
depth.
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The superior representation capability of neural networks also allows for a far more complex network of sen-
sors to be used than only two, and thus pushing the limits of detection and resolution even further than what 
has been presented in this work. Having readily available ultra-small sensors to be intraoperatively used, we can 
ultimately harness the power of machine learning in extracting valuable 3D information from a collection of 
easily obtained raw images.

Conclusion
Obtaining high-resolution, cellular-level information from in vivo images of tissue is critical in oncological 
applications. To the best of our knowledge, this is the first work that incorporates deep neural networks for depth 
estimation from single cellular-level images. A large synthetic dataset representative of real cancer cell images 
enabled training of deep neural networks for single and multilayer depth estimation and image deblurring and 
resolution enhancement. Accuracies of 87% for single-layer depth estimation, 95.8% for deblurring, 93.8% and 
86.5% for cell localization and depth estimation of non-overlapping and overlapping stacks of multiple layers 
of cells are achieved, respectively. The novel imaging platform presented here leveraged placing two sensors in 
tissue enabling high depth estimation accuracy for interoperative applications, which is made entirely possible 
by the ultra-small form factor of our custom-designed micro-chip sensor.

Figure 6.  Performance of the compounded module with the moving cell foci: (a) Sensitivity and specificity of 
the ResNet + CNN with 2-sensor network in detecting dynamics of the moving cell cluster for each layer. (b) 
Receiver Operating Characteristic (ROC) of the model averaged for all layers.

Table 1.  Comparison of this work with current depth estimation models.

This work 37 38 39 40

Application Single-layer depth 
estimation Deblurring

Multi-layer depth estimation
Depth estimation Depth estimation Depth estimation Cell invasion 

depth estimationNon-overlapping Overlapping

Architecture CNN CNN CNN RES + CNN RES + CNN Multi-scale deep 
network Encoder-decoder Gradient conver-

gence

Single acquisition Yes Yes Yes Yes Yes Yes Yes No

Dataset Synthesized 2D 
images

Synthesized 2D 
images

Synthesized 2D 
images

Synthesized 2D 
images NYU depth NYU depth NYU depth 3D cancer cell 

invasion assays

Average accuracy 
(%) 87 95.8 93.8 86.5 91.7 82.3 95.7 89.6
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Data availability
The dataset that was generated and used during this study is publicly available here https:// github. com/ rozhan- r/ 
3D- Recon struc tion- of- Cellu lar- Images.
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