
Citation: Qi, B.; Shi, S.; Zhao, L.;

Cheng, J. A Novel Temperature Drift

Error Precise Estimation Model for

MEMS Accelerometers Using

Microstructure Thermal Analysis.

Micromachines 2022, 13, 835.

https://doi.org/10.3390/

mi13060835

Academic Editor: Aiqun Liu

Received: 11 May 2022

Accepted: 24 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

A Novel Temperature Drift Error Precise Estimation Model for
MEMS Accelerometers Using Microstructure Thermal Analysis
Bing Qi 1,* , Shuaishuai Shi 1,2, Lin Zhao 1 and Jianhua Cheng 1

1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
shishuaishuai96@163.com (S.S.); zhaolin@hrbeu.edu.cn (L.Z.); chengjianhua@hrbeu.edu.cn (J.C.)

2 JONHON, Luoyang 471003, China
* Correspondence: qibing336699@163.com; Tel.: +86-0451-8251-8426

Abstract: Owing to the fact that the conventional Temperature Drift Error (TDE) precise estimation
model for a MEMS accelerometer has incomplete Temperature-Correlated Quantities (TCQ) and
inaccurate parameter identification to reduce its accuracy and real time, a novel TDE precise esti-
mation model using microstructure thermal analysis is studied. First, TDE is traced precisely by
analyzing the MEMS accelerometer’s structural thermal deformation to obtain complete TCQ, ambi-
ent temperature T and its square T2, ambient temperature variation ∆T and its square ∆T2, which
builds a novel TDE precise estimation model. Second, a Back Propagation Neural Network (BPNN)
based on Particle Swarm Optimization plus Genetic Algorithm (PSO-GA-BPNN) is introduced in its
accurate parameter identification to avoid the local optimums of the conventional model based on
BPNN and enhance its accuracy and real time. Then, the TDE test method is formed by analyzing
heat conduction process between MEMS accelerometers and a thermal chamber, and a temperature
experiment is designed. The novel model is implemented with TCQ and PSO-GA-BPNN, and its
performance is evaluated by Mean Square Error (MSE). At last, the conventional and novel models are
compared. Compared with the conventional model, the novel one’s accuracy is improved by 16.01%
and its iterations are reduced by 99.86% at maximum. This illustrates that the novel model estimates
the TDE of a MEMS accelerometer more precisely to decouple temperature dependence of Si-based
material effectively, which enhances its environmental adaptability and expands its application in
diverse complex conditions.

Keywords: MEMS accelerometer; temperature dependence; microstructure thermal analysis; TDE
precise test based on heat conduction analysis; PSO-GA-BPNN

1. Introduction

As natural resource exploration turns from the earth’s surface to deep space, instead
of human beings, unmanned intelligent devices are widely used in the harsh deep space
environment. Rovers, as its typical representative, carry all diverse kinds of devices for
missions, and stability is the key factor. Before launching them to target planets, the
terrain has to be investigated as comprehensively as possible to ensure that they will
not be in danger and can complete their missions successfully. However, owing to the
fact that the extraterrestrial environment is complex and changeable, it is very hard to
obtain topographic information as accurately as true, which especially makes terrain pre-
investigation unpredictable. For example, rovers can get stuck in dust, causing them to roll
over and crash. Therefore, it is essential for unmanned intelligent devices to dispose of the
risks autonomously and intelligently [1].

Three-dimensional status measurement shows the stability of unmanned intelligent
devices, and they take some measures to respond to the risks. For example, rovers use
emergency braking to avoid rolling over and fast reverse to avoid collision. Therefore,
3D status measurement plays a role in stability [2–4]. As it is known, rocket load is

Micromachines 2022, 13, 835. https://doi.org/10.3390/mi13060835 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13060835
https://doi.org/10.3390/mi13060835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-2995-302X
https://doi.org/10.3390/mi13060835
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13060835?type=check_update&version=1


Micromachines 2022, 13, 835 2 of 17

limited, so MEMS accelerometers of smaller size and lighter weight are a better choice for
unmanned intelligent devices. They are made up from Si-based material of temperature
dependence, and ambient temperature changes their physical properties to excite TDE.
Ambient temperature in space is −180 ◦C~130 ◦C, which inevitably worsens their output
consistency and accuracy. Therefore, TDE seriously restricts the universal application of
MEMS accelerometers [5].

Due to current limitations in material processing, Si-based material is a better choice to
manufacture MEMS accelerometers, but it is unlikely to eliminate its temperature dependence
and compensate TDE by optimizing the production process [6]. Therefore, common methods
to compensate TDE include hardware calibration and algorithm compensation [7–9]. The
first one utilizes a temperature control system to maintain ambient temperature stably in
a narrow range, which stabilizes its internal structure relatively [10,11]. Although it works
with a perfect seal structure and heat conduction, high-power consumption and complex
thermal noise are difficult problems to solve [12,13]. By comparison, algorithm compensation
has high calculation accuracy and perfect implementation, and TDE can be estimated with a
specific algorithm without additional devices, precisely and in real time [14]. Therefore, it is
the mainstream of TDE estimation for MEMS accelerometers, and TDE traceability and its
implementation are its important parts.

TDE traceability is the most concentrated method to improve the accuracy of MEMS
accelerometers by theoretical derivation [15]. Reference [16] concludes ambient temper-
ature is a direct cause for TDE, and also proves ambient temperature variation of 1 ◦C
changes quality factor’s sensitivity up to 1% by experiments. However, root causes exciting
TDE have not been studied completely. Reference [17] builds a simulation model to com-
prehensively research the multi-factor coupling behavior of MEMS accelerometers under
high-temperature impact load. It shows the key to TDE traceability is a deep exploration
of its thermal characteristics. From the relationship between its structure and ambient
temperature, reference [18] shows that the physical sizes of Si-based materials expand
linearly as ambient temperature in 3D space, which deforms its internal microstructure
and deviates its performances. A comprehensive TDE estimation model is built based
on the relationship above, and its bias stability is enhanced by 10% from before. Refer-
ence [19] presents multi-physical analysis to research TDE. Using the finite element method
in simulation, the factor to TDE is a mismatch of Coefficient of Thermal Expansion (CTE)
between different materials. Moreover, it illustrates that a deviation between simulations
and experiments is about 1~2 mg/◦C, which means CTE is non-ignorable to TDE traceabil-
ity. Then, it completes many tests on physical characteristics of Si-based material, which
shows Thermal Expansion Properties (TEP) of Si-based material are nonlinear from a global
perspective. Hence, there must be remnant TDE to be uncompensated comprehensively,
and it is essential to trace TDE more accurately and necessary to research TCQ of MEMS
accelerometers more precisely.

After obtaining accurate TDE traceability, describing the relationship between TCQ
and TDE precisely is another key factor, and the TDE estimation model is accurate and
efficient. Establishing the TDE estimation model accurately focuses on the relationship
between its input and output by algorithm, and the outputs of MEMS accelerometers are
compensated to the desired ones with its inputs [20]. Reference [21] proposes a modified
Support Vector Machine (SVM) model with a structural risk minimization principle, and
PSO is introduced in optimizing SVM and increasing the MEMS accelerometer’s output
accuracy. Even with small-batch data processing, it also maintains its performance. By
comparing with the conventional SVM, PSO tuning SVM improves its output accuracy
by 18.96%, 16.65%, and 14.53%, respectively, in three tests. Due to its complexity, SVM
is unsuitable to process a lot of test results and cannot increase calculation accuracy and
real time. Reference [22] builds a wavelet neural network model based on large quantities
of results from MEMS gyros, and its attitude accuracy can be improved to 8arcsec after
TDE is compensated. However, it is very hard to identify the structure parameters and
obtain the optimal values because of the diversity and uncertainty of its internal signal
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transmission. Reference [23] proposes a TDE estimation model for MEMS accelerometers
using a language model back propagation neural network. Its parameters are determined
by optimizing the compensation model, and maximum nonlinearity decreases from 3329
ppm to 603 ppm. Owing to the fact that BPNN has the demerits of local minimums, it may
easily obtain some non-optimal results to reduce its TDE estimation accuracy. Reference [24]
proposes a TDE estimation model based on BPNN optimized by GA. GA is introduced
to assist in searching the optimal values, which avoids BPNN to have local minimums.
After being compensated, the maximum bias of the MEMS accelerometer is 0.017% over
−10 ◦C~80 ◦C, and it is 173-times more accurate than the conventional TDE estimation
models based on polynomial fitting. However, GA has probabilistic disorder to reduce its
calculation real time. Hence, it is necessary to enhance TDE calculation real time, as well as
maintaining TDE estimation accuracy.

In the paper, TDE traceability for a MEMS accelerometer is researched with microstruc-
ture thermal analysis by simulating its structural deformation in diverse conditions, and
new TRQ are deduced as the key factor to TDE traceability. Then, a novel TDE precise
estimation model for the MEMS accelerometer is established based on T and T2, as well
as ∆T and ∆T2. To increase TDE estimation accuracy and real time, GA is introduced in
the conventional model to remove local optimums of BPNN. Further, PSO is utilized in
GA to solve its probabilistic disorder to improve its TDE calculation rapidity. The novel
model estimates TDE more precisely, which decouples temperature dependence of Si-based
materials better and more effectively to enhance environmental adaptability of MEMS
accelerometers. The novel model is significant to expand its application in diverse complex
conditions and ensures the accuracy and stability of unmanned intelligent devices.

2. Methodology
2.1. TDE Estimation Model Establishment
2.1.1. Conventional Estimation Model for TDE

MEMS accelerometer is a miniaturized device made up from Si-based material, in-
cluding mass, driving circuit, sensing circuit, and substrate. With a series of manufacturing
procedures, they are assembled as a micromachining unit. Figure 1 shows its principle [18].

Figure 1. Principle of MEMS accelerometer. (a) hardware design; (b) system schematic diagram.

From Figure 1, sensing circuit and driving circuit have combs, and all the combs can
be seen as plate capacitors. The combs of mass are a moving plate, and the combs of
substrate are a fixed plate. Therefore, the carriers’ acceleration is obtained by measuring
the capacitance variation between the combs [18]. When the carriers stay still, the moving
plates are in balance. With plate capacitor formula, the capacitance of fixed plate and
moving plate is shown:

C1 = C2 =
ε

4πk
S0

d0
= C0 (1)



Micromachines 2022, 13, 835 4 of 17

where, ε is relative dielectric constant, k is electrostatic force constant, s0 is overlap area of
moving and fixed plates. From (1), the capacitance C3 between the fixed plates is shown:

C3 = |C1 − C2| = 0 (2)

When the carriers accelerate or slow down, a displacement appears between the mass
and the sensing circuit under the Coriolis force, then C3 is shown as follows:

C3 = |C1 − C2| =
∣∣∣ ε

4πk
S0

(d0−∆d) −
ε

4πk
S0

(d0+∆d)

∣∣∣ = |(C1 + ∆C1)− (C2 − ∆C2)| = |∆C1 + ∆C2| (3)

Therefore, the carriers’ acceleration can be precisely measured with the capacitance
variation. Moreover, the stiffness of sensing circuit and driving circuit determines MEMS ac-
celerometer’s accuracy. Owing to the fact that their stiffness is related to Si-based material’s
stiffness, ambient temperature as the most important factor to Si-based material’s stiffness
is fundamental [18]. Sensing circuit and driving circuit deform as ambient temperature
varies, and especially some errors appear in the capacitance of the sensing circuit, which is
the corresponding TDE ∆EMEMS in MEMS accelerometer’s output. Hence, the conventional
TDE estimation model introduces a microstructure linear analytical method in MEMS
accelerometer’s deformation. Considering that Si-based material’ deformation stays with
ambient temperature variation ∆T and its square ∆T2, the conventional TDE estimation
model is shown:

∆EMEMS = f
(

∆T, ∆T2
)

(4)

2.1.2. Microstructure Analysis of Si-Based Material under Temperature Variation

The conventional TDE estimation model is built with microstructure linear analytical
method, and its structural sizes deform linearly in 3 dimensions using constant CTE.
However, CTE of Si-based material varies nonlinearly as temperature variation, which
causes its structure to deform nonlinearly in large temperature range and brings nonlinear
variation in the distance between crystal lattice structures of Si-based material. Therefore,
it is necessary to apply microstructure nonlinear analytical method in CTE of Si-based
material to modify the conventional model and estimate more accurate TDE. Figure 2 shows
the comparison between the actual CTE of Si-based material and its approximate one [25].

Figure 2. Comparison of CTE variation in actual and approximate situations.

Figure 2 shows the prominent deviation between the actual CTE of Si-based material
and its approximate one, which means there are currently some errors in TEP of Si-based
material analyzed and utilized. Under the condition, TDE traceability is inevitably inac-
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curate and never obtains the accurate TRQ, and a precise TDE estimation model cannot
be built. Therefore, it is helpful to comprehensively analyze TEP of Si-based material.
According to linear TEP of Si-based material, all the sizes inside MEMS accelerometer have
linear variation as ambient temperature. Taking a size l0 at T0 as an example, from Thermal
Expansion Formula its size changes to l1 at T1, which is shown as follows:

l1 = l0(∆Tα + 1) (5)

where, α is constant CTE of Si-based material, ∆Tα is its TEP. According to Figure 2,
TEP of Si-based material shows nonlinearity as ambient temperature. A prerequisite
to show size variation as ambient temperature is accurately obtaining CTE of Si-based
material, and it is essential to use a suitable method to describe the nonlinearity. Polynomial
fitting is classical in curve fitting and can obtain accurate results with a small amount of
test data [26]. It presents all kinds of a priori relationships with easy implementation,
nonlinearity and linearity [27]. According to Figure 2, the relationship between CTE and
ambient temperature is a significant simple nonlinear one, which shows that polynomial
fitting is a suitable method to describe accurate CTE of Si-based material. Its order is crucial
to determine its accuracy. The lower order causes some remarkable fitting errors, but it is
easy to implement. Although higher order increases fitting accuracy, it introduces excessive
complexity which brings slow fitting convergence and bad calculation in real time. To
determine proper fitting order, Root Mean Square Error (RMSE) is a criterion to show its
fitting performance. The smaller RMSE is, the more accurately polynomial fitting describes
the targeted relationship. When RMSE cannot be higher as fitting order increases, current
fitting order is optimal and the higher one is helpless except harming its real time. Ideally,
fitting error is less than 10% of the accuracy of the targeted relationship. CTE of Si-based
material is 2.5 × 10−6/K with the ac curacy of 1 × 10−7/K at 323 K, and its RMSE should
be less than 1 × 10−8/K [25]. From Reference [28], the relationship between TEP of Si-based
material and CTE in 240–340 K is described by polynomial fitting, and Figure 3 shows
RMSE of each order.

Figure 3. The comparison of RMSE in each order.

From Figure 3, RMSE of 2-order has been improved to 10% of that of 1-order, and
RMSE of 2-order fitting is 2.39 × 10−9/K, less than 1 × 10−8/K. Although RMSE of 3-order
and higher order is less than 1× 10−8/K, their RMSE cannot be reduced further remarkably
as the fitting order increases, which demonstrates that ambient temperature T and its square
T2 are the only decisive factors to CTE. Therefore, 2-order fitting is used in CTE of Si-based
material α(T) at ambient temperature T, and its estimation model is obtained as follows:

α(T) = −5.429× 10−6+2.79× 10−8T − 3.226× 10−11T2 (6)
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2.1.3. Modification of the Conventional TDE Precise Estimation Model

Assuming that the input of MEMS accelerometer is constant, its output remains
constant as a0 at ambient temperature T0. Due to its structural deformation, its output
at T is a(T) which includes the truth value a0 and TDE ∆a(T). Then, its output is shown
as follows:

a(T) = a0 + ∆a(T) (7)

From MEMS accelerometer’s principle, a0 is related to its capacitance variation under
ideal conditions ∆C0, a0∝∆C0. When ambient temperature varies, its structural deformation
induces its capacitance variation, a(T)∝∆C(T). Then, ∆a(T) can be deduced further:

∆a(T) = [a0 − a(T)] ∝ [∆C0 − ∆C(T)] (8)

According to Figure 1, mass, driving circuit, and sensing circuit are assembled on
substrate. Further, the substrate deforms as ambient temperature, mass, driving circuit, and
sensing circuit displace together, and the relative distances between them remain stable,
especially the combs. Given that MEMS accelerometer’s output is related to the capacitance
between the combs, substrate deformation has no impact on MEMS accelerometer’s output
at all, and it is a negligible factor to MEMS accelerometer’s accuracy. Then, the influence of
ambient temperature on the capacitance between combs is analyzed using CTE estimation
model in diverse conditions, shown in Figure 4.

Figure 4. Structural deformation of MEMS accelerometer in diverse conditions. (a) Local structure
under static state without TEP. (b) Local structure under working state without TEP. (c) Local structure
under static state with TEP. (d) Local structure under working state with TEP.

Here, b is overlap length between moving plate and fixed plate, e is the distance
between comb of fixed plate and long beam of moving plate, h is comb width of fixed plate,
g is comb length, u is comb distance between moving plate and fixed plate, m is comb width
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of moving plate, n is the width of long beam of moving plate, j is the thickness of comb.
Therefore, the capacitance between the combs Cs under static state without TEP is shown:

CS = C1 + C2 + C3 (9)

where, C1 is the capacitance between the short side of comb of fixed plate and long beam of
fixed plate, C2 is the capacitance between the upper edge of comb of fixed plate and the
lower edge of comb of moving plate, C3 is the capacitance between the lower side of comb
of fixed plate and the upper side of comb of moving plate. Therefore, C1, C2, and C3 can
be defined:

C1 = εS
d1

= εhj
e C2 = C3 = εbj

u (10)

where, ε is dielectric constant of Si-based material. Substituting (10) into (9), Cs is shown:

Cs = C1 + C2 + C3 =
εhj
e

+ 2
εbj
u

(11)

According to Figure 4b, when the carriers accelerate to A0, a displacement occurs
between the upper and lower combs, and C1

′, C2
′ and C3

′ can be described as follows:

C′1 = εhj
e C′2 = εbj

u−∆u C′3 = εbj
u+∆u (12)

Then, the capacitance under working state without TEP Cw is shown:

Cw = C′1 + C′2 + C′3 =
εhj
e

+
εbj

u− ∆u
+

εbj
u + ∆u

(13)

According to (11) and (13), the capacitance variation ∆C can be expressed:

∆C = |Cs − Cw| =
∣∣∣∣ εbju
u− ∆u

+
εbju

u + ∆u
− 2

εbj
u

∣∣∣∣ (14)

However, MEMS accelerometer’s internal structure changes nonlinearly as CTE of
Si-based material. Using CTE estimation model of Si-based material, Figure 4c shows
local structure of MEMS accelerometer under static state with TEP. Due to its symmetrical
structure, the actual deformation of long beam of moving plate to the fixed plate is half
of its dimensional variation. From (5), its structure varies as ambient temperature and
is expressed:

h(T) = h[1 + α(T)]
m(T) = m[1 + α(T)]

j(T) = j[1 + α(T)]
b(T) = b + α(T)k1

g(T) = g[1 + α(T)]
u(T) = u− α(T)k2

n(T) = n[1 + α(T)]
e(T) = e− α(T)k3

(15)

where, k1 = i + n/2 + g, k2 = (m + k)/2, k3 = g + n/2. From (10), C1 at temperature T C1(T), C2
at temperature T C2(T) and C1 at temperature T C3(T) can be deduced as follows:

C1(T) =
εhj[1+α(T)]2

e−α(T)k3
C2(T) = C3(T) =

εj[b+α(T)k1][1+α(T)]
u−α(T)k2

(16)

By substituting (15) into (16), Cs at temperature T Cs(T) is further shown as follows:

Cs(T) = C1(T) + C2(T) + C3(T) =
εhj[1 + α(T)]2

e− α(T)k3
+

2εj[b + α(T)k1][1 + α(T)]
u− α(T)k2

(17)

Figure 4d shows local structure variation of MEMS accelerometer under working state
with TEP. When ambient temperature varies to T, C1

′(T), C2
′(T) and C3

′(T) are expressed:

C′1(T) =
εhj[1+α(T)]2

e−α(T)k3
C′2(T) =

εj[b+α(T)k1][1+α(T)]
u−α(T)k2−∆u C′3(T) =

εj[b+α(T)k1][1+α(T)]
u−α(T)k2+∆u

(18)
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From (13), the capacitance under working state with TEP Cw(T) can be shown:

Cw(T) = C′1(T) + C′2(T) + C′3(T)

= εhj[1+α(T)]2

e−α(T)k3
+ εj[b+α(T)k1][1+α(T)]

u−α(T)k2−∆u + εj[b+α(T)k1][1+α(T)]
u−α(T)k2+∆u

(19)

Therefore, the capacitance variation ∆C(T) at temperature T can be shown as follows:

∆C(T) = |Cs(T)− Cw(T)|
=
∣∣∣ εj[b+α(T)k1][1+α(T)]

u−α(T)k2−∆u + εj[b+α(T)k1][1+α(T)]
u−α(T)k2+∆u − 2εj[b+α(T)k1][1+α(T)]

u−α(T)k2

∣∣∣ (20)

Then, TDE of MEMS accelerometer ∆C-∆C(T) can be shown as follows:

∆C− ∆C(T) =
∣∣∣ εbju

u−∆u + εbju
u+∆u − 2 εbj

u

∣∣∣
−
∣∣∣ εj[b+α(T)k1][1+α(T)]

u−α(T)k2−∆u + εj[b+α(T)k1][1+α(T)]
u−α(T)k2+∆u − 2εj[b+α(T)k1][1+α(T)]

u−α(T)k2

∣∣∣ (21)

According to (21), it concludes that there is a deviation when ambient temperature
varies, which is related to α(T) and α(T)2. From (6), α(T) is related to T and T2, which
deduces the deviation is also related to T and T2. Hence, the conventional model can be
modified and a novel TDE precise estimation model for MEMS accelerometer is established:

∆EMEMS = f
(

∆T, ∆T2, T, T2
)

(22)

2.2. Parameter Identification Optimization for Novel TDE Precise Estimation Model

After a novel TDE precise estimation model for MEMS accelerometer is established,
its parameter identification optimization determines TDE estimation accuracy. The more
accurate it is, the more precisely TDE is estimated. Therefore, the prerequisite to its
implementation is testing TDE accurately, and a proper TDE test method is necessary.

2.2.1. TDE Test Method

TDE of MEMS accelerometer is described with bias and scale factor as well as random
error. Once it is manufactured, the physical characteristics are fixed. The presence of
bias, scale factor, and random error causes different MEMS accelerometers to have diverse
environmental adaptability. According to the datasheets, their TDE can be grossly reckoned:

∆E = α∆T + β∆T (23)

where, ∆E are roughly reckoned values of TDE, α is its character “Zero-rate level change vs.
temperature”, β is its character “Sensitivity change vs. temperature” [18]. Theoretically, ∆E
is slightly smaller than TDE ∆EMEMS, so we can obtain:

∆E ≤ ∆EMEMS (24)

MEMS accelerometer’s sensitivity ∆ES determines its measured minimum. When
ambient temperature deteriorates during it works, it is possible TDE is much greater than
∆ES, even completely submerging to worsen MEMS accelerometer’s output. Therefore, it
is essential for ambient temperature to vary slowly, which avoids some large accidental
output deviations to ensure its accuracy. To test TDE precisely, temperature control interval
is shown:

∆ES ≈ ∆EMEMS (25)

Besides, to ensure the accuracy and the real time of the test results, some other impor-
tant factors should be considered, which are shown as follows:

1. Heat conduction measures
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Heat conduction measures should be taken to reduce heat conduction delay, which
keeps ambient temperature the same as the MEMS accelerometer.

2. Precise temperature measurement system

Precise temperature measurement system is essential to precisely measure ambient
temperature. It needs be installed closely on MEMS accelerometer, and its measurement
accuracy needs to be 2-times more precise than ambient temperature variation. Further, its
measurement frequency should be higher than MEMS accelerometer’s output frequency to
record test results as real time as much as possible [18].

3. Reasonable temperature control period

From heat conduction theory, it takes some time to transfer heat from point A to point
B. Sufficient temperature control period makes temperature variation at point A the same
as point B, but an insufficient one causes temperature at point B not to stabilize at required
temperature; in that case TDE cannot be tested precisely. Usually, thermal chamber is used
to test MEMS accelerometer, and it integrates temperature control system with temperature
control units on both sides. Further, it adopts a structure design of front-door open and
closed insulation to ensure its control effectiveness. It takes time for heat transferring
determined by heat conducting condition. Better heat conducting condition requires less
time to maintain temperature, and temperature variation inside is truly reflected. Therefore,
temperature sensors are set close to MEMS accelerometer, and temperature control units
are set in a distance to transfer heat uniformly. Figure 5 shows a schematic diagram of the
test platform.

Figure 5. The schematic diagram of test platform. (a) The installation of MEMS accelerometer inside
the thermal chamber; (b) field test of TDE test method.

From Figure 5, temperature control units control ambient temperature in the thermal
chamber through its inner wall. Taking the center of MEMS accelerometer installed at the
center of the thermal chamber as a reference, the thermal chamber is divided into two
complete identical rooms (Room 1 and Room 2) using the plane P1 with its inner wall
parallel to the center of thermal chamber. Assuming that the sizes of two rooms are L× L1 ×
L2, heat from temperature control units uniformly transfers to their joint plane P2 along
length L perpendicular to the inner wall. The farther the location is away from the inner
wall, the longer heat transfers. The joint plane is the last area where ambient temperature
stabilizes. According to Fourier’s law, conduction heat transfer equation is shown:

wb = −λA
dt
dx

(26)
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where, wb is heat conduction rate of any point B in Room 1 or Room 2, A is the area of
the joint plane, dt/dx is temperature gradient, λ is coefficient of heat conductivity. By
deforming (26) and integrating, we obtain (27) as follows:∫ b

0 wbdx =
∫ Tb

T0
−λAdT wb = −λA(Tb−T0)

b (27)

where, b is the vertical distance from any point B to the inner wall in Room 1 or Room 2, Tb
is ambient temperature at point B, T0 is ambient temperature of the inner wall. According
to (27), when temperature varies from T0 to Tb, its required power at point B can be directly
calculated. Therefore, assuming that the heating period is ts, its required energy Qb at point
B is shown as follows:

Qb =
λA|Tb − T0|

b
ts (28)

From Figure 5, MEMS accelerometer is installed perpendicular to the inner wall. The
plane P3 parallel to the inner wall where its left endpoint stays in and P2 as well as the
thermal chamber form Room 3. To test TDE accurately, Room 3 should be heated evenly
and completely. From (28), it needs different energy at any point of Room 3 with different
temperature variation. To obtain the overall energy to heat Room 3, (28) is integrated
and shown: ∫ b2

b1
Qbdb =

∫ b2
b1

λA|Tb−T0|ts
b db Q = λA|Tb − T0|ts|ln(b2)− ln(b1)| (29)

where, b1 is the vertical distance between P3 and P1, b2 is the vertical distance between P2
and P1. According to specific heat capacity formula, the heat heating Room 3 entirely and
uniformly can be expressed as follows:

Q = Cm∆T = C∆TA(b2 − b1) (30)

where, C is specific heat capacity of air in Room 3 in a closed condition, m is its mass,
∆T is temperature variation and ∆T = |Tb-T0|. Based on (29) and (30), a new equation
is obtained:

ts =
C∆TA(b2 − b1)ρ

λA|Tb − T0||ln(b2)− ln(b1)|
=

C(b2 − b1)ρ

λ|ln(b2)− ln(b1)|
(31)

where, ρ is air density inside thermal chamber. From (31), the time for heat conduction from
the inner wall to the joint of two rooms can be calculated. To ensure the thermal chamber is
heated uniformly, temperature control period tp is shown as follows:

ts ≤ tp (32)

Based on (25) and (32), MEMS accelerometer IIS328DQ is chosen randomly to test
its TDE. According to its datasheet, ∆ES = 0.98 mg/digit, α = ±0.8 mg/◦C, and its maxi-
mum operating temperature range is −40 ◦C~85 ◦C. After dimensional transformation,
β is obtained:

β =
0.02%× FS

(85 ◦C)− (−40 ◦C)
=

0.02%× 4 g
125

= 0.64 mg/◦C (33)

According to (25), temperature control interval ∆T can be shown as follows:

∆T ≤ 0.98 mg/digit
[(+0.8 mg/◦C)− (−0.8 mg/◦C)] + 0.64 mg/◦C

≈ 0.43 ◦C (34)

To simplify test steps, ∆T = 0.4 ◦C. Thermal chamber SET-Z-021 is used to test
IIS328DQ, and its parameters C = 1.005 kJ/(kg × K), λ = 0.0267 W/m ◦C, L = 0.6 m,
ρ = 1.293 kg/m3. We then obtain:

ts = 29.323 s (35)
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From (35), temperature control period 29.232 s is taken for temperature control units
to vary temperature control interval 0.4 ◦C. To simplify test steps and reserve an allowance
for stable temperature transfer, tp = 35 s. IIS328DQ is tested and its temperature is obtained
using precise temperature measurement system with accuracy of ±0.03 ◦C and frequency
of 10 Hz [18]. Therefore, the temperature experiment is designed and shown as follows:

1. IIS328DQ is installed on the base of thermal chamber, its measuring direction is
vertically down and its true value 1 g. Temperature sensors for the precise temperature
measurement system are attached on it. Wireless transmission module sends test
results and PC is prepared to receive its temperature Ta and its output Da.

2. Cool thermal chamber to lower limit of the rated operating temperature range−20 ◦C,
and keep Ta and Da recording for 1 h after ambient temperature stays stable.

3. Heat thermal chamber to higher limit of the rated operating temperature range 50 ◦C
at a rate of 41 ◦C/h, which is 0.4 ◦C per 35 s. When Ta goes to 50 ◦C, stop the test until
it stays stable for an hour.

4. Repeat step (2) to (3) three times, and choose one of them randomly as the test results.

Figure 6 shows the flow chart of temperature experiment and the test results.

Figure 6. Flow chart of temperature experiment and the test results. (a) Test flow; (b) the test results.

2.2.2. Implementation of Novel Model Based on PSO-GA-BPNN

After accurately testing TDE and TCQ, another key factor for TDE precise estimation is
establishing a suitable model with accurate parameters. Considering there may be complex
nonlinear relationships between TCQ and TDE, it is essential to apply a comprehensive
model. BPNN with nonlinear structure can describe linearity and nonlinearity under
arbitrary precision. Based on a number of test results, its parameters are precisely identified
and its structure is built. Therefore, BPNN can be used in TDE estimation. Then, the
conventional TDE estimation model for MEMS accelerometer and the novel one are shown:

∆E1
MEMS = fBPNN

(
∆T, ∆T2) ∆E2

MEMS = fBPNN
(
∆T, ∆T2, T, T2) (36)

After being trained and implemented, the novel TDE estimation model and its outputs
are stably established. If its structure and parameters change, its performance changes as
well. However, BPNN has local optimums in some ranges; global optimums may inevitably
degenerate into non-global optimums in the whole range, shown in Figure 7.
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Figure 7. The local optimums of BPNN in some ranges.

As shown in Figure 7, several concave surfaces appear as its parameters change. When
the parameters change close to the concave surface in gradient operation, although BPNN
outputs stably, they are the local optimums. Even so, there may be multiple concave regions
and many local optimums. Therefore, eliminating local optimums is an important way to
obtain an accurate BPNN. Assuming X is the positions of weights ω and thresholds b of
BPNN in solution space of cost function, its objective function can be expressed as Y = f (X).
When Y is unequal to its expected value Y, its cost function of searching X can be expressed:

E(X) =
1
2
(
Y−Y

)2 (37)

The current position x of X in the solution space is obtained by the position update
operator, which is shown as follows:

x = x0 −
m

∑
k=1

η
dE(xk)

dxk
(38)

where, k is the number of searching (k < m), η is learning rate, x0 is the initial position
of X. As shown in Figure 7, when x0 is in d-region, the solution of X can be obtained
with (38), and xd is its local optimum. When x0 locates in a-region, the solution of X is its
global optimal solution. Therefore, the initial position of x0 is critical to obtain the global
optimums. Then, GA is introduced to optimally choose the initial position x0 of X. Its
core operation is crossover and mutation, which are carried out by simulating biological
chromosome genes in natural evolution process. Therefore, the global optimal solution of
BPNN is transformed into genes with the best fitness [29]. GA adopts the binary encode
method, and each binary part represents a gene. The binary code of ω and b are substituted
into the initial position x0 as follows:

(x0)2 =
[
. . .
(
aj0 . . . ajN1

)
. . .
(
ai0 . . . aiN1

)
. . .
]

2 (39)

where, N1 is the binary digit number of binary encoding with ω and b. Crossover operator
of GA obtains the gene of filial generation xc, and mutation operator selects one or more
loci in xc randomly, and gene values of these loci mutate to x′ci. ω and b of the modified
BPNN with GA obtained by decoding individual x′ci and substituting into BPNN. The
fitness of an individual x′ci in the population is calculated by the following fitness function:

f
(
x′ci
)
=
∣∣y(x′ci

)
− y
(
x′ci
)∣∣ (40)
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Through more crossover and mutation, the individual xold with high fitness is selected
and the expected initial solution position of BPNN xnew is obtained as follows:

xnew = xold + xc (41)

when xnew locates to a-region, b-region and c-region; the approximation from xnew to the
global optimal solution xa is operated by the mutation. Then, the novel TDE estimation
model based on GA-BPNN is expressed further as follows:

∆E3
MEMS = fGA−BPNN

(
∆T, ∆T2, T, T2

)
(42)

However, the mutation process of GA is probabilistically disordered and needs more
iterations in a flat region, which shows GA has poor calculation real time to maintain its
perfect local optimization ability. PSO has solving directivity to reduce complex iterations
and rapidly converge to the targets, which can assist GA with less iterations to get the
global optimum. Therefore, PSO is used in GA-BPNN to enhance its calculation real time.
Using the individual information shared in group, the iteration evolves from disorder to
order in the solution space of GA, and the process of solving xa with xnew is similar to that
of bird-flock foraging behavior [30]. After crossover and mutation, PSO selects xnew from
GA as its initial position x0, which is obtained by velocity update operator and position
operator, expressed as:

x0 =
n

∑
i=1

[vi + c1r1(pi − xi) + c2r2(gi − xi)] (43)

where, vi is particle velocity, r1 and r2 are random values during 0~1, c1 and c2 are constant,
pi is historical optimum of particle, gi is historical optimum of particle swarm, n is iteration
number of PSO. By substituting (38) into (43), cost function solution x of BPNN is shown:

x =
n

∑
i=1

[vi + c1r1(pi − xi) + c2r2(gi − xi)]−
m

∑
j=1

η
dE
(
xj
)

dxj
(44)

BPNN is trained with mathematical calculation software, such as Mathematica or
Python. Complete TCQ are used as its inputs and TDE as its output, and BPNN is built
after being trained. GA and PSO-GA are also implemented in BPNN with codes. BPNN is
optimized in two ways, training samples’ initial value and cost function solution. The first
one optimizes the center vector and the width of Gauss function as the kernel functions of
the neurons in hidden layer, and the second one optimizes the weights between the neurons
in output and hidden layers. To verify the optimization performance of PSO on GA, GA
and PSO-GA are compared with performance evaluation equation, which is shown below:

z = −y sin(2πx)− x cos(2πy) (45)

where, x∈[−2, 2], y∈[−2, 2]. The smaller z is, the fewer iterations PSO on GA have. Figure 8
shows performance improvement and its implementation.

From Figure 8, GA approaches the global optimum after 27 iterations and has the
same iterations as PSO-GA with the same TDE estimation accuracy. By comparison, PSO-
GA does that after 3 iterations, and the iterations are reduced by 88.9%. Therefore, after
introducing PSO into GA, the calculation real time of GA is significantly improved, which
guarantees that the TDE of the MEMS accelerometer can be estimated in a more accurate
and timely manner. Then, the novel TDE estimation model based on PSO-GA-BPNN is
shown as follows:

∆EMEMS = fPSO−GA−BPNN

(
T, T2, ∆T, ∆T2

)
(46)
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Figure 8. Performance improvement and its implementation. (a) Performance improvement compari-
son of GA and PSO-GA; (b) implementation flow chart of the novel model.

3. Experiments and Analysis

In order to estimate the TDE estimation performance of the novel TDE estimation
model for the MEMS accelerometer, one group of the test results is chosen to ensure test
universality. From (36), (42) and (46), the conventional model based on TCQ (∆T, ∆T2) and
BPNN as well as the novel model are established, and their performances on accuracy and
real time are compared. Figure 9 shows performance improvements in TDE estimation
accuracy of the novel model based on TCQ (T, T2, ∆T, ∆T2) and BPNN (Model 1), the novel
model based on TCQ (T, T2, ∆T, ∆T2) and GA-BPNN (Model 2), the novel model based
on TCQ (T, T2, ∆T, ∆T2) and PSO-GA-BPNN (Model 3), and performance improvement in
TDE estimation real time between Model 2 and Model 3.

Figure 9. Comparison of performance improvement between the novel and the conventional mod-
els. (a) Accuracy improvement of Model 1; (b) accuracy improvement of Model 2; (c) accuracy
improvement of Model 3; (d) real-time improvement of Model 2 and Model 3.
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From Figure 6, ambient temperature at −20 ◦C is considered as a reference, and it
gradually increases to 50 ◦C and stays stable. TDE are estimated by Model 1, Model
2 and Model 3 and the test results are compensated well. The output of the MEMS
accelerometer fluctuates around its true value (1 g) and its TDE is reduced greatly by
introducing GA, which decouples the MEMS accelerometer from ambient temperature to
enhance its environmental adaptability. Besides, the test results demonstrate that TCQ has
no excitation to TDE and no influence on its output accuracy, and the novel model has
perfect TDE estimation to ensure that the MEMS accelerometer has better performance. To
show the performance improvement in TDE estimation, the performance is evaluated with
the following equation:

Q1 = |MSEModel1−MSECM |
MSECM

× 100% Q2 = |MSEModel2−MSECM |
MSECM

× 100% Q3 = |MSEModel3−MSECM |
MSECM

× 100% (47)

where, Q1 is the performance improvement of Model 1, Q2 is the performance improvement
of Model 2, Q3 is the performance improvement of Model 3; MSECM is MSE of the test
results compensated by the conventional model, MSEModel 1 is MSE of the test results
compensated by Model 1, MSEModel 2 is MSE of the test results compensated by Model 2,
MSEModel 3 is MSE of the test results compensated by Model 3. Then, to comprehensively
demonstrate TDE estimation performance improvements for Model 1, Model 2 and Model 3,
Table 1 shows all performance of the test results in three tests and its improvement.

Table 1. Performance comparison between the conventional and novel models.

Test 1 Test 2 Test 3

Conventional model 8.43 × 10−6 1.81 × 10−6 9.62 × 10−6

Model 1 8.16 × 10−6 1.73 × 10−6 9.07 × 10−6

Model 2 7.16 × 10−6 1.55 × 10−6 8.37 × 10−6

Model 3 7.08 × 10−6 1.53 × 10−6 8.17 × 10−6

Q1 3.20% 4.42% 5.72%
Q2 15.06% 14.36% 12.99%
Q3 16.01% 15.47% 15.07%

According to Table 1, compared with the conventional model, the outputs of the MEMS
accelerometer compensated by Model 1 are improved by 3.2%, 4.42%, 5.72% separately.
Moreover, it shows that Model 1 has higher TDE estimation accuracy than the conven-
tional one, which illustrates that Model 1 has better traceability for the TDE of the MEMS
accelerometer. In addition, the outputs of the MEMS accelerometer compensated by Model
2 are optimized up to 15.06%, 14.36% and 12.99% and higher than those compensated by
the conventional model after introducing GA, which means that the performance of the
novel model based on GA-BPNN is much better than the conventional model. The outputs
of the MEMS accelerometer compensated by Model 3 are increased further by 16.01%,
15.47% and 15.97%, respectively, and higher than those compensated by the conventional
model after introducing PSO-GA, which means the performance of the novel model based
on PSO-GA-BPNN is much better than that of the novel model based on GA-BPNN. To
demonstrate the performance improvement in TDE estimation real time of PSO-GA-BPNN,
Table 2 shows MSEs between them at different iterations.

Table 2. MSEs at different iterations.

Iteration Model 2 Model 3 Iteration Effect

14 1.51 × 10−3 1.17 × 10−4 92.25%
28 6.50 × 10−4 7.40 × 10−6 99.86%
42 2.62 × 10−5 7.26 × 10−6 72.30%
56 7.24 × 10−6 7.17 × 10−6 0.90%
70 7.16 × 10−6 7.08 × 10−6 1.11%



Micromachines 2022, 13, 835 16 of 17

As shown in Figure 9d, when Model 2 and Model 3 go through the same iterations, the
MSEs of Model 3 are smaller than those of Model 2. For less iterations, the convergence rate
is much smaller than that of Model 2 in terms of quickly stabilizing the MEMS accelerometer.
As they iterate more, the MSEs of Model 3 are close to those of Model 2. According to
Table 2, the MSEs of Model 2 and Model 3 gradually approach the same after 50 iterations,
and they have the same convergence at the same output accuracy and their real time is
nearly the same. However, the MSEs of Model 3 are much smaller than those of Model 2 at
28 iterations and PSO reduces the iterations of GA-BPNN by 99.86%, which demonstrates
that Model 3 has faster convergence to obtain better real time. Hence, the novel model
based on the all-new TCQ and PSO-GA-BPNN has much better implementation to obtain
higher TDE estimation accuracy and fewer iterations to increase its estimation real time.

4. Conclusions

In this paper, a novel TDE precise estimation model for a MEMS accelerometer using
microstructure thermal analysis was proposed. By analyzing the microstructure thermal
deformation at different ambient temperatures, qualitatively and quantitatively, TCQ
(T, T2, ∆T, ∆T2) for TDE is studied clearly to obtain more accurate TDE traceability, which
establishes a novel TDE precise estimation model for the MEMS accelerometer. Then,
PSO-GA-BPNN was studied and applied in its parameter identification, which eliminated
the local optimums in the conventional model based on BPNN to enhance TDE estimation
accuracy and reduce BPNN’s probabilistic disorder to increase its real time. An all-new
TDE test method was formed by analyzing heat conduction processes between MEMS
accelerometers and thermal chambers, and a temperature experiment was designed with
a proper temperature control interval and temperature control period. MSE was used to
effectively evaluate TDE estimation accuracy and real time. The accuracy of the novel
model based on TCQ and PSO-GA-BPNN was improved by 16.01% compared with the
conventional one, and its iterations were reduced by 99.86% compared to the model
based on GA-BPNN at maximum. The novel TDE precise estimation model for a MEMS
accelerometer has the merits of higher TDE estimation and better real time, and decouples
temperature dependence of Si-based materials, significantly improving the environmental
adaptability of the MEMS accelerometer to expand its application in diverse complex
conditions. Moreover, it is reliable and universal, so can be applied widely.
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