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Abstract

Changing forest cover is a key driver of local climate change worldwide, as it affects both

albedo and evapotranspiration (ET). Deforestation and forestation are predicted to have

opposing influences on surface albedo and ET rates, and thus impact local surface tempera-

tures differently. Relationships between forest change, albedo, ET, and local temperatures

may further vary regionally, as the strengths of warming by albedo effects and cooling by ET

effects vary with latitude. Despite these important relationships, the magnitude of forest

cover effects on local surface temperature across the globe remains unclear. Using

recently-released global forest change data, we first show that forestation and deforestation

have pervasive and opposite effects on LST, ET and albedo worldwide. Deforestation from

2000 to 2010 caused consistent warming of 0.38 ± 0.02 (mean ± SE) and 0.16 ± 0.01˚C in

tropical and temperate regions respectively, while forestation caused cooling in those

regions of -0.18 ± 0.02 and -0.19 ± 0.02˚C. Tropical forests were particularly sensitive to the

climate effects of forest change, with forest cover losses of ~50% associated with increased

LST of 1.08 ± 0.25˚C, whereas similar forest cover gains decreased LST by -1.11 ± 0.26˚C.

Secondly, based on a new structural equation model, we show that these changes on LST

were largely mediated by changes in albedo and ET. Finally, based on this model, we show

that predicted forest changes in Brazil associated with a business-as-usual land use sce-

nario through 2050 may increase LST up to 1.45˚C. Our results contribute to a better under-

standing of the mechanistic inter-relationships between forest change and changes in

albedo, ET and LST, and provide additional evidence that forestation has the potential

to reverse deforestation impacts on local climate, especially in tropical and temperate

regions.
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Introduction

Forests originally covered 40% of Earth’s terrestrial surface [1], but extensive deforestation

over the past 300 years has reduced this area substantially (e.g. [2]). On the other hand, foresta-

tion (i.e., forest cover increase) is also common globally, and reflects both the passive regenera-

tion of vegetation (e.g., in abandoned agriculture land) and the active restoration and planting

of new forests [3]. For example, planted forests increased in extent from 16.7 million km2 in

1990 to 27.8 million km2 in 2015 [4]. From 2000 to 2012, forest change—either deforestation

or forestation—occurred across 3.1 million km2 globally [5]. Forest cover change has wide-

spread social, economic, and ecological consequences, as forests affect the provisioning of eco-

system services, the integrity of biological communities, as well as climate and air quality [6–

9]. Until recently however, the limited availability of high-resolution forest data has hampered

quantification of forest change impacts at a global scale [5,10–13].

One under-examined environmental consequence of this global forest change is the modifi-

cation of local-scale climate (e.g., 5 x 5 km areas). Forests may exert a strong influence on local

land surface temperature (LST), as they generally have lower surface albedo and higher evapo-

transpiration (ET) compared to open vegetation physiognomies [10–15]. Reduced albedo can

induce warming through higher absorption of shortwave radiation, however this effect may be

offset by the loss of latent heat via higher ET [12,15,16]. The strength of both albedo warming

and ET cooling further varies with latitude [15], suggesting that the magnitude and even the

direction of forest change effects on local LST may vary among tropical, temperate, and boreal

regions [11,15,17]. Recent studies have quantified how some biophysical processes, such as

shortwave radiation and latent heat flux (directly coupled to albedo and ET, respectively), vary

latitudinally, and influence surface temperature in response to forest change [10–13,18]. Yet, it

remains unclear how the hierarchical inter-relationships between forest change, albedo, ET,

and LST vary across the globe.

Additional uncertainty arises from the degree to which local forestation may counteract the

effects of local deforestation on LST, albedo and ET. Only a few recent studies have compared

forestation and deforestation impacts on local climate [10,11]. About 20 million km2 of land

are available for forest restoration worldwide, and a global effort intends to restore 3.5 million

km2 by 2030 [19]. Concurrently, forest losses exceeding 15% of global forest cover are also pre-

dicted by 2030 [20]. Importantly, such changes are likely to affect local climate across the

Earth’s surface in ways that may exacerbate projected regional and global climate changes [21].

Here we use a recent high-resolution dataset on global forest change from 2000 to 2010 [5]

to quantify impacts of past forest change on LST, albedo and ET across the globe, as well as the

hierarchical inter-relationships between these variables. We used multilevel structural equa-

tion modeling [22] to (i) quantify the presumed causal relationships among forest change and

changes in albedo, ET, and LST, and (ii) assess how these relationships vary across regions

(tropical, temperate, and boreal). We also use our structural models to illustrate how future

(2010–2050) forest change may affect local LST in Brazil. Brazil has a continental size (8.5 mil-

lion km2) and is undergoing severe changes in land use patterns [23]. Furthermore, Brazil har-

bors two hotspots of biodiversity (Atlantic Forest and Cerrado) and the Amazon, the largest

tropical forest in the world.

Materials and methods

To quantify impacts of past forest change on local climate, we adopted a six-step methodologi-

cal approach, as detailed in the following sections. These steps included (i) compilation of

global forest and climate datasets for two time periods (2000/2010 and 2001/2011); (ii) prelimi-

nary treatment of all datasets, including quality control, standardization of spatial resolution
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and calculation of annual averages; (iii) calculation of forest change from 2000 to 2010 across

the globe; (iv) calculation of the change in each climatic variable (LST, albedo, and ET) across

the same 2000 to 2010 period; (v) application of a “window searching” strategy to compare for-

est and climate change between pairs of close cells (< 25 km apart); and (vi) application of sta-

tistical analyses to quantify causal relationships among ΔF, Δalbedo, ΔET, and ΔLST. To show

how our approach can be further applied, we then model future changes in local climate in

Brazil, by following four main steps: (i) application of the window searching algorithm to past

(2000–2010) forest change data for Brazil only; (ii) fitting of a general structural equation

model (i.e., path model) to these data and extraction of model coefficients; (iii) compilation of

future (2010–2050) forest change data for Brazil; and (iv) calculation of predicted changes in

LST across Brazil. We performed all data processing and analysis in R 3.3.2 [24].

Forest and climate data

We obtained forest cover data for the years 2000 and 2010 from the 30-meter Global Forest

Cover datasets provided by Hansen et al. [5] (see also https://landcover.usgs.gov/glc/). The

datasets for both years are derived from Landsat 7 ETM+ data and cover most global land

(128.8 Mkm2). The datasets comprise the tree cover estimates for each 30-m pixel, varying

from 0 to 100%, and include both natural and planted trees (i.e., vegetation taller than 5m).

We assume that tree cover represents forest cover as in Hansen et al. [5]. For our analysis, we

upscaled the original maps to a resolution of 0.05˚ (~ 5 km), by averaging values of the

30-meter pixels, to match MODIS LST data (see below). The 5 x 5 km cells represented the

“local” scale of analysis, both for forest cover and for the climatic variables (LST, ET, and

albedo). We quantified forestation and deforestation as an increase or decrease in forest cover

from 2000 to 2010, respectively, at each 5 x 5 km cell across the globe.

We obtained three climatic variables—land surface temperature (LST), evapotranspiration

(ET) and albedo—from collection-5 MODIS products [25], with overpass time at 10:30 and

22:30 hours, which have been extensively validated and used in many previous applications

(e.g. [16,26]). We gathered all climatic variables (LST, ET and albedo) for the years 2001 and

2011, rather than 2000 and 2010 as we did for the forest change. This choice reflected our

expectation that forest change (cause) would precede climate change (consequence). We

found similar results when using 2000 and 2010 climate data (S1 Fig), although with larger var-

iability in the results, reflecting higher heterogeneity of the forest cover maps, as they were pro-

duced combining satellite imagery collected at different months of 2000 and 2010 [5].

We obtained monthly daytime and nighttime LST (in˚C) at 0.05˚ resolution from the

MOD11C3 product. For quality control, we only used LST data with estimated emissivity

error� 0.02 and LST error� 2 K (the original temperature unit for this dataset). We averaged

data across both day and nighttime, as well as across months to obtain a single average, hereaf-

ter referred to as annual LST. We present in the main text the results for annual LST only, as

our primary aim was to assess the overall effects of forestation and deforestation on local tem-

perature. However, we also present the separate results for daytime and nighttime LST in the

supplementary material.

We obtained ET data (in mm/month) from the MOD16A3 product, at 1-km (ca. 0.0083˚)

resolution. This dataset includes estimates of ET from daily meteorological reanalysis data

along with MODIS remotely sensed data, using Mu et al.’s algorithm [27], based on the logic

of the Penman-Monteith [28]. We upscaled the original values to 0.05˚ resolution (equivalent

to 6 x 6 original pixels) through the bilinear interpolation resampling method, to match the

LST and the forest cover data. For quality control of ET data, we only included in the analysis

0.05˚ pixels for which all the 36 original pixels (0.0083˚) contained data. We averaged monthly
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ET data to obtain a single annual ET estimate for each cell. We obtained white sky albedo data

(in %) from the MCD43C3 product, at 8-day intervals and 0.05˚ resolution. We condensed the

8-d intervals into monthly averages and subsequently into annual averages. We only used albedo

cells flagged with 0, 1 or 2 (best, good, and mixed quality, respectively). Many pixels had lower

quality for albedo (flagged with 3 or higher), mostly due to cloud cover and were excluded. For

comparison, we also considered an alternative MODIS 8-day albedo dataset (“GLASS”; [29,

30]), which returned similar results (S2 Fig). Variable quality of the original products resulted in

different numbers of cells for the analysis of LST, ET and albedo (see Data Analysis).

For each 5 x 5 km cell around the globe, we calculated forest change as the percentage forest

cover in 2010 minus the percentage forest cover in 2000. We did not consider interannual

dynamics of forest cover from 2000 to 2010, only the final outcome of those dynamics, i.e., per-

centage of forest cover in 2010 minus 2000. Resulting forest change (ΔF) values varied from

-100% to +100%, corresponding to maximum deforestation to maximum forestation, respec-

tively, during the one-decade time period. Similarly, we calculated the decadal change in LST,

albedo and ET for each cell as the annual average in 2011 minus the annual average in 2001

(ΔLST, Δalbedo and ΔET, respectively). We focused only on annual averages for each climatic

value, disregarding seasonal variation, as there are no global forest cover maps available for dif-

ferent seasons within each year. We acknowledge, however, that forest change impacts may

vary seasonally, especially in the boreal region, as we mention in the Discussion (see also [15]).

Window searching strategy

To quantify the relationship between forest change and local climate change around the globe,

we applied a “window searching” strategy (Fig 1). This strategy allows comparing pairs of close

cells (< 25 km apart) with different amounts of forest change but exposed to a similar regional

or “background” climate, and has been used in previous studies [e.g., 15]. Windows had 5 x 3

cells (longitude x latitude), with adjacent windows partially overlapping in 3 cells in longitude

and 1 cell in latitude. We found similar results with a larger window (9 x 5 pixels; S3 Fig). We

then used a simple algorithm to record forest and climate changes in a single pair of selected

cells per window. Each pair was formed by one “focal” cell, i.e., a cell with absolute forest cover

change greater than 15%, and one “reference” cell, i.e., a cell with absolute forest cover change

lower than 5% (Fig 1). We found similar results when we used> 10% and< 2% as the thresh-

old values for focal and reference cells, respectively (S4 Fig). If more than one focal cell was

available within a window, we selected only the cell with greater absolute forest change as the

focal cell. This approach did not lead to overestimating forest change impacts, because in most

windows all potential focal cells had a relatively low absolute forest change (<25%) Similarly,

if more than one reference cell was available within a window, we selected only the cell with

lower absolute forest change as the reference cell. This approach allowed us to obtain pairs of

cells with varied degrees of difference in forest change, and also ensured a single pair of cells

was used within a window, reducing spatial autocorrelation. Finally, if the same pair of selected

cells occurred in two adjacent windows, we only used the first occurrence in the subsequent

analyses. There was no need to control for differences in elevation between cells of a same pair,

as we did not use the raw value (e.g., LST) of each cell in the analysis, but rather the decadal

change in cell value (e.g., ΔLST), which is likely not sensitive to elevation.

For each pair of selected cells within a window, we calculated “standardized” forest change

(ΔF) as:

DF ¼ DFfoc � DFref

where ΔFfoc is the one-decadal change in forest cover (cover in 2010 minus cover in 2000) in

Impacts of forest change on local climate across the globe
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the focal cell, and ΔFref is the one-decadal change in forest cover in the reference cell (Fig 1).

Positive ΔF values are indicative of forest gain (i.e., forestation) in the focal cell relative to the

reference cell, and negative values are indicative of forest loss (i.e., deforestation). We used the

same approach to calculate standardized changes in climatic variables (ΔLST, ΔET and

Δalbedo), extracting the values for each variable from the exact same focal and reference cells

chosen during the forest change window searching strategy (S5 Fig). By performing temporal

comparisons (i.e. analysis of one-decade changes) through the window searching strategy, and

focusing our subsequent analysis on these standardized values, we were able to minimize dif-

ferences in background (regional) climate between each pair of cells, thus performing a more

direct test of how forest change affects local climate.

Analysis of global impacts of forest change on local climate

We obtained a total of 36,493 valid pairs of annual ΔLSTfoc and ΔLSTref values, 14,869 of

Δalbedofoc and Δalbedoref, and 97,618 of ΔETfoc and ΔETref (see S5 and S6 Figs). The number

of pairs varied among variables due to the quality control adopted for each variable, as

explained above. To evaluate whether the values of each variable differed between focal and

reference cells, we performed separate tests for each region (tropical = 20˚S—20˚N;

temperate = 20˚S—50˚S and 20˚N—50˚N, and boreal => 50˚S and> 50˚N, as in [15]), and

for each forest change category (deforestation or forestation; see S1 Table). Tests were per-

formed using mixed-effect models, with the type of cell (reference or focal) as a fixed effect,

and the searching window as a random effect. This modeling approach is equivalent to a

paired t-test, allowing comparison of each pair of focal-reference cells within each window. In

Fig 1. Methodological approach applied to quantify the relationship between forest change and local climate change. This approach

was applied worldwide (I) to compare close cells sharing a similar regional climate (II and III). Each window had 15 cells of 0.05˚

resolution (5 longitude x 3 latitude cells). To facilitate visualization, a single window is depicted (red grid in III). In each window, data on

local forest cover and local land surface temperature (LST) were compared by subtracting values in different years (2010–2000 for forest

cover, 2011–2001 for climate; A and B), generating a georeferenced matrix of forest change and another of LST change (C). From the

resulting matrices, two cells were chosen: a “focal” cell, with absolute forest change> 15%, and a “reference” cell, with forest

change< 5%. Finally, we calculated the standardized forest change (ΔF) and the standardized LST change (ΔLST) (D), by subtracting

the focal cell values by the reference cell values.

https://doi.org/10.1371/journal.pone.0213368.g001
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addition, the mixed-modeling approach helps to control parameter overestimation due to spa-

tial autocorrelation [31]. To determine the most suitable autocorrelation structure (which is

unknown a priori), we built alternative models with the same fixed and random effects (as

above), but with different correlation structures: spherical (corSpher), linear (corLin), rational

quadratic (corRatio), gaussian (corGaus), and exponential (corExp) [31]. Models included cor-

relation structure with the form = ~ longitude + latitude, as implemented in the R package

“nlme” [32]. A model with no correlation structure was also considered for comparison [31].

We compared models via model selection based on AICc [33], using the R package “MuMIn”

[34]. In all comparisons, models with some type of autocorrelation structure were always more

plausible than the model with no structure (S1 Table). We used the top-ranked model in each

model selection to estimate mean effects, standard errors and confidence intervals (S1 Table).

For comparative purposes, we also analyzed ΔLST values considering daytime and night-

time LST, separately (S1D and S1E Table; S7 and S8 Fig). In addition, to assess whether similar

amounts of deforestation and forestation had impacts of similar magnitude on LST, we fit the

mixed-effect models only to pairs of cells with standardized values of absolute forest change

around 50% (i.e., |40%| < ΔF< |60%|). Within this 40–60% range, the distribution of forest

change values was similar for forestation and deforestation (S9 Fig), thus allowing direct com-

parisons between the two types of forest change. We fit these models separately for each forest

change category (deforestation or forestation) and region (tropical, temperate or boreal), and

obtained the mean ± 95% CI estimates from the top-ranked models.

We used multilevel structural equation modeling [22] to (i) quantify causal relationships

among ΔF, Δalbedo, ΔET, and ΔLST, and (ii) assess how these relationships vary across regions

(tropical, temperate, and boreal). Multilevel equation models are an extension of traditional

linear path models, but allow incorporation of spatial autocorrelation [22,35]. For this analysis,

we used all 8,419 pairs of cells with information on all variables (S5D Fig; N = 409, 7794 and

216, for tropical, temperate, and boreal regions, respectively). We first built a general path

model that summarizes the most likely relationships among variables, as currently considered

in the literature (e.g. [6,15,16]; Fig 2). As the purpose of the model was to facilitate understand-

ing, more than to fully explain patterns, we ignored other potentially important variables, such

as cloud formation and precipitation, which may also be affected by forest change and may af-

fect LST [17]. Thus, this simple model had only three response variables, which were assumed

as dependent on one or more variables, as follows: (i) ΔLST depending on ΔF, Δalbedo, and

ΔET; (ii) Δalbedo depending on ΔF; (iii) ΔET depending on ΔF and Δalbedo (Fig 2).

We fit each response variable to a generalized least squares linear model (gls) using the

function “gls” from the R package “nlme” [32]. To control spatial autocorrelation, the three

individual models (above) included a rational quadratic spatial correlation structure (corRa-

tio), with the form = ~ longitude + latitude as implemented in the R package “nlme” [32]. This

correlation structure was chosen since it was the top-ranked in most tests analyzing the rela-

tionship between ΔF and ΔLST, Δalbedo, or ΔET (S1 Table). We fit the general path model for

each region (tropical, temperate, and boreal) separately, using the R package “piecewiseSEM”

[35]. We then recorded the standardized path coefficients for each link and compared the coef-

ficients across regions (see Fig 2). The coefficients were robust to variation in the correlation

structure used (S2 Table), and similar for models with the three most plausible structures

based on AICc (“corRatio”, “corExp”, and “corGaus”, see S1 Table).

We also tested the fit of simpler path models to the data, i.e., models without one or more

of the causal links that are present in the general model (Fig 2). However, these simpler models

had poor global fits to the data for the boreal and temperate regions, as inferred from their sig-

nificant Fishers’ C-statistics (p< 0.05), indicating the missing links were important [22,35].

Thus, we kept all links and only used the general model to estimate the path coefficients, as
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explained above. Due to the absence of missing links in this model, it was not possible to test

its global fit to the data [22,35]. Therefore, we assessed only the local fit of the three individual

gls models, using model residuals and R2 values, which indicated a good fit of the model to the

data for all regions.

Modelling future changes in local climate in Brazil

To show how our approach can be further applied, we also used a multilevel equation model

to explore how future (2010–2050) forest change may affect local LST. We analyzed forest

cover and climate data (LST, albedo, and ET) for Brazil from 2000–2010 and 2001–2011,

respectively, using the same MODIS-derived data and previously explained procedures. Our

choice of Brazil as a model was based on both data availability, and the large spatio-temporal

variation in forest cover within Brazil, which both has two highly threatened biodiversity hot-

spots (Atlantic Forest and Cerrado) and the largest tropical forest in the planet (Amazon). We

Fig 2. Scheme depicting presumed relationships between forest cover and climatic variables (albedo and evapotranspiration). These climatic variables are

regarded as the main drivers of land surface temperature change. Heat is more readily absorbed by vegetation, soil and water bodies (lower albedo values), than

surfaces with snow and ice (higher albedo values). By estimating condensed water from substrate evaporation and vegetation transpiration, we quantify the

available water in the air (evapotranspiration). At the same time, heat absorbance induces greater water condensation by both soil and vegetation.

https://doi.org/10.1371/journal.pone.0213368.g002
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also applied the window-searching algorithm for continental Brazil and obtained 1,953 valid

pairs of focal-reference cells for analysis. For each pair, we quantified ΔF, ΔLST, Δalbedo and

ΔET, and then used multilevel path analysis to quantify the total effects (direct + indirect) of

ΔF on ΔLST. We fit the general path model with a rational quadratic spatial correlation struc-

ture (corRatio; see Data Analysis) and recorded all standardized path coefficients. The direct

effects of ΔF on ΔLST corresponded to the coefficients of the single path linking the two vari-

ables (see Fig 2). Three indirect effects were also calculated: (i) ΔF! Δalbedo! ΔLST; (ii) ΔF

! ΔET! ΔLST; and (iii) ΔF! Δalbedo! ΔET! ΔLST. Each indirect effect was calculated

by multiplying the standardized path coefficients along the pathway. Finally, we obtained the

total effect of ΔF on ΔLST by summing the direct effect and the three indirect effects.

We estimated future forest change in Brazil (2010–2050) using data from the Reducing

Emissions from Deforestation and Forest Degradation project [23]. These data were generated

by combining information from multiple sources on several variables, including vegetation,

protected areas, transportation costs, and planted forest values (see [23]). We analyzed data

from two scenarios: “business-as-usual” (BAU) and “forest code” (FC). The BAU scenario

assumes no effective control of deforestation in Brazil, allowing illegal deforestation in all

biomes, except in the Atlantic Forest, which has specific additional legislation (Atlantic Forest

Law 11428/2006). According to the BAU scenario, deforestation will occur across 606,000

km2, with zero additional forestation [23], over the 2010–2050 period. The BAU scenario func-

tions as a “control” scenario to evaluate the effects of the implementation of the Brazilian For-

est Code, a national law passed in 1965 intended to reduce illegal deforestation, which was

most recently modified in 2012 (Law 12651/2012). On the other hand, the FC scenario

assumes no illegal deforestation, as well as full compliance with the terms of the Forest Code,

including forest restoration in legal reserves, minimum quotas for forest reserves number and

size, amnesty for previous deforestation on small farms, and the enforcement of the Atlantic

Forest Law. According to the FC scenario, deforestation will occur across 79,000 km2, with

additional forestation on 110,000 km2 of previously illegally deforested land [23].

For each scenario, we calculated forest cover in 2010 and 2050, and then forest change

(2050 minus 2010), for each 5’ x 5’ cell. We downscaled forest change values to 0.05˚ to match

the MODIS LST data, using the bilinear interpolation method from the R package “raster”

[36]. We then used the forest change values and the standardized coefficients of the path

model to predict ΔLST for each 0.05 x 0.05˚ cell across Brazil. This analysis assumes that the

current relationships between forest change, albedo, ET and LST will remain unchanged.

Although unlikely, this assumption allows us to understand how different scenarios of local

forest change may impact LST, independent of their feedbacks with regional climate, which

are much more uncertain to predict.

To compare our predictions of local LST change with the regional climate changes pre-

dicted for Brazil, we analyzed the CMIP5 climate projections (IPCC 5th Assessment; available

at www.worldclim.org/version2). For comparison, we chose two representative concentration

pathways (RCP4.5 and RCP8.5) from the global climate model MIROC5 (Model for Interdisci-

plinary Research on Climate, Version 5), to obtain the average annual surface temperature for

2050 (average for years 2041–2060) with 30 arc-seconds resolution. RCPs describe different

pathways of anthropogenic greenhouse gas emissions, based on variables such as human popu-

lation size, energy use, land use, and climate policy [37]. RCP 4.5 is an intermediate scenario,

predicting annual greenhouse gas emissions from 530–580 GtCO2 in 2050, whereas RCP 8.5

assumes very high emissions (>1000 GtCO2). We quantified the predicted change in the

mean annual surface temperature as the difference between future temperature (2050) and

current temperature (average from 1970 to 2000; [36]). Finally, we calculated the average ± SE

change both across Brazil and across the tropical region (0–20˚ N or S).
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Results

Global impacts of forest change on local climate

Globally, deforestation and forestation had opposite effects on local climate, and these effects

varied with latitude (Fig 3). Deforestation led to consistent warming of 0.38 ± 0.02˚C

(mean ± SE) in tropical regions and 0.16 ± 0.01˚C in temperate regions, but in boreal regions

led to slight cooling of -0.04 ± 0.003˚C (Fig 3A; for full statistics, see S1 Table). Conversely, for-

estation had cooling effects in tropical (-0.18 ± 0.02˚C) and temperate regions

(-0.19 ± 0.02˚C), but null effects in boreal regions (0.01 ± 0.01˚C). Forest change had opposite

effects on daytime and nighttime LST (S7 Fig), and the magnitude of change was greater for

daytime compared to both nighttime or annual LST (compare Fig 3 and S7 Fig).

Similar rates (estimated at a value of ~50%) of deforestation and forestation had impacts of

similar magnitude on annual LST, but in opposite directions regardless of the region under

consideration (Fig 4). For example, deforestation of ~50% in tropical regions led to strong

warming of 1.08 ± 0.25˚C, while forestation of ~50% led to strong cooling of -1.11 ± 0.26˚C. A

similar pattern also occurred for the temperate region, though with lower magnitudes. In con-

trast, the boreal region demonstrated an effect on annual LST both lower in magnitude and in

opposite direction (Fig 4).

Changes in annual LST were correlated to changes in albedo and ET (Fig 5). A structural

equation model including only these two variables explained 29% of the variation in LST

across the globe. The explanatory power of this model was much higher for tropical (39%)

than for boreal regions (7%; Fig 5). Forestation increased ET (positive coefficients in Fig 5),

which then reduced LST in all regions (negative coefficients), but especially in tropical and

temperate areas (Fig 5). In boreal areas, the effect of ET on annual LST was negligible. Foresta-

tion also reduced albedo in all regions (negative coefficients in Fig 5), especially in boreal areas

(Fig 5C).

Future changes in local climate in Brazil

The total effect of ΔF on ΔLST in Brazil was estimated as -0.64, meaning that, on average, an

increase in one standard deviation of forest cover (= 21.7%) reduced LST in 0.64 standard

Fig 3. Effects of forest change on local climate change. (A) Change in annual land surface temperature (LST). (B) Change in

evapotranspiration. (C) Change in albedo. Each cell in the plots represents decadal changes in annual means of climatic variables

(2011–2001) following decadal forest changes (2010–2000), calculated originally for 0.05 x 0.05˚ cells, and grouped into bins of 5˚

latitude and 10% forest change to facilitate visualization. Note that the number of bins with good-quality data is higher for ET than

for albedo.

https://doi.org/10.1371/journal.pone.0213368.g003
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deviations, i.e., 0.36˚C (0.64 x 0.57˚ C, 0.57˚ C being the standard deviation of ΔLST). Com-

bined indirect effects of ΔF on ΔLST (-0.41) were almost twice as strong as the direct effect

(-0.23). Similar estimates were obtained using alternative correlation structures (corExp: indi-

rect = -0.42, direct = -0.22; corGaus: indirect = -0.38, direct = -0.28). The model fit the data

Fig 4. Comparative effects of deforestation (red) and forestation (blue) on annual land surface temperature (LST)

change. This analysis considered only cells with ~50% (40–60%) of decadal forest change (2010–2000). Positive

(negative) values indicate a warming (cooling) effect of forest change. Bars indicate averages and 95% confidence

intervals. The number of cell pairs analyzed (left to right) was 40, 15, 694, 268, 861 and 25.

https://doi.org/10.1371/journal.pone.0213368.g004

Fig 5. Path diagrams showing the direct and indirect effects of forest change on annual land surface temperature (LST). Indirect effects are assumed to be

caused by changes in albedo and evapotranspiration (ET). Arrows are scaled in proportion to the absolute standardized path coefficients (numbers). Red and

blue arrows indicate negative and positive coefficients, respectively. Coefficients for non-significant paths (p > 0.05) are not shown (NS). R2 values indicate the

coefficient of determination of the component models for each response variable.

https://doi.org/10.1371/journal.pone.0213368.g005
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well, as judged by the component models, which explained a total of 43%, 28%, and 54% of the

variation in ΔLST, Δalbedo and ΔET, respectively.

In the BAU scenario, extensive deforestation was predicted to increase annual LST up to

1.45˚C (average = 0.11, ranging from 0 to 1.45˚C), especially in the Amazon and Cerrado

domains (Fig 6A). As no forestation is predicted from the BAU scenario, no cooling from posi-

tive forest change was predicted. On the other hand, LST would be much less affected under

the FC scenario (0.02˚C on average, ranging from -0.33 to 1.29˚C; Fig 6B). Under this scenario,

clear increases in LST are expected only for the Caatinga domain in northeastern Brazil (Fig

6B). In addition, under the FC scenario, forestation may lead to local cooling, especially in the

Amazon and Cerrado (Fig 6B). These estimates of local warming under both land use scenar-

ios are lower than the regional warming predicted from global change for Brazil under both

the optimistic scenario (RCP 4.5; average ± SE: 1.99 ± 0.0002˚C) and the more pessimistic sce-

nario (RCP 8.5; 2.4 ± 0.0002˚C).

Discussion

Forestation and deforestation were pervasive across large areas of the globe from 2000 to 2010

[5]. Here we show that these widespread processes had strong and opposite effects on local

LST, albedo and ET worldwide, confirming and expanding the findings of recent studies [10–

12]. In particular, we show that forestation (both passive and active) has the potential to

reverse the effects of deforestation on LST, albedo and ET. This finding provides further evi-

dence of the need to reduce deforestation and promote forest recovery—especially in tropical

and temperate regions [5,12]. We found that the effects of forest change on LST are largely

Fig 6. Predicted future changes in annual land surface temperature (LST) for Brazil from 2010 to 2050. Analyses

were based on changing forest cover predicted by two land use change scenarios: (a) Business-as-usual (BAU) scenario,

in which land use follows the same pattern observed in 2000; (b) Forest Code (FC) scenario, in which the 2012 Brazilian

environmental legislation (“Forest Code”) is fully implemented. Brazilian biomes: AM = Amazon; CE = Cerrado;

CA = Caatinga; AF = Atlantic Forest; PM = Pampa; PN = Pantanal.

https://doi.org/10.1371/journal.pone.0213368.g006
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mediated by changes in albedo and ET. Finally, we show that current land use policies are very

likely to impact future local climate, as exemplified by our case study in Brazil.

The climatic effects of deforestation and forestation mirrored one another and were stronger

with increasing levels of either process, as also documented in two recent studies [10,11]. In tropi-

cal regions, impacts of deforestation on local climate were higher than that of forestation (0.38˚C

versus -0.18˚C, respectively), because forest loss was more expansive than forest gain [5; see also

S6 Fig]. However, when we compared identical amounts of forestation and deforestation, their cli-

mate impacts were similar in magnitude (Fig 4). The apparently minor effects of forest change on

average annual LST in boreal regions may reflect the complex seasonal dynamics of vegetation-

albedo effects in these regions, through absorbed shortwave radiation and surface roughness

[9,15,17,18]. Similar effects of forest losses and gains have also been detected for surface air tem-

peratures in a recent semi-empirical analysis [10], and also for potential and actual LST changes

[11]. In addition to deforestation’s effects on LST, our analyses importantly reveal that deforesta-

tion consistently decreases ET and increases albedo in all regions, while forestation has the oppo-

site effects (Fig 4B and 4C). Together, these results provide additional strong evidence that

forestation and deforestation have pervasive and opposite effects on local climate worldwide

[10,11]. Importantly, the climatic effects of changing forest cover were stronger for daytime com-

pared to nighttime LST, and may be even more pronounced at ground level (i.e. beneath the can-

opy), with potentially pervasive direct impacts on many organisms [38–40].

While the effectiveness of tree planting to mitigate global warming is still under debate

[16,17,41], our results suggest that the local climatic effects of deforestation can be reversed

with forestation, even over short time periods (< 10 yr.), as also recently suggested [10,11]. A

large portion of the forestation observed from 2000 to 2010 corresponded to tree planting for

commercial purposes [4,5], with an additional contribution of active restoration efforts and

passive regeneration of native forests [42,43]. Unfortunately, the forest cover maps of Hansen

et al. [5] do not differentiate between native and planted forests, which have different impacts

for biodiversity and for the provision of ecosystem services, for example as discussed in Tropek

et al. [44]. This limitation may have contributed to some of the unexplained variability in our

results (see color pattern in Fig 3 and R2 values in Fig 5). Despite this limitation, however, the

high-resolution maps were suitable for understanding how forest cover per se (regardless of

native or planted origin) affects local climate, as they adequately capture the distribution of

biophysical features of interest (tree cover) across the Earth’s surface [5]. Overall, our analyses,

combined with those performed recently in two studies [10,11], show that both passive and

active forestation have the potential to reverse the climatic effects of deforestation.

Our structural equation model had higher explanatory power for tropical (39%) than for

boreal regions (7%), likely due to the more complex seasonal dynamics of vegetation-albedo

effects in boreal regions [11,15,17,18]. In boreal areas, the effect of ET on LST was negligible,

reflecting the overall low amount of ET in these areas due to the relatively dry and cold climate

[11,18]. In boreal regions, reduced albedo promoted by forestation resulted in a slight warm-

ing effect (Fig 5C), due to the higher absorption of shortwave radiation during the day and

small latent heat release [18], increasing nighttime temperatures (see S7 Fig). The low-to-mod-

erate explanatory power of the structural equation model, even for the tropical region, is likely

to reflect the heterogeneity of the forest cover dataset (as discussed above), as well as the sea-

sonal and daily variation in local climate. Despite these limitations, the structural equation

model provides additional evidence that the global effects of forest change on LST are modu-

lated by albedo and ET effects, which vary latitudinally [6,11,13–16].

Our study case of Brazil illustrates that current land use policies can impact future local cli-

mate. Importantly, we found that a business-as-usual scenario—associated with extensive

deforestation—could substantially increase annual LST, especially in the Amazon and Cerrado
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biomes. Predicted deforestation in the Amazon is typically concentrated near roads and rivers

[45], and in the “Arc of Deforestation” along the biome’s southern and eastern boundaries

[46]. On the other hand, under the Forest Code scenario, we found that clear increases in LST

are only expected for the Caatinga, which is likely to be deforested due to cropland expansion

regardless of enforcement of the Forest Code [23]. Our models for Brazil are not intended to

predict future climate, but rather to provide scenario-based examples of how future forest

changes may affect LST. Our approach may be included in more complex and predictive mod-

els, which must consider variation in precipitation and overall background climate to generate

reasonable predictions of future LST.

Local vegetation-driven changes in climate are particularly important in the context of

global climate change because they influence both regional and global circulation and precipi-

tation patterns [47–49], and may have a compounding influence on observed local tempera-

ture increases. In tropical regions, for example, the 1.08 ± 0.25˚C local warming caused by a

50% reduction in forest cover may add to the estimated 1.7 ± 0.0001˚C regional warming

expected from global change under an intermediate and realistic warming scenario (MIROC5

model, RCP 4.5). Increased temperatures in already hot locations may increase human mortal-

ity rates and electricity demands, reduce agricultural yields and water resources, and contrib-

ute to biodiversity collapse, particularly in tropical regions [50–55]. Furthermore, local

warming may cause shifts in species distributions [56], including for species involved in infec-

tious disease transmissions [57]. Because forest change lies at the heart of the warming prob-

lem, initiatives to reduce deforestation should remain a priority. In conjunction, both passive

(natural) and active (planted) forestation should be promoted within originally forested areas

in tropical and temperate biomes as restored forest has the potential to benefit biodiversity

[58] and also reverse the climatic effects of deforestation.
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