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Numerous factors trigger male infertility, including lifestyle, the environment, health,
medical resources and pathogenic microorganism infections. Bacterial infections of
the male reproductive system can cause various reproductive diseases. Several male
reproductive organs, such as the testicles, have unique immune functions that protect
the germ cells from damage. In the reproductive system, immune cells can recognize
the pathogen-associated molecular patterns carried by pathogenic microorganisms
and activate the host’s innate immune response. Furthermore, bacterial infections
can lead to oxidative stress through multiple signaling pathways. Many studies
have revealed that oxidative stress serves dual functions: moderate oxidative stress
can help clear the invaders and maintain sperm motility, but excessive oxidative
stress will induce host damage. Additionally, oxidative stress is always accompanied
by autophagy which can also help maintain host homeostasis. Male reproductive
system homeostasis disequilibrium can cause inflammation of the genitourinary system,
influence spermatogenesis, and even lead to infertility. Here, we focus on the effect of
oxidative stress and autophagy on bacterial infection in the male reproductive system,
and we also explore the crosslink between oxidative stress and autophagy during
this process.
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INTRODUCTION

Healthy fertility is the basis for the survival and continuation of the species. Recently,
however, there have been increasing reports of declining male fertility. It is estimated that
infertility affects hundreds of millions of reproductive-aged couples worldwide (Inhorn and
Patrizio, 2015). Approximately 50% of these infertility cases are caused by male infertility
(Vander Borght and Wyns, 2018). The factors affecting male fertility include genetic defects
(Brugh and Lipshultz, 2004; Ferlin et al., 2006), steroid hormone disorders (O’Hara and Smith,
2015), hypogonadism (Casarini et al., 2020), spermatogenesis dysfunction (Gunes et al., 2015),
ejaculation disorders (Fode et al., 2012) and reproductive infections (Reddy et al., 2006;
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Ochsendorf, 2008; Sarkar et al., 2011). The incidence of infertility
varies significantly in different countries, and regions are very
different. In developed countries, about 10% of male infertility is
related to infectious and immune factors (Bachir and Jarvi, 2014).
In developing countries with poor health and medical conditions,
this proportion is as high as 50% (Ekwere, 1995). These
differences could be regarded as sanitary condition, lifestyle,
religious faith and medical resource. Pathogenic microorganism
infection and its induced immune response are important
causes of male infertility. As particular immune organs, the
testis and epididymis protect sperm from adverse immune
responses and effectively resist pathogenic microbial infection
(Fijak et al., 2011).

Various microorganisms, namely bacteria, viruses, and
parasites, can infect the male reproductive system and induce
a series of inflammatory responses that impair male fertility
(Bukharin et al., 2000). Bacteria usually infect the urethra,
seminal vesicles, prostate, epididymis, vas deferens, and
testes retrograde through the reproductive tract. Infections
caused by bacteria, including Chlamydia trachomatis, Neisseria
gonorrhoeae, and Brucella, contribute to 15% of male infertility
cases (Schaeffer, 1998; La Vignera et al., 2011; Cai et al., 2014;
Erdem et al., 2014). Furthermore, Mycoplasma can infect
the male reproductive tract but does not affect male fertility.
However, it can be transmitted to females and impair female
fertility by sex. Here we summarize the effect of bacterial
infections on the male internal reproductive system and explore
the underlying mechanisms.

After the pathogenic bacteria invade the male reproductive
system, oxidative stress and autophagy could be induced by
cells in the gonads. Moderate oxidative stress helps clear the
pathogen, but excessive oxidative stress can induce testicular
damage or even lead to infertility (Marchlewicz et al., 2016; Huo
et al., 2019). Abnormally elevated oxidative stress has a toxic
effect on tissue and cells, and can damage almost everything
inside cells, including DNA, proteins, and lipids. Autophagy is
a highly conserved cytological behavior in all eukaryotes that
maintains homeostasis by breaking down intracellular proteins
and organelles to provide energy and metabolic raw material.
Increasing evidence suggests that autophagy takes part in a
series of events within the male reproductive system, including
spermatogenesis, and hormone metabolism, which are also
affected by oxidative stress (Sharma et al., 2019; Zhu et al.,
2019). Coincidentally, autophagy, which is always accompanied
by oxidative stress, helps maintain immune homeostasis (Li et al.,
2019). Therefore, it is of positive significance to explore the
effect of oxidative stress-autophagy axis on the male reproductive
system. In this review, we focus on exploring their functions on
the male reproductive system during bacterial infections.

MALE INFERTILITY AND BACTERIAL
INFECTIONS

The effect of bacterial infection on reproductive system function
is important. Various bacteria have been isolated and identified
from the male reproductive system, including Escherichia coli,

Staphylococcus aureus, Ureaplasma urealyticum, C. trachomatis,
N. gonorrhoeae, Streptococcus agalactia, and Staphylococcus
saprophyticus (Oghbaei et al., 2020). These bacteria lead to
all kinds of diseases, such as chlamydiosis, gonorrhea, and
ureaplasmosis, which can cause male reproductive system
infections (Trojian et al., 2009). Bacterial infection induces male
infertility in the following ways (Table 1).

Bacterial Infections Affects Male Fertility
Chlamydia trachomatis, an intracellular bacterium, has been
detected in the epididymis, urethra, prostate, and Leydig
cells of the testis (Cunningham and Beagley, 2008). Although
C. trachomatis is a non-motile bacterium, it can infect testicular
cell populations (sperm, Leydig, and Sertoli cells) in only 3 days
by “hijacking” testicular macrophages (Bryan et al., 2019).
However, it is not clear how infected macrophages transfer
infection to other cells in the testes. There is evidence that LPS
of C. trachomatis interacts with the CD14 on the sperm surface,
and then induces production of oxidation intermediates, sperm
membrane lipid peroxidation, sperm DNA damage and caspase-
mediated apoptosis (Satta et al., 2006). C. trachomatis infection-
induced deterioration of sperm quality was associated with a low
potential for male fecundity (Gallegos et al., 2008).

Neisseria gonorrhoeae causes the most common infectious
diseases in men reproductive system (Furuya and Tanaka,
2009). It causes urethritis, prostatitis, epididymitis, and are
accompanied by the secretion of mucopurulent urethral
discharge. Available studies found a detrimental effect of
N. gonorrhoeae on male fertility (Abusarah et al., 2013).
N. gonorrhoeae can attach to the spermatozoa by its pili
and then infects other tissues through triggers a flow of
polymorphonuclear leukocytes (Stohl et al., 2012). There
are very few studies that reported the relationship between
N. gonorrhoeae and male infertility. The studies only reported
N. gonorrhoeae were twice as common in the semen of infertile

TABLE 1 | Common bacterial infection and its effect on male fertility.

Pathogenic
bacteria

Sites of infection Effect on fertility

C. trachomatis Testis, epididymis, seminal
vesicle, urethra, prostate

Spermatogenesis, sperm
motility and morphology, sperm
DNA damage, orchitis

N. gonorrhoeae Testis, epididymis, seminal
vesicle, urethra

Spermatogenesis, sperm DNA
damage, orchitis

U. urealyticum Epididymis, urethra, prostate Sperm motility and morphology,
inflammation, sperm DNA
damage, orchitis

P. aeruginosa Testis, epididymis, urethra Spermatogenesis, sperm DNA
damage, orchitis

E. coli Testis, epididymis, seminal
vesicle, urethra, prostate

Spermatogenesis, sperm
motility and morphology, sperm
DNA damage, orchitis

S. aureus Epididymis, urethra Sperm motility and morphology,
sperm DNA damage, orchitis

Brucella Testis, epididymis, seminal
vesicle

Orchitis
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patients (Khoder et al., 2019). The molecular mechanism
of N. gonorrhoeae infection-induced abnormal sperm and
reduction in sperm fertilization rate remains unclear. It is
noteworthy that N. gonorrhoeae can turn over a large amount
of peptidoglycan and is capable of activating Toll-like receptors
(TLRs) and Nod-like receptors (NLRs) to trigger antibacterial
innate immunity (Mavrogiorgos et al., 2014). Furthermore,
N. gonorrhoeae infection can induce apoptosis and oxidation
intermediates production in semen via promoting the production
of IL-1β (Kemal Duru et al., 2000; Singer and Ouburg, 2016).

Ureaplasma urealyticum is responsible for male infertility and
is implicated in the pathogenesis of epididymitis, prostatitis, and
urethritis (Pellati et al., 2008). Adhesion of U. urealyticum to
the sperm decreases sperm motility but the exact mechanism
by which U. urealyticum affects sperm quality has not yet been
revealed (Nunez-Calonge et al., 1998). Interestingly, metabolic
products of U. urealyticum, such as H2O2 and OH−, are toxic
to the sperm (Farsimadan and Motamedifar, 2020). So some
researchers thought that U. urealyticum in the urethra make
sperm more vulnerable to peroxidation damage and infertility
(Shang et al., 1999). Controversially, other researchers claimed
that U. urealyticum infection did not cause changes in sperm
motility, concentration, morphology and viability (Gdoura et al.,
2007). We speculated that the differences in the results of
different studies might be caused by the time/dose of infection
and the cross-infection of multiple bacteria.

Pseudomonas aeruginosa is a frequent inducer of orchitis,
epididymitis and urethritis (Rana et al., 2018). P. aeruginosa is
less toxic than other bacteria, which triggers chronic infections
by eliciting low levels of inflammatory responses (Farsimadan
and Motamedifar, 2020). Exotoxin A of P. aeruginosa targets
sperm tail proteins and affects sperm motility (Farsimadan
and Motamedifar, 2020). Porin from P. aeruginosa has sperm
plasma membrane receptors, directly affecting sperm parameters,
such as inducing apoptosis of seminal vesicle epithelial cells
(Buommino et al., 1999).

Brucella can survive and replicate in immune cells by escaping
and regulating the host immune response, and spread to the
tissues where Brucella is susceptible to colonization through
cell chemotaxis (Barquero-Calvo et al., 2007; Martirosyan et al.,
2011). However, Brucella has a non-classical LPS different
from the classical LPS of other bacteria, such as E. coli, and
only leads to a weaker inflammatory response (Rossetti et al.,
2012). In addition, Brucella also can inhibit the maturation of
phagolysosome and then migrate to the endoplasmic reticulum
and fuse with it to ensure its survival (Celli et al., 2003).
Subsequently, as these infected bacteria proliferate in the male
reproductive system, they can induce cytokines and produce a
state of inflammation such as orchitis and epididymitis.

Escherichia coli is the most significant bacterium in bacterial
infection-mediated male infertility (Comhaire et al., 1999).
E. coli -induced male infertility is multifaceted, including
inflammation of genitourinary system, failure of steroidogenesis
and spermatogenesis, and deteriorating sperm quality.
Components extracted from E. coli, such as LPS and porins, can
bind to cells’ receptors in the gonads and cause inflammatory
responses, oxidative stress and apoptosis via various signals

(Galdiero et al., 1988). Accumulation of proinflammatory
cytokines and oxidative intermediates eventually leads to
male infertility (Zeyad et al., 2018b). E. coli LPS is related to
the activation of NF-κB, HIF-1α signaling and inflammatory
responses (Palladino et al., 2018).

Effect of Bacterial Infections on the Male
Reproductive Organs
The maintenance of the male reproductive function depends on
effective spermatogenesis and the synthesis of testosterone.
Tissue damage and inflammation caused by bacterial
infection can lead to male infertility by negatively affecting
spermatogenesis and testosterone synthesis (Schuppe et al.,
2008). Inflammation is the body’s defense mechanism against
infection. Inflammation responses prompt leukocytes to move to
the infection site and clear the infection. In this process, various
cytokines such as tumor necrosis factors and interleukins can
mediate inflammation to affect testes and epididymis. Moreover,
TNF-α, IL1β, and IL-6 can inhibit Leydig cell’s synthesis of
testosterone and induce apoptosis of spermatogenic cells.
In addition, inflammation is associated with oxidative stress
(Agarwal and Saleh, 2002; Reddy et al., 2006; Agarwal et al.,
2014). Excessive oxidative stress is linked to male reproductive
organ injury and male infertility (Trojian et al., 2009).

Effect of Bacterial Infections on Cells in
the Male Gonads
Some bacterial infections influence spermatogenesis and even
lead to sperm apoptosis, which causes male infertility (Rana
et al., 2018; Klein et al., 2020). Successful reproduction
requires functioning germ cells. Bacterial infection can cause
considerable damage to sperm, such as chromosome breakage,
change of cell membrane structure, acrosome injury, and
mitochondrial dysfunction (Jendrossek et al., 2001; Fraczek
et al., 2007, 2012; Haines et al., 2013; Li J. et al., 2018; Zeyad
et al., 2018a). The integrity of sperm DNA and chromatin
are important factors affecting male fertility. Studies show
that damaged DNA harms male fertility (Santi et al., 2017;
Simon et al., 2017). Research has shown that Chlamydia
infections cause sperm chromosome breakage (Bryan et al.,
2019). Sertoli, Leydig, and spermatogonial stem cells are
essential for normal spermatogenesis. Sertoli cells usually act
as guardians for sperm and provide growth factors, nutrients
and energy for sperm. On the one hand, a certain number
of Sertoli cells are the basis for maintaining spermatogenesis
(Sharpe et al., 1999). On the other hand, Sertoli cells are
important targets of hormone signal transduction (especially
cholesterol), and its abnormal metabolism can lead to disorder
of spermatogenesis and ultimately male infertility (Golden et al.,
1999). In addition, Sertoli cells can take up and clear apoptotic
spermatogonial cells to maintain functioning spermatogenesis.
However, Sertoli cells can also be infected through the
phagocytosis of infected apoptotic spermatogonial cells (Bryan
et al., 2019). Leydig cells are the primary cells for steroid
synthesis involved in spermatogenesis, sexual development,
maintenance of secondary sexual characteristics and sexual
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behavior. Inflammation and apoptosis of Leydig cells can cause
abnormal testosterone synthesis, which affects spermatogenesis
and male reproduction (Theas, 2018). Furthermore, Leydig cells
and testicular macrophages are adjacent; thus, cell-to-cell contact
can spread the infection (Hales, 2002). Dysfunctions of these
cells attributed to bacterial infection can further negatively
affect spermatogenesis. The E. coli, S. aureus, Mycoplasma, and
P. aeruginosa secretion of inflammatory cytokines induced by
these bacterial infections also negatively affect spermatogenesis
(Said et al., 2005; Fraczek et al., 2013). Moreover, some bacteria,
such as Mycoplasma genitalium, can infect the male reproductive
system without affecting male fertility. However, these bacteria
can be transmitted to females by sex and influence female fertility
(Horner and Martin, 2017).

EFFECTS OF OXIDATIVE STRESS ON
MALE FERTILITY DURING BACTERIAL
INFECTION

Oxidative stress is a state of imbalance between oxidation
and antioxidation in favor of the oxidants (Sies, 2015).
Forms of Oxidative stress include nutritional oxidative stress,
physiological oxidative stress, photooxidative stress, radiation-
induced nitrosative stress, and reductive stress. Generally,
physiological oxidative stress leads to inflammatory infiltration
of neutrophils, increased protease secretion, mitochondrial
dysfunction, lipid peroxidation, and the production of many
oxidative intermediates such as reactive oxygen species (ROS)
and reactive oxygen nitrogen species (RNS), and various
cytokines (Ryan et al., 2004). One of the bacterial genitourinary
system infection results is the overproduction of ROS and RNS.
There is evidence that a low level of ROS/RNS participates in
eliminating intracellular bacteria (West et al., 2011). Meanwhile,
ROS/RNS and oxidative stresses help eliminate the infections
and fertilize sperm. However, excessive ROS/RNS leads to
dysregulation of the endogenous ROS/RNS clearance system
and induces intense oxidative stress, one of the causes of
infertility (Aitken et al., 1989; Pizzino et al., 2017; Borrelli et al.,
2018). It has been reported that various bacteria, including
E. coli, Staphylococcus haemolyticus, Bacteroides ureolyticus,
and C. trachomatis can cause oxidative stress in different
male reproductive systems (Appasamy et al., 2007; Fraczek
et al., 2007; Gonzalez-Marin et al., 2011; Neagu et al.,
2011). In addition, pathogen-associated molecular patterns of
these bacteria, such as LPS and lipoteichoic acid also caused
oxidative stress. For example, stimulating Sertoli cells with
LPS increases lipid peroxidation and hydrogen peroxide levels,
and inhibits the synthesis of antioxidant enzyme activities
and glutathione-S-transferase. Furthermore, several Sertoli cell
function markers, including lactate, lactic acid dehydrogenase,
γ-glutamyl transpeptidase, and b-glucuronidase levels, were
decreased in a dose-dependent manner that affected Sertoli cell’s
ability to maintain normal reproduction (Aly et al., 2010). These
results show that bacterial infections affect redox equilibrium in
the male reproductive system.

Oxidative Stress and Its Signal
Transduction in Bacterial Infections
Under normal physiological conditions, the oxidation
intermediates can be promptly removed by various antioxidants,
including dismutase (SOD), glutathione reductase, and vitamin
E. The remaining oxidation intermediates, such as ROS, can
participate in membrane receptor-mediated signal transduction
and vascular tension maintenance. However, when the body
is subjected to threatening stimuli, oxidation intermediates’
production is too high to be eliminated, and oxidative stress
occurs. Multiple oxidation and antioxidation signaling pathways
are involved in the process of oxidative stress, including
Nrf2/Keap1/antioxidant response elements (AREs) signaling,
PI3K/Akt/mTOR signaling, and TLRs signaling.

NF-E2-Related Factor/Kelch-Like ECH-Associated
Protein 1/Antioxidant Response Elements Signaling
NF-E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein
1 (Keap1) signaling is a defense system that maintains
physiological homeostasis in mammals. In its inactive state,
Nrf2 is present in the form of the Nrf2-Keap1 complex in
the cytoplasm. When oxidative stress occurs, Nrf2 dissociates
from Keap1 and then goes into an activation status and
translocates to the nucleus. Dietz found that changes in the
structure of the Keap1 protein induced by stimulation through
the modification of cysteine residues lead to the dissociation of
Nrf2 (Dietz et al., 2008). However, another piece of evidence
shows that oxidative stress activates PI3K and mitogen-activated
protein kinase (MAPK) signaling and causes the phosphorylation
of Nrf2, leading to its dissociation from Keap1 (Tkachev
et al., 2011). Subsequently, the free Nrf2 heterodimerizes with
musculoaponeurotic fibrosarcoma oncogene homolog (Maf)
protein. Then, the Nrf2-Maf heterodimer binds to AREs to
induce redox-balancing factors, antioxidants, stress response
proteins, and metabolic genes such as HO-1, NQO-1, GCL, GST,
GPx, SOD, and CAT (Hahn et al., 2015; Yang et al., 2016;
Fuse and Kobayashi, 2017). Most studies on Nrf2 signaling
focus on tumorigenesis, metabolic disease, and toxic chemical
stressors (Higgins et al., 2009; Sporn and Liby, 2012; Nezu et al.,
2017). Evidence suggests that Helicobacter pylori stimulation
can downregulate Nrf2 through NADPH oxidases 1 (Perez
et al., 2017). NADPH oxidase 2-deficient mice are susceptible to
S. aureus and Burkholderia cepacia (Pizzolla et al., 2012).

PI3K/Akt/mTOR Signaling
PI3K/Akt/mTOR signaling, as a bridge between extracellular
signals and intracellular responses, widely exists in various cells
and participates in cell growth, proliferation, and differentiation.
PI3K/Akt/mTOR signaling is involved in various physiological
and pathological processes such as tumorigenesis, pathogenic
microbial infection, and autoimmune disease (Mistry et al.,
2019; Noorolyai et al., 2019; Jeddi et al., 2021). After PI3K
activation, the second messenger PIP3 can combine with Akt and
phosphoinositol-dependent protein kinase (PDK). PDK catalyzes
the phosphorylation of Akt at Ser308 and Ser473 and leads
to complete activation of Akt (Kilic et al., 2017). Activated
Akt can mediate apoptosis, cell migration, and autophagy
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by activating or inhibiting MDM2, Palladin, and mTOR
(Hers et al., 2011). Several studies have found that PI3K signaling
is closely related to bacterial infection-mediated oxidative
stress. Salmonella typhimurium infection increases oxidative
stress levels, influencing mitochondrial translocation through
PI3K/Akt/mTOR signaling (Mistry et al., 2019). A proteomic
approach coupled with bioinformatics analysis showed that
Klebsiella pneumoniae infection causes the misfolding of host
proteins through PI3K/Akt/mTOR signaling, and inhibition of
mTOR induces autophagy and intestinal atrophy (Kamaladevi
and Balamurugan, 2017). Oliveira et al. (2018) confirmed that
ROS contributes to the invasion of host cells by S. agalactia, with
cytoskeletal recombination through PI3K signaling. In addition,
mTOR plays an essential role in maintaining male reproduction,
and a study showed that mTOR deficiency reduces sperm motility
(Schell et al., 2016).

Toll-Like Receptors Signaling
The innate immune system consists of various components
that coordinate to suppress infection and eliminate invading
pathogenic microorganisms. In the past few decades, there has
been much evidence that exogenous pathogens invade hosts
based on gene-encoded pathogen-associated molecular patterns
(PAMPs), and the protective molecules that can recognize these
exogenous pathogens are called pattern recognition receptors
(PRRs). TLRs are one of the PRR families that can recognize
various PAMPs, and TLR2 and TLR4 are the most important
PRRs that mainly recognize LPS, lipoteichoic acid, lipoprotein,
and lipopeptides in the process of bacterial infections (Akira
et al., 2001; Janeway and Medzhitov, 2002). TLR signaling is
divided into two pathways; a Myd88-dependent pathway and
a TRIF-dependent pathway. In Myd88-dependent pathways,
MyD88 first recruits and activates interleukin receptor-associated
kinase (IRAK), and then activated IRAK1 combines with
TRAF6 to activate TAK1, which in turn induces NF-κB and
MAPK signaling pathways to produce inflammatory responses
(Kollewe et al., 2004; Akira et al., 2006; Kawai and Akira,
2010; Chen, 2012). In the TRIF-dependent pathway, MyD88
is not necessary. After TRIF is recruited to TLRs, it helps
induce inflammatory responses and type I interferon through
activation of NF-κB signaling, MAPK signaling, and interferon
regulatory factor 3 (Fitzgerald et al., 2003; Guo and Cheng,
2007). The cells are activated by a cascade of signals induced
by TLRs, and the activated cells produce pro-inflammatory
cytokines that induce the production of ROS and RNS and
cause oxidative stress (Ryan et al., 2004). In addition, interferon
(IFN) also regulates oxidative stress. IFN promotes hydrogen
peroxide release by activating macrophages and can interact
with nicotinamide adenine dinucleotide phosphate oxidases 1
and induce superoxide anion production. Furthermore, NF-
κB and MAPK signaling can regulate the transcriptional level
of inducible nitric oxide synthase, which induces excess NO
release and causes oxidative stress (Reimann et al., 1994; Taylor
et al., 1998). Additionally, oxidative stress can affect TLR-
mediated inflammatory responses. A study found that ROS leads
to AP-1 transcriptional activity attenuation, which reduces the
transcriptional expression of TLR4 (Ishida et al., 2002).

Oxidative Stress-Induced Male Infertility
in Bacterial Infections
Many factors lead to male infertility, including hormonal
disorders, obesity, stress, lifestyle, hygienic conditions, and
general health. The male reproductive system infection, especially
bacterial infections, is a common factor that impairs male
reproductive tract function and spermatogenesis and is a
substantial reason for male infertility. Pathogenic bacteria
in the male reproductive tract are mainly concerned with
genitourinary system dysfunction, failure of steroidogenesis and
spermatogenesis, and deteriorating sperm quality, leading to
male infertility (Fijak et al., 2018; Oghbaei et al., 2020; de
Oliveira et al., 2021). The main consequences of bacterial
infection-induced genitourinary system dysfunction, failure of
steroidogenesis and spermatogenesis and deterioration of sperm
quality are the overproduction of pro-inflammatory cytokines
and oxidative stress. For instance, Staphylococcus can invade
the male reproductive system directly or through blood-borne
transmission. Staphylococcus affects male fertility, yielding poor-
quality semen, increased tissue damage, and impaired sperm
functions by releasing pro-inflammatory cytokines and ROS.
Staphylococcal exotoxins can also activate T-helper (Th) cells,
Th1 and Th17, which aggravates the damage of male reproductive
tissue/cells (Dutta et al., 2020). C. trachomatis is the most
common sexually transmitted bacterium which impairs male
fertility by causing urethritis, prostatitis, epididymitis, and
orchitis. In addition, it has been shown that C. trachomatis-
induced the secretion of various cytokines and production of
ROS are important causes of these diseases (Witkin et al., 1995;
O’Connell et al., 2006).

Oxidative Stress Affects Male Reproductive Organ
Function
The male reproductive system is mainly composed of testis
and accessory organs. Oxidative stress can affect male fertility
through damage to male reproductive system. N. gonorrhoeae
can cause orchitis and epididymitis, which lead to the male
reproductive tract injury and obstruction through inflammation
and oxidative stress (Ochsendorf, 2008; Mavrogiorgos et al.,
2014). Since testicles are mainly responsible for spermatogenesis
and androgen secretion. When male infertility occurs, we often
consider whether the physiological function of the testis is
normal firstly. Excessive oxidative stress induces the continual
accumulation of lipid peroxide and consumption of antioxidant
enzymes which leads to apoptosis of androgone and Leydig cells
and testicular dysfunction (Strycharz et al., 2018). The epididymis
is one of the important organs of the male reproductive system
and is related to sperm maturation, transport and storage.
When the sperm has just left the testes, it is still immature
and lacks self-defense mechanisms. Sperm will gain the ability
to fertilize only after their descent and maturation within the
epididymis. Although a given oxidation level is required for
sperm maturation in the epididymis, sperm are sensitive to
oxidative damage. Redox balance in the epididymis is the basis
of maintaining normal epididymis function. Excessive oxidative
stress disrupts the activity of proteins secreted by epididymal
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epithelium, interferes with sperm plasma membrane fluidity
and DNA integrity and ultimately leads to male infertility
(Noblanc et al., 2012).

Oxidative Stress Affects Male Reproductive Cells
Function
When pathogenic bacteria invade the male reproductive system,
various cells in the gonads respond to bacteria, including
testicular macrophages, Sertoli, and Leydig cells (Chen et al.,
2016). In the process, the TLR family contains the most
important PRRs, which can recognize these bacteria and cause
the production of multiple cytokines and immune responses. For
example, C. trachomatis can be recognized by TLR2 and TLR4,
which induce IL-1β, IL-8, IL-10, IL-17A, IFN-γ, and iNOS in
Sertoli cells and testicular macrophages (Winnall et al., 2011;
Murthy et al., 2018). In addition, chlamydial LPS, a ligand of
TLR4, can cause sperm dysfunction and apoptosis (Hosseinzadeh
et al., 2001; Bryan et al., 2020). Moreover, our lab’s studies
have revealed that TLRs’ expression influences the production
of pro-inflammatory cytokines and the level of oxidative stress
(Deng et al., 2020; Wang et al., 2020). Alternatively, bacterial
endotoxin lipopolysaccharide-induced ROS can inhibit Leydig
cell steroidogenesis and cause Sertoli cell apoptosis (Le Goffic
et al., 2003; Zhang et al., 2020). Cumulative oxidative damage
may inhibit steroid synthesis in Leydig cells, and abnormal
mitochondria may also be associated with Leydig cell apoptosis,
leading to decreased sex steroid hormones. In addition, the
decline of sexual steroid hormones can aggravate mitochondrial
dysfunction, further promote mitochondrial damage, and
ultimately aggravate apoptosis (Miller, 2013).

Oxidative Stress Affects Sperm Quality and
Spermatogenesis
A certain number of functional sperm is the basis of male
reproductive function. In the macrophages of Treponema
pallidum-infected men, high cytokine levels such as IFN-β, IFN-
γ, and TNF-α are associated with oxidative stress-induced sperm
DNA damage and apoptosis (Cruz et al., 2012; Azenabor et al.,
2015). A recent study found that Mycoplasma infection can
induce oxidative and mitochondrial dysfunction by activating
NF-κB and Nrf2/HO-1 signaling (Ishfaq et al., 2019). On
the one hand, excessive oxidative stress leads to the release
of mitochondrial substances such as cytochrome C, which
activates the caspases signal and induces apoptosis (Wagner
et al., 2018). On the other hand, excessive ROS leads to a
decrease in mitochondrial membrane potential, which leads
to energy generation disorder and ultimately further decreases
sperm motility. A high ROS level can affect the fluidity of the
sperm membrane and induce sperm mitochondria to produce
a high level of lipid peroxidation and even lead to apoptosis
(Aitken et al., 2012).

Furthermore, excessive oxidative stress leads to sperm DNA
damage, an important factor that induces male infertility. Also,
oxidative stress is a double-edged sword in spermatogenesis
(Sharma et al., 2019). Since oxidative stress can affect the
microenvironment in which spermatogenesis occurs, the
negative effects of oxidative stress on spermatogenesis are

indisputable (Tremellen, 2008). In addition, excessive oxidative
stress induces apoptosis of Sertoli cells and further disrupts
spermatogenesis (Sharpe et al., 1999). Moreover, oxidative stress
affects spermatogenesis through impairing epigenetics, such as
DNA methylation (Sharma et al., 2019).

OXIDATIVE STRESS-AUTOPHAGY AXIS
IN MALE FERTILITY

Autophagy Is an Important Factor
Affecting Male Reproductive
Homeostasis During Pathogen Infection
Autophagy is a highly conserved cytological behavior in
all eukaryotes that maintains homeostasis by breaking down
intracellular proteins and organelles. Furthermore, autophagy is a
fundamental cell biological pathway that can influence immunity.
Autophagy controls inflammation by interacting with innate
immune regulatory signals to clear pro-inflammatory cytokines
and redundant oxidation intermediates. It is considered that
IKK, TAB2/3, mTOR, MAPK, and TAK signaling regulate
autophagy. When immune cells recognize the PAMPs from a
pathogenic microorganism, Tab2/3 dissociates from Beclin-1
and induces autophagy initiation and autophagosome formation
(Monkkonen and Debnath, 2018). Autophagy can be used as
an immune barrier to eliminate infectious pathogens, while
some pathogens can use autophagy to promote their survival
in host cells, thus aggravating infection (Engstrom et al.,
2019). Also, excessive autophagy can inhibit the proliferation
of spermatogonial, cause seminiferous tubules injury, trigger
spermatogenesis dysfunction and even sperm apoptosis (Liu
et al., 2017; Mu et al., 2017). Therefore, autophagy is more like a
“double-edged sword” in the process of anti-pathogen infection.
There is accumulating evidence indicating that autophagy is
involved in several pathological and physiological processes
in the male reproductive system, including spermatogenesis,
testicular endocrinology, fertilization (Zhu et al., 2019). PDGFR-
β siRNA-PEI-PLGA-PEG nanoparticles-induced autophagy
helps decrease the C. trachomatis by approximately 65%. The
knocking down of PDGFR-β and promoting autophagic flux
in host cells contribute to fighting against C. trachomatis
(Yang et al., 2019). An interesting study found that CD46-
cyt1/GOPC signal-dependent autophagy can reduce the number
of N. gonorrhoeae invading cells at the early stages of infection
(at 2–4 h). Nevertheless, N. gonorrhoeae starts to remodel
lysosomes and prevent degradation of autophagolysosomal
contents, which cause bacteria to survive in it (Kim et al., 2019).
T3SS of P. aeruginosa inhibits the autophagy process. Thus
rapamycin-inducing autophagy could enhance the clearance of
P. aeruginosa (Xu J. et al., 2020). Moreover, rapamycin-inducing
autophagy suppresses P. aeruginosa-induced apoptosis and
ROS accumulation via MAPK signal and ultimately eliminate
bacteria (Han et al., 2020). In addition, autophagy-related gene
(ATG) families regulate autophagy and are considered in the
cytoskeleton maintenance (Offei et al., 2018). The deletion
mutation of ATG5/7 in Leydig cells results in an abnormal
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accumulation of PDLIM1 and then sperm with malformed heads
and low motility (Liu et al., 2016).

Furthermore, autophagy can also affect lipid metabolism, and
this process is known as lipophagy. In Leydig cells, inhibition of
autophagy leads to a drop in testosterone and free cholesterol.
Further research found that autophagy causes the accumulation
of NHERF2 and down-regulation of SRBI, leading to inadequate
cholesterol intake and decreased testosterone synthesis (Gao
et al., 2018; Ma et al., 2018). Moreover, mitophagy helps clear
the sperm mitochondrial DNA, potentially toxic to organisms in
the normal fertilization course (Sato and Sato, 2011). Deletions
in Parkin and MUL1 cause those paternal mitochondria to
remain in the embryos (Rojansky et al., 2016). Additionally,
autophagy is controlled by various PRRs and responds to PAMPs.
In the process of pathogenic infection, bacterial PAMPs activate
multiple signaling pathways, such as the NF-κB, MAPK, and
PI3K signaling pathways, to induce autophagy (Deretic et al.,
2013). These pieces of evidence suggest that autophagy is essential
to maintain male fertility.

Effect of Oxidative Stress-Autophagy
Interactions on Male Fertility in Bacterial
Infection
Various PRRs in all kinds of immune cells can recognize
pathogenic bacteria, and these cells start to eliminate the bacteria
by a series of immune responses. ROS is one of the crucial
signaling molecules in the oxidative stress response. Under the
pathological condition of bacterial infection, low ROS levels
can help clear the pathogenic bacterium, but the excessive
accumulation of ROS could affect cellular homeostasis, causing
oxidative stress and cell dysfunction, and even cell death.
Meanwhile, autophagy is usually activated during this process. It
suggests that there is a close connection between oxidative stress
and autophagy. Evidence shows that oxidative intermediates are
the upstream modulators of autophagy (Filomeni et al., 2010).
Predictably, appropriate oxidative stress acts as special ‘alarm
molecules’ of bacterial infections by signaling their invasion to
the autophagic machinery. In turn, moderate autophagy helps
maintain physiological homeostasis through a negative feedback
regulation by concomitantly reducing ROS and oxidative damage
to organelles and ultimately removing bacteria (Kim et al., 2017).
Autophagic disorders have been found to be associated with the
initiation of pathological states. In the epithelial cells, defects
of autophagy-related genes are related to higher cellular ROS
levels (Saxena et al., 2018). Moreover, deletions of autophagic
genes result in the accumulation of damaged organelles and
DNA that induce metabolic disturbance (Larabi et al., 2020).
Additionally, there is also evidence that excessive autophagy leads
to the aggravation of oxidative damage of testis (Tian et al.,
2020). Inhibiting the production of oxidative stress, in turn,
contributes to the inhibition of bacterial LPS-induced autophagy
(Yuan et al., 2009). From this perspective, autophagy is essential
for the male reproductive system to eliminate bacterial infections
and oxidative stress status simultaneously. It can be seen from
the above that there is a complex relationship between autophagy
and oxidative stress. And there is no doubt that the regulation

of the oxidative stress-autophagy axis is involved in multiple
signaling pathways.

Toll-Like Receptors-NF-κB/MAPK Signaling in
Oxidative Stress-Autophagy Axis
Various bacteria, isolated and identified from the male
reproductive system, such as C. trachomatis, N. gonorrhoeae,
E. coli, and S. aureus, can be recognized by TLRs and activate
the NF-κB signaling pathway, which induces the production
of multiple inflammatory cytokines. TNF-α and IL-1 can
strongly induce ROS and invoke oxidative stress through the
NOX family proteins pathway (Park et al., 2006). Knockdown
of Nox4 decreases the LPS-induced ROS generation. The
mechanism is that the cytokines-activated Nox enzymes catalyze
the conversion of O2 to O2−, and then converted to H2O2
by superoxide dimutase. Moreover, H2O2-induced oxidative
stress can upregulate p62 and increase autophagy by mediating
NF-κB p65 phosphorylation at Ser-536 (Song et al., 2017).
NF-κB-p62 signals establish the connection between oxidative
stress and autophagy. Alternatively, NF-κB promotes the clearing
of the damage by activating the autophagy receptor P62 and
inhibiting the production of IL-1 via NLRP3 (Zhong et al.,
2016). Also, bacterial LPS-mediated activation of TLRs could
induce MAPK pathway through TAK1 signaling, inhibition
of MAPK signaling causes autophagic dysfunction. Research
findings show that p38 MAPK, ERK, and JNK are all involved
in the induction of autophagy (Xu et al., 2016; Li Q. et al.,
2018; Wang et al., 2020). Activation of MAPK can increase
beclin-1 activity, and then regulates transcription of ATG family
which can induce autophagy initiation (Zhou et al., 2015).
ERK signaling is associated with many autophagic markers.
Activation of ERK signal induces the conversion of LC3-I to
LC3-II, induction of Beclin-1 and BNIP, and phosphorylation
of G-interacting protein and p53 (Ogier-Denis et al., 2000;
An et al., 2006; Cheng et al., 2008). Similarly, JNK can mediate
the accumulation of p62 and phosphorylation of AMPK, which

TABLE 2 | Key signaling molecules associated with oxidative stress-autophagy
axis and their effect on male fertility.

Signaling
molecules

Targeted
tissue/cells

Involvement of male
fertility

References

TGF-β3 Testis Regulating the blood-testis
barrier dynamics

Zhang and Lui,
2015

ATG5/7 Sertoli cells Maintaining cytoskeletal
organization of sertoli cells

Liu et al., 2016

FGF-4 Sertoli cells Affecting the self-renewal of
spermatogonia stem cells

Yamamoto et al.,
2000

IL-6 Sertoli cells Affecting blood-testis
barrier integrity and
proliferation of sertoli cells

Jenab and Morris,
1997; Zhang et al.,
2014

Glucose Sertoli cells Maintaining sertoli cells
function

Nguyen, 2017

mTOC1 Sertoli cells Regulating proliferation of
sertoli cells

Ni et al., 2019

PI3K Sertoli cells,
testis

Regulating proliferation of
sertoli cell, affecting testis
integrity

Sun et al., 2015;
Long et al., 2018
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are involved in the induction of autophagy (Zhou et al., 2015).
Moreover, the JNK signal contributes to up-regulating ATG5
and ATG7, the important proteins in the autophagy complex
(Wong et al., 2010; Xie et al., 2011). In turn, ROS scavenger
N-acetyl-l-cysteine could eliminate p-p38, p-ERK, and p-JNK
upregulation (Huang et al., 2018; Fan et al., 2020). In summary,
ROS can induce autophagy via the MAPK signaling pathway
in bacterial infection. Accumulating evidence has suggested
the essential functions of MAPK signaling in male fertility
(Zhang and Lui, 2015; Ni et al., 2019). The p38 MAPK signaling
regulates JAM-B expression via phosphorylating the ETS domain
transcription factor, which is essential for the migration of germ
cells (Wang and Lui, 2009). ERK signaling can interact with
FGF-4 or GDNF to affect the self-renewal of spermatogonia
stem cells (Yamamoto et al., 2000; Hasegawa et al., 2013). JNK
signaling is associated with tight junctions and adherens

junctions dynamics in testis. The activated JNK signaling
increases ICAM-1 expression, which can stabilize tight junctions
dynamics (De Cesaris et al., 1999).

NF-E2-Related Factor 2 Signaling in Oxidative
Stress-Autophagy Axis
Several studies suggest that Nrf2 signaling affects male
reproductive function. A direct evidence indicates that
down-regulation of Nrf2 triggers spermatogenic cells
ferroptosis. In turn, the activated Nrf2 increases busulfan-
treated sperm motility and concentration (Zhao et al.,
2020). It also has been shown above that Nrf2/Keap1/AREs
signaling is a key pathway in oxidative stress. Most studies
on oxidative stress-induced Nrf2 signaling have focused on
autoimmune disease and tumorigenesis, but seldom relate to
pathogenic microorganism infection (Zhang and Gordon, 2004;

FIGURE 1 | The proposed oxidative stress/autophagy cross-talk in the bacterial infection condition. Oxidative stress induces autophagy via multiple signaling
pathways, including NOX- NF-κB-p62 signaling, Nrf2-Keap1-AREs signaling, MAPK-beclin-1 signaling, HIF-1-BNIP3/NIX-beclin-1 signaling, AMPK/PI3K-mTOR
signaling, and SIRT1-FoxO3A-LC3/BNIP3 signaling. Autophagy, in turn, can attenuate oxidative through inducing degradation of damaged organelles and
decreasing production of pro-inflammatory cytokines and ROS.
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Gilardini Montani et al., 2019; Tian et al., 2020). A recent
study reported that Mycoplasma gallisepticum could induce
oxidative stress and activate Nrf2 signaling. On the one hand,
activation of the Nrf2 pathway contributes to maintaining
mitochondria’s normal functions, which is one of the key factors
in maintaining sperm homeostasis during bacterial infections
(Ishfaq et al., 2019). In addition, suppressing Nrf2 signal would
decrease HO-1 expression, and subsequently result in ROS
induction (Ko et al., 2016). On the other hand, many studies
have found that the Nrf2 signal can increase phosphorylation
of AMPK, ultimately inducing autophagy via suppressing the
phosphorylation of mTORC1 and its related protein (Shen
et al., 2020). Additionally, mitophagy and the Nrf2 signal are
interdependent. Phosphorylation of the autophagy-adaptor
protein p62 is related to persistent activation of Nrf2 (Ichimura
et al., 2013). Thus, we hypothesize that there may be such a
signaling pathway in the infection process. After the pathogenic
microorganisms invade the body, the accumulation of ROS
induces oxidative stress. Subsequently, Nrf2 dissociates from
Keap1 and then heterodimerizes with Maf protein, which binds
to the ARE motif of the P62 promoter. Finally, the increased
expression of P62 induces mitophagy (Geisler et al., 2010).
Mitophagy, in turn, can maintain mitochondrial homeostasis by
eliminating excessive ROS together with damaged mitochondria
(Ma et al., 2020).

Other Signaling in Oxidative Stress-Autophagy Axis
When the host is in a state of intense inflammation induced
by bacterial infections, macrophages can produce a substantial
amount of NO and O2

−, which induce plenty of ROS and
oxidative stress. Subsequently, ROS induces the HIF-1-mediated
transcription of BNIP3, BNIP3L, and NIX genes. Their proteins
further induce autophagy by competing with beclin-1 for
binding BCL2 (Mahalingaiah and Singh, 2014). HIF-1 signaling-
induced free beclin-1 can cause mitophagy, clearing the damaged
mitochondria and decreasing ROS production (Xu Y. et al.,
2020). Several inflammatory cytokines and ROS can be induced
in bacterial LPS-exposed Leydig and Sertoli cells (Duan et al.,
2016; Li et al., 2019). TNF-α and IL-6 are involved in regulating
apoptosis of Sertoli cells (Yao et al., 2009; Zhang et al., 2014).
Moderate ROS indirectly enhances the AMPK phosphorylation
(for example, inducing mitochondrial ATP production) and then
attenuates mTOR activation (Hinchy et al., 2018). Furthermore,
the inhibition of mTOR signaling is a key factor in the autophagy
phenomenon. Moreover, AMPK also exists in the midpiece of
sperm (Calle-Guisado et al., 2017). AMPK activity helps maintain
sperm mitochondrial membrane potential, which is also a key
signal of mitophagy (Martin-Hidalgo et al., 2018). Additionally,
the AMPK pathway affects Sertoli cells function. The activated
AMPK signaling can induce glucose in rat Sertoli cells, which
is a preferring energy source of spermatids (Kishimoto et al.,
2015; Nguyen, 2017). AMPK activation also can inhibit the
proliferation of rat Sertoli cells through suppression of mTOC1
(Ni et al., 2019). ROS-induced oxidative stress can also regulate
the activation of PI3K signaling during bacterial infection
(Mistry et al., 2019). PI3K signaling can also inhibit mTOR
activation via AKT and GSK3B signals and promote ULK1

phosphorylation and transcription of multiple autophagy-related
genes (Sciarretta et al., 2014; Guo et al., 2018). In addition,
PI3K signaling takes part in regulating the proliferation of
piglet Sertoli cells and testicular microcirculation homeostasis,
but the precise mechanism is still unclear (Sun et al., 2015;
Long et al., 2018). Furthermore, Pun’s research has shown
that ROS inhibitors could prevent the LPS-induced SIRT1-
FoxO3A axis, which involves transcription autophagy-related
genes such as LC3 and BNIP3 (Pun et al., 2015). Oxidative stress-
induced FoxO3A activation leads to the induction of autophagy
(Li et al., 2015).

To sum up, during bacterial infection of the male reproductive
system, oxidative stress can increase ROS levels. On the one hand,
oxidative stress-damaged tissues and cells lead to increased ROS
aggravating damage and imbalance of physiological homeostasis.
On the other hand, ROS also can induce autophagy, which
appears to be a key protective mechanism against oxidative stress
and intracellular abnormalities (Table 2). Multiple signaling
pathways, including NOX- NF-κB-p62 signaling, MAPK-beclin-
1 signaling, HIF-1- BNIP3/NIX-beclin-1 signaling, AMPK/PI3K-
mTOR signaling, SIRT1-FoxO3A-LC3/BNIP3 signaling, and
Nrf2-Keap1-AREs signaling, are involved in the oxidative stress-
autophagy axis (Figure 1). There are still few studies on how
autophagy regulates oxidative stress. Several studies found that
the regulation of autophagy on oxidative stress under different
pathological conditions showed different results, and autophagy-
mediated changes of production of cytokines and ROS and
organelle degradation play key roles during these processes (Kim
et al., 2007; Nakahira et al., 2011; Chen et al., 2015; Li Q. et al.,
2018; Saxena et al., 2018). The specific mechanisms in these
processes remain to be further studied.

CONCLUSION

Bacterial infection in the male reproductive system is one of
the key factors affecting male fertility. The main factors leading
to male sterility are inflammation of the reproductive system,
injury of the male reproductive organ, and spermatogenesis
disorder induced by pathogenic bacterial infection. Furthermore,
oxidative stress is closely related to these pathological processes.
This review has focused on how oxidative stress forms during
genital tract pathogen infections involving E. coli, S. aureus,
U. urealyticum, C. trachomatis, N. gonorrhoeae, S. agalactia, and
S. saprophyticus, and how oxidative stress induces inflammation,
tissue damage, and spermatogenesis dysfunction. Furthermore,
we describe Nrf2/Keap1/AREs, PI3K/Akt/mTOR, and TLR
signaling as the main signal transduction pathways of oxidative
stress during bacterial infections. Autophagy, which is always
accompanied by oxidative, can help maintain host homeostasis.
We discussed the effect of oxidative stress-autophagy interactions
on male fertility in bacterial infection. MAPK, HIF-1, AMPK,
PI3K, SIRT1, and Nrf2 are activated in response to oxidative
stress, and sequentially, they can invoke autophagy by regulating
beclin-1, mTOR, FoxO3A, and p62. Autophagy, in turn, can
affect the secretion of pro-inflammatory cytokines, degradation
of organelle and production of ROS.
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Since oxidative stress and autophagy both serve dual functions
in eliminating pathogenic, there is a very promising question
of how to use oxidative stress and autophagy to maintain
male reproductive vitality. Here we put forward the following
thinking. First, it is important to understand the infectious
properties of different bacteria. For bacteria that can be cleared
by autophagy, we can use autophagy inducers to maintain male
reproductive vitality. For bacteria that can use autophagy to
achieve immune escape and help them survive, we can use
autophagy inhibitors to maintain male reproductive vitality.
Since excessive oxidative stress can cause tissue and organ
damage, we also need to pay attention to controlling levels of
oxidative stress. Secondly, according to our summary of signals
affecting both oxidation and autophagy, we can further look
for potential targets that affect spermatogenesis, sperm quality
and inflammation. Therefore, this review can also provide a
reference for treating bacterial infection of the male reproductive
system from the perspective of oxidative stress-autophagy.
In short, the mutual regulation and restriction of oxidative
stress and autophagy guarantee the elimination of pathogenic

bacteria and the balance of physiological homeostasis in male
reproductive organs.
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