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We use deep sequencing to identify sources of variation in mRNA splicing in the dorsolateral 

prefrontal cortex (DLFPC) of 450 subjects from two aging cohorts. Hundreds of aberrant pre-

mRNA splicing events are reproducibly associated with Alzheimer’s disease. We also generate a 

catalog of splicing quantitative trait loci (sQTL) effects: splicing of 3,006 genes is influenced by 

genetic variation. We report that altered splicing is the mechanism for the effects of the PICALM, 
CLU, and PTK2B susceptibility alleles. Further, we performed a transcriptome-wide association 

study and identified 21 genes with significant associations to Alzheimer’s disease, many of which 

are found in known loci, but 8 are in novel loci. This highlights the convergence of old and new 

Alzheimer’s disease genes in autophagy-lysosomal-related pathways. Overall, this study of the 

aging brain’s transcriptome provides evidence that dysregulation of mRNA splicing is a feature of 

Alzheimer’s disease and is, in some cases, genetically driven.

INTRODUCTION

Alternative splicing is an important post-transcriptional regulatory mechanism through 

which pre-mRNA molecules can produce multiple distinct mRNAs. Alternative splicing 

affects over 95% of human genes1, contributing significantly to the functional diversity and 

complexity of proteins expressed in tissues2. Alternative splicing is abundant in human 

nervous system tissues3 and contributes to phenotypic differences within and between 

individuals: at least 20% of disease-causing mutations may affect pre-mRNA splicing4. 

Mutations in RNA-binding proteins (RBPs) involved in splicing regulation and aberrant 

splicing have been linked to Amyotrophic lateral sclerosis (ALS)5 and Autism6. Further, 

disruptions in RNA metabolism, including mRNA splicing, are associated with age-related 

disorders, such as Frontotemporal lobar dementia (FTD)7, Parkinson’s disease8 and 

Alzheimer’s disease9,10. These studies have largely focused on alternative splicing of 

selected candidate genes, including the amyloid precursor protein (APP) 8 and microtubule 

associated protein Tau (MAPT)8,9,11. However, proteomic profiles of Alzheimer’s disease 

brains identified an increased aggregation of insoluble U1 snRNP, a small nuclear RNA 

(snRNA) component of the spliceosomal complex, suggesting that the core splicing 

machinery may be altered in Alzheimer’s disease12. Apart from these studies, there have 

been few investigations of the possibility of more widespread splicing disruption affecting 

brain transcriptomes in Alzheimer’s disease13. However, a comprehensive study of cis- and 

trans- acting genetic factors that regulate alternative splicing in aging brains is lacking.

Over twenty-four genetic loci have now been associated with Alzheimer’s disease 

susceptibility by Genome-wide Association Studies (GWAS)14, and these variants are 

enriched for associations with gene expression levels in peripheral myeloid cells and often 

lie within cis-regulatory elements15. For example, we reported that one of these variants 

influences splicing of CD3316. Given the high abundance of alternative splicing in the brain, 

we hypothesized that other Alzheimer’s disease-associated genetic variants might also affect 

pre-mRNA splicing, possibly by disrupting efficient binding of splicing factors.

Here, by applying state-of-the-art analytic methods, we generated a comprehensive genome-

wide map of splicing variation in the aging prefrontal cortex. We use this map to identify: 

(1) aberrant mRNA splicing events related to Alzheimer’s disease; (2) a new reference of 
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thousands of genetic variants influencing local mRNA splicing in the brain; (3) trans acting 

splicing factors that are involved in intron excision; and (4) association of GWAS findings to 

specific genes within each Alzheimer’s disease susceptibility locus. Overall, we deepen our 

understanding of genetic regulation in the aging brain’s transcriptome and provide a 

foundation for the formulation of mechanistic hypotheses in Alzheimer’s disease and other 

neurodegenerative diseases.

RESULTS

Aberrant mRNA splicing in Alzheimer’s disease

We deeply sequenced RNA from frozen DLFPC samples obtained at autopsy from 450 

participants in either the Religious Order Study (ROS) or the Memory and Aging Project 

(MAP), two prospective cohort studies of aging that include brain donation. All subjects 

were without known dementia at study entry. During the study, some subjects experienced 

cognitive decline, and, at autopsy, they displayed a range of amyloid-β and Tau pathology, 

with 60% of subjects having a pathologic diagnosis of Alzheimer’s disease17,18 

(Supplementary Table 1). We have previously reported changes in RNA expression level in 

relation to Alzheimer’s disease in these data19.

Following alignment and quantification of RNA-Seq reads, LeafCutter20 was applied to 

estimate “percent spliced in” values (PSI) for local alternative splicing events (Fig. 1). We 

identified 53,251 alternatively spliced intronic excision clusters in 16,557 genes. We report 

more alternatively spliced intron clusters in the cortex than any other tissues or brain regions 

previously analyzed21. To identify aberrant splicing events, we analyzed the association 

between the PSI of each intron excision event and a pathologic diagnosis of Alzheimer’s 

disease or quantitative measures of neuropathology including neuritic plaques (NP), 

neurofibrillary tangles (NFT), and amyloid-β burden, while accounting for confounding 

factors. At a False Discovery Rate (FDR) < 0.05, we identified a total of 82 differentially 

spliced introns in 67 genes associated with different neuropathologies including 5 with NP, 

20 with amyloid, and 48 with NFT (Supplementary Table 2). A heat map of the top 

differentially spliced introns associated with NFT is shown in Fig. 2a. On average, these 

differentially excised introns explain ~2–13% of total variation in neuropathologic burden 

after accounting for biological and technical covariates (Fig. 2b; Supplementary Fig. 1).

To test for association with the clinical diagnosis of Alzheimer’s disease, we used 

LeafCutter20 to identify differentially spliced introns by jointly modeling intron clusters 

using a Dirichlet-multinomial GLM (Online Methods). At a Bonferroni-corrected P < 0.05, 

we identified a total of 87 intron clusters (corresponding to 84 genes) that displayed altered 

splicing in relation to Alzheimer’s disease (Supplementary Table 3). Of these, 11 genes are 

also differentially expressed, suggesting that our splicing analysis is identifying novel 

associations that had been missed in conventional approaches evaluating gene expression 

levels alone. For example, the most significant differentially excised intron (chr10: 

3147351–3147585) is found in the phosphofructokinase gene (PFKP): the frequency of this 

splicing event was associated with Alzheimer’s disease (P < 4.9×10−24; β=−0.27) and all 

pathologic measures tested in this study. Similarly, the next most differentially excised 

intron (chr14: 21490656–21491400) associated with Alzheimer’s disease is found in the 

Raj et al. Page 3

Nat Genet. Author manuscript; available in PMC 2019 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alpha/beta-hydrolase fold protein gene NDRG family member 2 (NDRG2) (P < 5.6 × 10−19; 

β=−0.058) and is also associated with measures of both amyloid and Tau pathology (Fig. 

2c). Differential splicing of both PFKP and NDRG2 in human brains has been previously 

shown to be associated with Alzheimer’s disease pathogenesis22,23, offering a measure of 

replication. Other genes with differentially excised introns associated with Alzheimer’s 

disease at a Bonferroni-corrected P < 0.05 include APP (P < 1.6 × 10−3; β=−0.003) and 

genes in known GWAS loci including PICALM (P < 0.02; β=0.005) and CLU (P < 3.2 × 

10−4; β=−0.019). These differential splicing genes are not necessarily expressed in a single 

cell type (e.g., neurons) but are expressed across many cell types including astrocytes 

(Supplementary Figs. 2 and 3; Supplementary Table 4). Moreover, co-splicing network 

analysis using WGCNA24 suggests that the differentially spliced genes are enriched in 

specific functional modules and are part of a coherent biological process (Supplementary 

Figs. 2 and 3; Supplementary Tables 5–7; Supplementary Note).

Next, to assess the robustness of our results, we performed a replication analysis using 

RNA-Seq data from the Mount Sinai Brain Bank (MSSB)25 involving 301 samples from 

Alzheimer’s disease and control brains (Supplementary Note). Of the 84 genes with 

differentially spliced intron clusters in ROSMAP, 52 (including APP, PFKP, and NDRG2) 

were significant at a Bonferroni-corrected P < 0.05 thresholds in the MSBB data and the 

effect sizes are highly correlated between the two datasets (Pearson’s r=0.35; P <6.75× 

10−14) (Fig. 2c; Supplementary Fig. 4; Supplementary Table 8). This constitutes an 

independent replication of specific, aberrant splicing alterations in Alzheimer’s disease 

brains. Finally, to further validate and explore the mechanism of our observations, we 

analyzed RNA-Seq data derived from 3 control induced pluripotent stem cells (iPSC)-

derived neurons (iN) and the same iN line overexpressing Tau: differential intron excision 

was noted for 42 genes (FDR < 0.05), of which 11 genes overlap with the Alzheimer’s 

disease-associated splicing in the cortex including APP, PICALM, and NDRG2 (Fig. 2d; 

Supplementary Table 9). Despite the small sample size, these in vitro data suggest that tau 
accumulation in neurons – at a stage in which neurons are accumulating phospho-tau but are 

not apoptotic – may be sufficient to induce some of the splicing alterations that we observed 

in cortical tissue of human subjects; this in vitro validation of disease-related splicing 

changes suggests that this Alzheimer’s disease-altered splicing (1) is unlikely to be related to 

confounding factors from autopsy or the agonal state and (2) has specific target RNAs that 

can be modeled in vitro.

Genetic effects on pre-mRNA splicing in aging brains

We next performed a sQTL study to identify local genetic effects that drive variation in RNA 

splicing in the DLFPC. First, we assessed the splice events from the LeafCutter20 algorithm 

(Fig. 1); 30% of these 53,251 intron excision clusters are novel splicing events, not 

previously reported in other sQTL studies. The PSI values were adjusted for known and 

hidden factors (15 principal components) and then fit to imputed SNP data using an additive 

linear model implemented in fastQTL26 (Online Methods; Supplementary Fig. 5). At FDR < 

0.05, we found 9,028 sQTLs in 3,006 genes (Supplementary Table 10). As expected, 

splicing was most strongly affected by variants in the splice region itself (59.8%): 20.2% of 

variants are mapped to splice acceptor sites and 16.4% to splice donor sites. The remaining 
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(23.2%) mapped to other splice regions or are found within an intron (Supplementary Fig. 

6). Further, sQTLs are mapped to distinct regulatory features as defined by 15 chromatin 

states in DLPFC27: sQTLs were significantly enriched in actively transcribed regions and 

enhancers. They are depleted in repressed chromatin marked with polycomb, 

heterochromatin, and quiescent regions (Fig. 3a), consistent with the diminished 

transcription noted in these regions.

To assess the extent of sQTL replication, we compared our sQTLs to the recently published 

dataset from the CommonMind Consortium (CMC), consisting of DLFPC profiles from 258 

persons with schizophrenia and 279 control subjects28 (Supplementary Note). Our sQTLs 

yield a Storey’s π1 = 0.78 in the CMC data, suggesting substantial sharing of sQTLs 

between these two different brain collections (Fig. 3b). Moreover, 93% of shared sQTLs 

showed the same direction of effect (Fig. 3b). The fraction of sQTLs that are novel deserves 

further evaluation to assess the extent to which they may be context-specific given that the 

average age at death of our participants (88 years) is significantly older than that of the CMC 

dataset.

In agreement with recent findings in lymphoblastoid cell lines (LCLs)21, we found that a 

majority of sQTLs act independent of gene expression effects, as evident by the low degree 

of sharing between sQTLs and eQTLs29 from the same brains (π1 = 0.18) (Fig. 3c). Of the 

9,045 lead sQTL SNPs, only 42 are also a lead eQTL, suggesting that a substantial fraction 

of sQTLs are unique and are not detected by standard eQTL analysis.

To further understand the mechanisms underlying sQTLs, we assessed the overlap of sQTLs 

with SNPs influencing epigenomic marks (xQTLs) such as DNA methylation (mQTL) and 

histone H3 acetylation on lysine 9 (H3K9Ac, haQTL)29 that are available from the same 

DLPFC samples. Indeed, we found that such xQTLs29 are significantly enriched among 

sQTLs when compared to randomly selected, matched SNPs (Kolmogorov–Smirnov test P < 

0.001): of the lead sQTL, 9% (578) were also associated with an haQTL, and 19% (1246) 

were also an mQTL (Fig. 3d). This suggests that there an important subset of genetic 

variants co-influences splicing, methylation levels, and histone modifications. In a 

complementary analysis, we found significant sharing of sQTL SNPs among SNPs that also 

influence histone (π1 = 0.74) or methylation (π1 = 0.82). These overlaps suggest that there 

is a contribution of epigenomic regulation in splicing.

Given prior reports21,30, we evaluated whether our sQTLs from the aging brain were 

enriched for Alzheimer’s disease susceptibility variants (Figs. 3e and 3f). We also assessed 

enrichment of Alzheimer’s disease SNPs (GWAS P < 1 × 10−5) in splicing, methylation or 

expression QTLs from DLFPC29, monocytes15,31, neutrophils31 and T-cells15,31. We found 

that DLFPC sQTLs are more likely to be enriched for Alzheimer’s disease GWAS SNPs, 

followed by sQTL and eQTL from monocytes (Fig. 3f). These findings highlight (1) the 

important role of RNA splicing on variation in Alzheimer’s disease susceptibility, (2) the 

prominent role of myeloid cells in Alzheimer’s disease susceptibility15 but also (3) the fact 

that a number of Alzheimer’s disease variants have mechanisms that may be mediated 

through non-myeloid effects.
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Some of these effects of Alzheimer’s disease variants on splicing are known, such as the 8-

fold increase in full-length CD33 isoform16,32, but several of these - in CLU, PICALM, and 

PTK2B - have not been previously reported (Supplementary Table 10). These results 

delineate the initial events along the cascade of functional consequences for these three 

Alzheimer’s disease variants and provide important mechanistic insights into their 

development as potential therapeutic targets.

Splicing regulators associated with alternative splicing

Splicing of pre-mRNA is catalyzed by a large ribonucleoprotein complex called the 

spliceosome, which consists of five snRNAs and numerous splicing factors33. To identify 

brain splicing factors that regulate sQTL events in trans, we evaluated whether the lead 

sQTL SNPs identified in our study are enriched in RBP binding sites using publicly 

available cross-linking immunoprecipitation (CLIP)-Seq datasets from 76 RBPs in 

CLIPdb34. We found that binding targets of 18 RBPs are significantly enriched among lead 

sQTLs (Fig. 4a). The most enriched RBP is PTBP1, followed by HNRNPC, CPSF7, and 

ELAVL1 (P < 0.05, Fisher’s exact test with Benjamini-Hochberg correction). Notably, the 

enrichment for neuronal ELAVL1 RBP target sites is consistent with a recent report that, 

upon neuronal ELAVL1 depletion, BIN1 and PICALM transcripts were found to have lower 

exon inclusion for those sites in which ELAVL binding sites directly overlapped with SNPs 

associated with Alzheimer’s disease35.

On the other hand, we also observed significant enrichment for the lead sQTL SNPs within 

the binding sites for a number of heterogeneous nuclear ribonucleoproteins (hnRNP), 

including hnRNP C (P < 0.009). Further, we find that the expression levels of hnRNP 

splicing factors are correlated with intronic excision levels of hundreds of genes, many of 

which are in Alzheimer’s disease susceptibility loci including BIN1, PICALM, APP, and 
CLU (Fig. 4b; Supplementary Figs. 7 and 8). The hnRNP C factor has been linked to 

Alzheimer’s disease in previous studies, including in a recent biochemical study reporting 

the translational regulation of APP mRNA by hnRNP C36. This observation goes towards 

the mechanism of the sQTL: consistent with the assumption that, altering the sequence of a 

binding site changes the likelihood that a splicing event occurs in vivo. In one example of an 

sQTL affecting intron usage, a SNP within intron of TBC1D7 is found within CLIP-defined 

binding sites for hnRNP C as well as other RBPs (Fig. 4c). Thus, incorporating RBP binding 

sites as a functional annotation allows for improving our accuracy in selecting plausible 

variants that may disrupt binding of splicing factors to cause the alternative-splicing event. 

Further biochemical studies will be required to understand the full regulatory program that 

orchestrates the disease-related splicing changes.

TWAS prioritizes Alzheimer’s disease genes in autophagy pathways

To identify genes whose mRNA expression or alternative splicing is associated with 

Alzheimer’s disease and mediated by genetic variation, we performed two Transcriptome-

wide association studies (TWAS)37 by using either the ROSMAP expression data or its 

intronic excision levels as reference panels to re-analyze summary level data from the 

International Genomics of Alzheimer’s Project (IGAP) GWAS14. A total of 4,746 genes and 

15,013 differentially spliced introns could be analyzed, and we identified 21 genes at FDR < 
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0.05 whose imputed gene expression or intronic excision levels were significantly associated 

with Alzheimer’s disease status (Fig. 5a; Supplementary Table 11). Among these, there were 

genes in known Alzheimer’s disease loci including SPI1, CR1, PTK2B, CLU, MTCH2, and 

PICALM. These results help to pinpoint the likely gene that is the target of the known 

susceptibility variant in each locus, particularly at the MTCH2 locus in which the functional 

consequence of the risk allele was unclear. However, the new Alzheimer’s disease genes are 

even more interesting, and 8 of these associations are found in loci that harbored only 

suggestive evidence of association in the IGAP study. These genes include AP2A1, AP2A2, 

FUS, MAP1B, TBC1D7 and others that are now significant at a threshold adjusted for 

genome-wide testing. This analysis therefore helps to prioritize the long list of suggestive 

IGAP associations (Figs. 5a; Supplementary Figs. 9–17). Interestingly, both AP2A1 and 

MAP1B were recently identified as hub proteins in Alzheimer’s disease proteome networks 

and had lower protein expression levels in Alzheimer’s disease brains compared to ALS, 

PD, or control brains38.

To replicate these results, we first assessed whether an expression imputation model built 

using the CMC dataset28 that was then deployed in the IGAP GWAS yields similar results. 

We focused on the 21 significantly associated genes above: four genes (CR1, PTK2B, 
TBC1D7, and SH3YL1) replicated at FDR < 0.05 and two genes (AP2A1 and PHKB) were 

suggestive at P < 0.05 with the expression and splicing inference from CMC (Fig. 5b). The 

directions of effect for all six associations were consistent in both datasets (Fig. 5b). Thus, 

we see replication of our results: they are not due to the unique properties of the ROSMAP 

dataset. Second, we used a different Alzheimer’s disease GWAS - the UK BioBank (UKBB) 

GWAS by proxy39 - to replicate the IGAP TWAS results. We note that, despite analyzing 

data from 116,196 subjects, the UKBB GWAS is underpowered since the GWAS does not 

use Alzheimer’s disease cases but, rather, subjects who have a first-degree relative with 

Alzheimer’s disease as “cases”. Nevertheless, we were able to replicate (at a nominal P < 

0.05) seven of our IGAP TWAS associations in the UKBB TWAS (Fig. 5c). These two 

complementary replication efforts demonstrate the robustness of our results. Finally, we 

performed a TWAS using the summary statistics of a meta-analysis of IGAP and UKBB 

GWAS, and identified three additional genes (ABCA7, RHBDF1, and VPS53) that meet a 

genome-wide significant threshold in the meta-analysis, with ABCA7 being one of the well-

validated Alzheimer’s disease loci (Supplementary Table 12).

Most of the TWAS associations are the result of differential intron usage, suggesting the 

importance of pre-mRNA splicing in Alzheimer’s disease (Fig. 5a). An example of TWAS 

association with intron usage at PTK2B, a known Alzheimer’s disease susceptibility locus, 

is shown in Fig. 5d. We often observed multiple TWAS-associated genes in the same locus, 

likely due to co-expression of genes in close physical proximity or allelic heterogeneity 

within the susceptibility locus40. To account for multiple associations in the same locus, we 

applied conditional and joint association methods that rely on summary statistics40,41 to 

identify genes that had significant TWAS associations when analyzed jointly (Figs. 5e and 

6b). A region with multiple TWAS association includes the PTK2B/CLU locus, which 

shows independent co-localized association for both GWAS14 and splicing effects (Fig. 5e).
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Refining known associations is important to translate results into functional studies, but the 

newly validated Alzheimer’s disease genes (Figs. 6a and 6b) also offer new insights into 

disease: we used GeNets42 to evaluate the connectivity of our new Alzheimer’s disease 

genes with the network of known susceptibility genes that are interconnected by protein-

protein interaction (PPI)43. These new and known Alzheimer’s disease susceptibility genes 

are directly connected (i.e., they form shared ‘communities’) (P < 0.006) (Fig. 6c). Further, 

this joint network is enriched for endocytosis pathways (P < 0.0002), highlighting the 

existing narrative of endocytosis pathways as being preferentially targeted in Alzheimer’s 

disease. The enrichment for autophagy-lysosomal related pathway (P < 0.003) is more 

interesting (Fig. 6c). The genes in the autophagy-lysosomal related pathway (AP2A2, 
AP2A1, and MAP1B) form a statistically significant (P < 4.3×10−4) PPI sub-network with 

known Alzheimer’s disease genes (PTK2B, PICALM and BIN1) (Fig. 6d). Protein 

degradation pathways have been implicated previously in Alzheimer’s disease44. Overall, 

these PPI analyses suggest that our new TWAS-derived genes are not a random set of genes 

but are part of an Alzheimer’s disease network.

DISCUSSION

In this study, we directly examined alternative splicing events in a large dataset of aging 

brains, which led to both the observation that specific alternative splicing events are 

reproducibly associated with Alzheimer’s disease and that certain validated genetic 

associations affect splicing of a nearby gene as the proximal functional consequence of the 

susceptibility allele. Our replication efforts demonstrate that the observed Alzheimer’s 

disease-related perturbations in splicing are not simply due to spliceosomal failure: specific 

genes are reproducibly affected in a specific manner. Further, results from our in vitro model 

of tau overexpression in iPSC-derived neurons suggest that perturbation of MAPT may be 

sufficient to cause at least a subset of these disease-related splicing changes that are 

observed in the human cortex at autopsy.

We used the powerful TWAS approach, which leverages our splicing map and common 

genetic variants to test the hypothesis that the effect of such variants in Alzheimer’s disease 

is mediated, by altering splicing levels. These analyses confirmed many of the known 

Alzheimer’s disease genes (i.e., CLU and PTK2B), which supports the role of regulation of 

splicing levels as key mechanisms in certain loci, but also found several new loci: TBC1D7, 
AP2A1, AP2A2, and MAP1B (Figs. 5a and 6b; Supplementary Figs. 7, 9, and 13). These 

new genes reinforce the association of the Clathrin/AP2 adaptor complex with Alzheimer’s 

disease susceptibility45. Both AP2A2 and AP2A1, which are components of the AP2 

adaptor complex that serves as a cargo receptor, selectively sorting membrane proteins 

involved in receptor-mediated endocytosis46. The AP2 complex and PICALM interact with 

APP, directing it to degradation and autophagy46.

Our study also offers insights for several well-known Alzheimer’s disease loci in which the 

gene was known but the functional mechanism remained unclear. Similar to our work in 

CD3316, the careful analysis of these cortical data highlights a specific splicing mechanism 

for the Alzheimer’s disease risk alleles at CLU, PICALM, and PTK2B. All three are 

complex proteins with a large number of exons, so our results prioritize specific domains in 
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these proteins as harboring the functional domain that influences Alzheimer’s disease risk. 

Further, our analyses of RBP involved in splicing regulation of Alzheimer’s disease 

susceptibility genes including PICALM, and RNA binding site analysis of HNRNPC (Fig. 

4c; Supplementary Fig. 6) and ELAVL helps to prioritize the variant that may be driving the 

genetic association and to elaborate the series of events upstream of the susceptibility variant 

that enable its expression. Thus, our catalog of splicing variants made available with this 

study provides a starting point for further focused molecular and biochemical experimental 

validation to fully elucidate the role of these splicing variants in the etiology of Alzheimer’s 

disease.

This study has several limitations. We only characterize splicing events in one region (the 

DLPFC) of the aging brain. The DLPFC is a region that is affected by amyloid pathology 

relatively early as it spreads throughout the neocortex47. The accumulation of Tau pathology 

progresses in a stereotypic manner captured by the Braak stages48, and the DLPFC displays 

accumulation of NFTs containing Tau typically when individuals begin to be symptomatic. 

Thus, both amyloid and Tau pathology accumulate in the DLPFC in Alzheimer’s disease, 

and we use quantitative measures of these pathologies to enhance our power in discovering 

the molecular features that are associated with these pathologies. Some of these splicing 

changes may contribute to the accumulation of these pathologies while others may be a 

reaction to the presence of pathology or may be the result of indirect effects of the pathology 

in other brain regions. Currently, we cannot differentiate these three sources of variation in 

our results. Expression datasets from multiple brain regions exist in the GTEx project49, but 

the sample size is small (n=88–136) to build a robust transcriptome model for TWAS. The 

MSBB has RNA-seq data across three brain regions but due to the lack of availability for 

individual level genotypes we are unable to build reference models from those data. Another 

limitation of this study is the small sample size of the in vitro experiment; thus, these 

intriguing results will require testing in a much larger number of iPSC lines to confirm that 

this effect of MAPT overexpression is generalizable. We note that these MAPT 
overexpressing iPSC-derived neurons are functioning normally at the time when they were 

sampled; thus, these in vitro data suggest that at least some of the disease-associated splicing 

changes that we report may occur very early in the series of molecular events that are caused 

by perturbation in MAPT expression.

This transcriptome-wide reference map of RNA splicing in the aging cortex is a new 

resource that highlights strong effects of neuropathology and genetic variation on splicing. It 

will be useful in annotating the results of genetic and epigenomic studies of neurologic and 

psychiatric diseases, but it has an immediate impact in (1) identifying the functional 

consequences of several Alzheimer’s disease susceptibility alleles, (2) extending the list of 

loci involved in Alzheimer’s disease, and (3) implicating the protein degradation machinery 

in the pathology of Alzheimer’s disease.

ONLINE METHODS

Study Cohorts

Religious Orders Study (ROS): From January 1994 through June of 2010, 1,148 

persons agreed to annual detailed clinical evaluation and brain donation at the time of death. 
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Of these, 1,139 have completed their baseline clinical evaluation: 68.9% were women; 

88.0% were white, non-Hispanic; their mean age was 75.6 years; and mean education was 

18.1 years. There were 287 cases of incident dementia and 273 cases of incident 

Alzheimer’s disease with or without a coexisting condition. Details of the clinical and 

pathologic methods have been previously reported 17.

Memory and Aging Project (MAP): From October 1997 through June 2010, 1,403 

persons agreed to annual detailed clinical evaluation and donation of the brain, spinal cord, 

nerve, and muscle at the time of death. Of these, 1,372 completed their baseline clinical 

evaluation: 72.7% were women; 86.9% were white, non-Hispanic; their mean age was 80.0 

years; and mean education was 14.3 years with 34.0% with 12 or fewer years of education. 

There were 250 cases of incident dementia and 238 cases of incident Alzheimer’s disease 
with or without a coexisting condition. Details of the clinical and pathologic methods have 

been previously reported 51. To avoid population stratification artifacts in the genetic 

analyses, the study was limited to non-Latino whites.

See Supplementary Notes for the details of CommonMind Consortium (CMC) and Mount 

Sinai Brain Bank (MSBB) datasets.

Data acquisition, quality control, and normalization

Genotyping.—DNA from ROS and MAP subjects was extracted from whole blood, 

lymphocytes or frozen post-mortem brain tissue and genotyped on the Affymetrix GeneChip 

6.0 platform at the Broad Institute’s Center for Genotyping. Only self-declared non-Latino 

Caucasians were genotyped to minimize population heterogeneity. PLINK software52 was 

used to implement our QC pipeline. We applied standard QC measures for subjects 

(genotype success rate >95%, genotype-derived gender concordant with reported gender, 

excess inter/intra-heterozygosity) and for single nucleotide polymorphisms (SNPs) (HWE P 

> 0.001; MAF > 0.01, genotype call rate > 0.95; misshap test > 1×10−9) to these data. 

Subsequently, EIGENSTRAT53 was used to identify and remove population outliers using 

default parameters. Imputation was performed using Michigan Imputation Server with 

Minimac354 using Haplotype Reference Consortium (HRC version r1.1, 2016)55 panel 

consisting of 64,940 haplotypes of predominantly European ancestry. Imputation filtering of 

r2 > 0.3 was used for quality control. After QC, 450 individuals and 8,383,662 genotyped or 

imputed markers were used for sQTL analysis.

RNA-Seq data.—RNA was sequenced from the gray matter of dorsal lateral prefrontal 

cortex (DLPFC) of 542 samples, corresponding to 540 unique brains. These samples were 

extracted using Qiagen’s miRNeasey mini kit and the RNase free DNase Set. RNA was 

quantified using Nanodrop. The quality of RNA was evaluated by the Agilent Bioanalyzer. 

All samples were chosen to pass two initial quality filters: RNA integrity (RIN) score >5 and 

quantity threshold of 5 μg (and were selected from a larger set of 724 samples). RNA-Seq 

library preparation was performed using the strand specific dUTP method14 with poly-A 

selection. Sequencing was performed on the Illumina HiSeq with 101bp paired-end reads 

and achieved coverage of 150M reads of the first 12 samples. These 12 samples served as a 

deep coverage reference and included 2 males and 2 females of non-impaired, mild cognitive 
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impaired, and Alzheimer’s cases. The remaining samples were sequenced with target 

coverage of 50M reads; the mean coverage for the samples passing QC is 95 million reads 

(median 90 million reads). The libraries were constructed and pooled according to the RIN 

scores such that similar RIN scores would be pooled together. Varying RIN scores result in a 

larger spread of insert sizes during library construction and leads to uneven coverage 

distribution throughout the pool.

The RNA-Seq data were processed by a parallelized pipeline. This pipeline includes 

trimming the beginning and ending bases from each read, identifying and trimming adapter 

sequences from reads, detecting and removing rRNA reads, and aligning reads to reference 

genome. Specifically, RNA-Seq reads in FASTQ format were inspected using FASTQC 

program. Barcode and adapter contamination, low-quality regions (8bp at beginning and 7bp 

at ending of each FASTQ reads) were trimmed using FASTX-toolkit. To remove rRNA 

contamination, we aligned trimmed reads to rRNA reference (rRNA genes were downloaded 

from UCSC genome browser selecting the RepeatMask table) by BWA then extracted only 

paired unmapped reads for transcriptome alignment. STAR (v2.5)56 (was used to align reads 

to the transcriptome reference, and RSEM (v1.3.0)57 was used to estimate expression levels 

for all transcripts. To quantify the contribution of experimental and other confounding 

factors to the overall expression profiles, we used the COMBAT algorithm58 to account for 

the effect of batch and linear regression to remove the effects of RIN, post-mortem interval 

(PMI), sequencing depth, study index (ROS sample or MAP sample), genotyping PCs, age 

at death, and sex. Finally, only highly expressed genes were kept (mean expression >2 log2-

FPKM), resulting in 13,484 expressed genes for eQTL analysis. The details for cis-eQTL 

analysis are in Ng et al.29.

Intron usage mapping and quantification.—We used LeafCutter20 to obtain clusters 

of variably spliced introns. Leafcutter allows the identification of splicing events without 

relying on existing annotations, which are typically incomplete, especially in the setting of 

large genes or individual/population-specific isoforms. Leafcutter defines “clusters” of 

introns that represent alternative splicing choices. To do this, it first groups together 

overlapping introns (defined by spliced reads). For each of these groups, Leafcutter 

constructs a graph where nodes are introns and edges represent overlapping introns. The 

connected components of this graph define the intron clusters. Singleton nodes (introns) are 

discarded. For each intron cluster, it iteratively (1) removed introns that were supported with 

fewer than 100 reads or fewer than 5% of the total number of intronic read counts for the 

entire cluster, and (2) re-clustered introns according to the procedure above. The intron 

usage ratio for each clusters was next computed and standardized (across individuals) and 

quantile normalized (across sample) as in Li et al.20. LeafCutter was carefully benchmarked 

against other methods (see Li et al.20), and was able, for example, to identify as many or 

more differentially spliced events d than compared to other methods.

Association of intron usage with Alzheimer’s disease and neuropathology 
traits.—The association analysis with neuropathology traits and intron usage was 

performed using a linear model, adjusting for experimental batch, RNA integrity number 

(RIN), sex, age at death, and post-mortem interval (PMI). To test for association with 
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Alzheimer’s disease, we limited the comparison to those participants clinical diagnosis of 

Alzheimer’s disease and those who have neither diagnosis (Supplementary Table 1). We 

used Leafcutter20 to identify intron clusters with at least one differentially excised intron by 

jointly modeling intron clusters using a Dirichlet-multinomial GLM20. To account for 

neuronal loss and cell type proportion in each brain sample, we used gene expression level 

of cell type specific genes as an additional covariate. However, these measures did not affect 

our association analysis. We report differentially spliced introns at Bonferroni-corrected P < 

0.05 to correct for multiple hypothesis testing.

We used variancePartition59 to estimate the proportion of variance explained of differently 

excised introns association with Alzheimer’s disease, burden of amyloid, burden of tangles, 

and neuritic plaques.

Splicing QTL mapping.—We used Leafcutter20 to obtain the proportion of intron 

defining reads to the total number of reads from the intron cluster it belongs to. This intron 

ratio describes how often an intron is used relative to other introns in the same cluster. We 

used WASP60 to remove read-mapping biases caused by allele-specific reads. This is 

particularly significant when a variant is covered by reads that also span intron junctions as 

it can lead to a spurious association between the variant and intron excision level estimates. 

We standardized the intron ratio values across individuals for each intron and quantile 

normalize across introns61 and used this as our phenotype matrix. We used linear regression 

(as implemented in fastQTL)26 to test for associations between SNP dosages (MAF ≥ 0.01) 

within 100kb of intron clusters and the rows of our phenotype matrix that correspond to the 

intron ratio within each cluster. As covariate, we used the first 3 principal components of the 

genotype matrix to account for the effect of ancestry plus the first 15 principal components 

of the phenotype matrix (PSI) to regress out the effect of known and hidden factors. The 

principal components regress out the technical and biological covariates such as 

experimental batch, RNA integrity number (RIN), sex, age at death, and post-mortem 

interval (PMI). To estimate the number of sQTLs at any given false discovery rate (FDR), 

we ran an adaptive permutation scheme26, which maintains a reasonable computational load 

by tailoring the number of permutations to the significance of the association. We computed 

the empirical gene-level p-value for the most significant QTL for each gene. Finally, we 

applied Benjamini-Hochberg correction on the permutation p-values to extract all significant 

splicing QTL pairs with an FDR < 0.05.

Transcriptome-wide Association Study.—We used RNA-seq data and genotypes from 

ROSMAP to impute the cis genetic component of expression/intron usage37,40 into large-

scale late-onset Alzheimer’s disease GWAS of 74,046 individuals from the International 

Genomics of Alzheimer’s Project (IGAP)14. The complete TWAS pipeline is implemented 

in FUSION suite of tools40. The details steps implemented in FUSION are: (1) estimate 

heritability of gene expression or intron usage unit and stop if not significant. We estimated 

using a robust version of GCTA-GREML62, which generates heritability estimates per 

feature as well as the as well as the likelihood ratio test (LRT) P-value. Only features that 

have a heritability of Bonferroni-corrected P < 0.05 were retained for TWAS analysis. (2) 

The expression or intron usage weights were computed by modeling all cis-SNPs (1MB +/− 
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from TSS) using best linear unbiased prediction (BLUP), or modeling SNPs and effect sizes 

(BSLMM), LASSO, Elastic Net and top SNPs37,40. A cross-validation for each of the 

desired models are performed; (3) Perform a final estimate of weights for each of the desired 

models and store results. The imputed unit is treated as a linear model of genotypes with 

weights based on the correlation between SNPs and expression in the training data while 

accounting for LD among SNPs. To account for multiple hypotheses, we applied an FDR < 

0.05 within each expression and splicing reference panel that was used.

We used the same TWAS pipeline to process the CMC datasets (see Supplementary Notes).

Joint and conditional analysis.—Joint and conditional analysis of TWAS results was 

performed using the summary statistic-based method described in Yang et al.41, which we 

applied to genes instead of SNPs. We used TWAS statistics from the main results and a 

correlation matrix to evaluate the joint/conditional model. The correlation matrix was 

estimated by predicting the cis-genetic component of expression for each TWAS gene and 

computing Pearson correlations across all pairs of genes. We used FUSION tool to perform 

the joint/conditional analysis, generate conditional outputs, and generate plots.

Gene Expression, DNA Methylation, Histone Modification QTL Mapping.—The 

details of ROSMAP gene expression, DNA methylation, and histone modification data are 

described in Supplementary Notes. The quantitative trait locus (xQTL) analysis on a multi-

omic dataset is described in Ng et al.29. The xQTL results and analysis scripts can be 

accessed through online portal, xQTL Serve (see URLs).

QTL Sharing.—We used the Storey’s π1 statistics63 also described in Nica et al.64, QTL 

sharing was estimated as the proportion of true associations π1 among the top SNP in each 

QTLs in the second QTL.

Enrichment of sQTLs within epigenomic marks and splicing factor binding 
sites.—We selected a set of 71 human curated RNA-binding proteins (RBP) splicing 

regulatory proteins from the SpliceAid-F database65 to analyze the relationship between 

gene expression levels of RBP and intron usage patterns across all samples. To test for 

enrichment of sQTLs in RBP binding sites, we downloaded human CLIP data in BED 

URLs.
ROSMAP sQTL browser, https://rajlab.shinyapps.io/sQTLviz_ROSMAP/
LeafCutter, https://github.com/davidaknowles/leafcutter;
xQTL Browser, http://mostafavilab.stat.ubc.ca/xQTLServe;
FUSION, http://gusevlab.org/projects/fusion/
MISO, http://genes.mit.edu/burgelab/miso/;
SpliceAid-F, http://srv00.recas.ba.infn.it/SpliceAidF/;
Roadmap Epigenomics Project, http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html;
GREGOR, http://genome.sph.umich.edu/wiki/GREGOR;
GARFIELD, http://www.ebi.ac.uk/birney-srv/GARFIELD;
GeNets, https://apps.broadinstitute.org/genets;
Michigan Imputation Server, https://imputationserver.sph.umich.edu/index.html;
The RUSH Alzheimer’s Disease Research Center Research Resource Sharing Hub, https://www.radc.rush.edu;
AMP-AD Synapse Portal, https://www.synapse.org/#!Synapse:syn2580853/wiki/409844;
CommonMind Consortium Knowledge Portal, https://www.synapse.org/#!Synapse:syn2759792/wiki/69613;
IGAP GWAS summary statistics, http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php;
UK Biobank summary statistics, http://gwas-browser.nygenome.org/downloads/gwas-browser/.
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format from ClipDB34. We used GREGOR66 (Genomic Regulatory Elements and Gwas 

Overlap algoRithm) to evaluate global enrichment of trait-associated variants in splicing 

factor binding sites. GREGOR66 evaluates the significance of the observed overlap (of sQTL 

and splicing factor binding sites) by estimating the probability of the observed overlap of the 

lead sQTL relative to expectation using a set of matched control variants (random control 

SNPs are selected across the genome that match the index SNP for a number of variants in 

LD, minor allele frequency, and distance to nearest intron). We used Fisher’s Exact Test in 

combination with Benjamini-Hochberg False Discovery Rate (FDR) correction for multiple 

testing.

Enrichment of sQTLs in Chromatin States.—We downloaded chromatin states from 

the Roadmap Epigenomics Project. The 15 chromatin states were generated from 5 

chromatin marks in DLPFC of a cognitively non-impaired MAP subject with minimal 

pathology as part of the Roadmap Epigenomics Consortium27. A ChromHMM model 

applicable to brain epigenome was learned by virtually concatenating consolidated data 

corresponding to the core set of 5 chromatin marks assayed (H3K4me3, H3K4me1, 

H3K36me3, H3K27me3, H3K9me3). BED files downloaded from Washington University in 

St. Louis Roadmap Epigenome Browser. To test for enrichment for sQTLs among the 15 

chromatin states, we used GREGOR66 to evaluate global enrichment of trait-associated 

variants in splicing factor binding sites.

GWAS Enrichment Analyses.—We used GARFIELD (unpublished; http://

www.ebi.ac.uk/birney-srv/GARFIELD/) to test for enrichment of IGAP Alzheimer’s disease 

GWAS SNPs among sQTLs and other publicly available QTL datasets. GARFIELD 

performs greedy pruning of GWAS SNPs (LD r2 >0.1) and then annotates them based on 

functional information overlap. It quantifies fold enrichment at GWAS P <10−5 significant 

cutoff and assesses them by permutation testing, while matching for minor allele frequency, 

distance to nearest transcription start site and a number of LD proxies (r2 > 0.8).

Q-Q plots show quantiles of one dataset against quantiles of a second dataset and are 

commonly used in GWAS to show a departure from an expected P-value distribution. We 

generated Q-Q plots for LD-pruned GWAS SNPs (PLINK with the settings “-- indep- 

pairwise 100 5 0.8”). We compared the sQTLs overlapping with LD-pruned GWAS SNPs 

and compared the distribution to a random set of SNPs with similar MAF.

GWAS Datasets.—We performed transcriptome-wide association study using GWAS 

summary statistics from: (1) Alzheimer’s disease GWAS from the International Genomics of 

Alzheimer’s Project (stage 1 data)14; (2) Alzheimer’s disease genome-wide association 

study by proxy (GWAx) in 116,196 individuals from the UK Biobank39.

Protein-protein Interaction Network and Pathway Analysis.—We constructed a 

protein-protein interaction (PPI) network using the GeNets42 to determine whether the 

Alzheimer’s disease TWAS genes significantly interact with each other and with known 

Alzheimer’s disease associated proteins. GeNets create networks of connected proteins 

using evidence of physical interaction from the InWeb database, which contains 420,000 

high-confidence pair-wise interactions involving 12,793 proteins67. Community structures of 
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the underlying genes are displayed in GeNets. These “communities” are also called modules 

or clusters. This feature highlights genes that are more connected to one another than they 

are to other genes in other modules. To assess the statistical significance of PPI networks, 

GeNets applies a within-degree node-label permutation strategy to build random networks 

that mimic the structure of the original network and evaluates network connectivity 

parameters on these random networks to generate empirical distributions for comparison to 

the original network. In addition to PPI network analysis, GeNets allows for gene set 

enrichment analysis on genes within the PPI network. We used Molecular Signatures 

Database (MSigDB) Curated Gene Sets (C2), curated from various sources such as online 

pathway databases, the biomedical literature, and knowledge of domain experts and 

Canonical Pathways (CP), curated from pathway databases such KEGG, BioCarta, and 

Reactome to test for gene set enrichment within the PPI network. Then a hypergeometric 

testing is applied to get P-value for gene set enrichment. We used Bonferroni-corrected P < 

0.05 to correct for multiple hypothesis testing.

Life Sciences Reporting Summary.—Further information on experimental design is 

available in the Life Sciences Reporting Summary.

Data availability.

The ROSMAP splicing QTL visualization (Shiny App) browser is made available at https://

rajlab.shinyapps.io/sQTLviz_ROSMAP/. The ROSMAP data are available at the RADC 

Research Resource Sharing Hub at www.radc.rush.edu. The ROSMAP and MSBB mapped 

RNA-seq data that support the findings of this study are available in AMP-AD Knowledge 

Portal (https://www.synapse.org/#!Synapse:syn2580853) upon authentication by the 

Consortium. The CommonMind Consortium data are available in CMC Knowledge Portal: 

https://www.synapse.org/#!Synapse:syn4923029.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of the study.
RNA was sequenced from the gray matter of the dorsal lateral prefrontal cortex (DLPFC) of 

542 samples (450 remained after QC and matching for genotype data) from the ROS/MAP 

cohort. RNA-Seq data were processed, aligned and quantified by our parallelized pipeline. 

The intronic usage ratios for each cluster were then computed using LeafCutter20, 

standardized (across individuals) and quantile normalized. The intronic usage ratios were 

used for differential splicing analysis, for calling splicing QTLs, and for transcriptome-wide 

association studies (TWAS). TWAS was performed on summary statistics from IGAP 

Alzheimer’s disease GWAS of 74,046 individuals14.
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Figure 2: Differential splicing analysis in relation to Alzheimer’s disease diagnosis and 
neuropathology.
(a) Heat map of top 35 differently excised intron association with burden of tangles in 

ROSMAP. Each column is one subject, who are ordered by their tangles burden (yellow row 

at the top of the panel). The association’s Z-score strength and direction are denoted using 

the key at the bottom of the panel. (b) Variance explained (%) of top 5 differently excised 

introns association for four different traits. (c) The left two panels present the mean and 

distribution of intron usage for differently excised introns in NDRG2 in relation to a clinical 

diagnosis of Alzheimer’s disease in ROSMAP and in MSBB. The right two panels display 

the association of amyloid or tangle burden to intron usage in NDRG2. (d) Differentially 

excised intron in APP upon Tau overexpression in iPSC Neurons.
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Figure 3: Enrichment of splicing QTLs in epigenomic marks and in Alzheimer’s disease GWAS.
(a) Splicing QTLs are enriched in regions (or chromatin states) associated with active 

transcription and genic enhancers, and they are depleted in polycomb regions that are 

transcriptionally repressed in the DLPFC. (b) Left: P-value distribution of ROSMAP sQTLs 

that are significant in CMC (FDR < 0.05). The majority (78%) of sQTLs in ROSMAP are 

also discovered in CMC. Right: The direction of effect is consistent for the majority (93%) 

of the significant (FDR < 0.05) lead sQTLs in CMC and in ROSMAP. (c) P-value 

distribution of ROSMAP eQTLs that are significant sQTLs (FDR < 0.05). (d) SNPs that 

drive QTLs in H3K9ac and DNA methylation data in the same ROSMAP brains are more 

likely to be sQTLs than matched SNPs within H3K9ac domains (left) and near DNA 

methylated CG (right). (e) QQ-plot for Alzheimer’s disease GWAS suggests that sQTLs are 

enriched among Alzheimer’s disease GWAS (IGAP study14) compared to other types of 

QTLs. (f) Fold-enrichment of Alzheimer’s disease GWAS SNPs (GWAS P < 10−5) among 

QTL SNPs driving variation in gene expression, splicing, histone acetylation, and DNA 

methylation in primary monocytes15,31,50, T-cells15,31, or DLFPC29.
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Figure 4: Enrichment of RNA-binding protein (RBP) binding sites among sQTLs.
(a) RBP enrichment (expected vs. observed) among the lead sQTLs. Significant RBSs are in 

bold and shown with an “*”.(b) Association of hnRNPA2B1 (left) and hnRNPC (right) gene 

expression levels with differential intron usage in TBC1D7 (left) and in PICALM (right). (c) 

Regional plot of sQTL results for SNPs in the vicinity of TBC1D7 (6:13306759:13307828). 

SNPs driving splicing QTLs for TBC1D7 overlap CLIP binding sites (from CLIPdb34) for 

several splicing factors. The top SNP (rs2439540, red) overlaps motifs for a number of 

RBPs. Splicing QTL results are highly consistent between ROSMAP (orange) and 

CommonMind (blue) data.
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Figure 5: Transcriptome-wide association study of Alzheimer’s Disease.
(a) Transcriptome-wide results using the IGAP GWAS summary statistics; each dot is one 

gene. The dotted green line denotes the threshold of significance (FDR 0.05). Genes for 

which there is evidence of significant differential intron usage are highlighted in blue. In 

green, we highlight those genes where the TWAS using total gene expression results are 

significant. (b) Replication of ROSMAP TWAS in CMC DLFPC data. The red triangles 

denote genes where the replication analysis is significant. (c) Replication of IGAP 

Alzheimer’s disease TWAS using the UK BioBank GWAS based on an independent set of 

subjects. (d) PTK2B gene structure (top): clusters of differential splicing events are noted 

with the colored curves. The panel then zooms to highlight differential intronic usage for 

chr8:27308412–27308560 stratified by rs2251430 genotypes (right). On the left, we show 

the same data use a box plot. (e) Conditional analysis of IGAP GWAS results for two 

splicing effects for PTK2B and CLU in Alzheimer’s disease GWAS data. As noted in the top 

aspect of the panel, these two Alzheimer’s disease genes are located close to one another. 

The intronic excision events for PTK2B and CLU are present in both ROSMAP (blue) and 

in CMC (green) dataset. When the Alzheimer’s disease GWAS is conditioned on the PTK2B 
(chr8:27308412–27308560) splicing effect, the CLU effect remained significant, 

demonstrating its independence from the PTK2B association. The reciprocal analysis 
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conditioning on the CLU (chr8:27461909:27462441) effect, the PTK2B association 

remained significant.
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Figure 6: TWAS prioritizes Alzheimer’s disease genes in endocytosis and autophagy-related 
pathway.
(a) Differential intronic usage for chr6: 13306759:13307828 (TBC1D7) stratified by 

rs2439540 genotypes (left). Box plot for the same data (right). (b) Regional plot showing the 

IGAP P-values in TBC1D7 locus. Two intronic excision events at TBC1D7 are present in 

both ROSMAP (blue) and in CMC (green) dataset. The Alzheimer’s disease GWAS effect is 

mostly explained by intronic usage of chr6:13306759:13307828. The AD GWAS at 

TBC1D7 is suggestive in the original IGAP study (p<10−5). (c) The product of three of the 

novel Alzheimer’s disease genes (AP2A2, AP2A1, and MAP1B) are members of the same 

PPI network (P < 0.006). The genes in this network and others not in the network (i.e., 

TBC1D7, PACS2, and RABEP1) are significantly enriched in genes annotated as being 

involved in endocytosis (blue; P < 0.0002) and autophagy-related pathways (green; P < 

0.003). (d) The novel Alzheimer’s disease genes (AP2A2, AP2A1, and MAP1B) form a 

significant PPI sub-network (P < 4.3 ×10−4) with known Alzheimer’s disease genes (i.e., 

PICALM, BIN1, and PTK2B).
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