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Abstract

The Burkholderia pseudomallei phylogenetic cluster includes B. pseudomallei, B. mallei, B.

thailandensis, B. oklahomensis, B. humptydooensis and B. singularis. Regarded as the only

pathogenic members of this group, B. pseudomallei and B. mallei cause the diseases

melioidosis and glanders, respectively. Additionally, variant strains of B. pseudomallei and

B. thailandensis exist that include the geographically restricted B. pseudomallei that express

a B. mallei-like BimA protein (BPBM), and B. thailandensis that express a B. pseudomallei-

like capsular polysaccharide (BTCV). To establish a PCR-based assay for the detection of

pathogenic Burkholderia species or their variants, five PCR primers were designed to

amplify species-specific sequences within the bimA (Burkholderia intracellular motility A)

gene. Our multiplex PCR assay could distinguish pathogenic B. pseudomallei and BPBM

from the non-pathogenic B. thailandensis and the BTCV strains. A second singleplex PCR

successfully discriminated the BTCV from B. thailandensis. Apart from B. humptydooensis,

specificity testing against other Burkholderia spp., as well as other Gram-negative and

Gram-positive bacteria produced a negative result. The detection limit of the multiplex PCR

in soil samples artificially spiked with known quantities of B. pseudomallei and B. thailanden-

sis were 5 and 6 CFU/g soil, respectively. Furthermore, comparison between standard bac-

terial culture and the multiplex PCR to detect B. pseudomallei from 34 soil samples,

collected from an endemic area of melioidosis, showed high sensitivity and specificity. This

robust, sensitive, and specific PCR assay will be a useful tool for epidemiological study of B.

pseudomallei and closely related members with pathogenic potential in soil.
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Introduction

Burkholderia pseudomallei, an environmental Gram-negative bacillus, is the causative agent of

melioidosis. This potentially fatal infectious disease affects an estimated 165,000 people world-

wide, with an estimated 89,000 deaths (54% mortality) per year [1]. B. pseudomallei infections

occur mainly through contact with wet contaminated soil or surface water where the bacteria

is prevalent [2]. This bacterium forms part of a phylogenetic cluster of Burkholderia species

including B. mallei, B. thailandensis, B. humptydooensis, B. oklahomensis and B. singularis [3,

4]. Notably only B. pseudomallei and B. mallei are associated with severe clinical disease with

high mortality. As a highly evolved obligate pathogen with no environmental reservoir, B. mal-
lei causes glanders in horses, donkeys and other solipeds, and less commonly zoonotic disease

in humans [5].

B. thailandensis, which is a significantly less pathogenic species than B. pseudomallei with

no associated biosecurity threat, is often found to coexist with B. pseudomallei as mixed popu-

lations in soil and water in Southeast Asia [6]. The prevalence of B. pseudomallei in soil and

water defines geographic regions where humans and livestock are at risk of melioidosis.

Recently, a survey of these Burkholderia species in soil samples from three regions of Thailand

demonstrated that the ratio of B. pseudomallei to B. thailandensis in the Northeast and East,

the areas of high prevalence of melioidosis, are much higher than the Central region [6].

Whilst B. thailandensis is commonly regarded as nonpathogenic, on rare occasions B. thailan-
densis infections in humans have been reported [7–9]. Thus, an effective and simple assay to

differentiate between these two species would be clinically useful.

Recently, a phylogenetic subgroup distinct from the ancestral B. thailandensis population

incorporating B. thailandensis variants harboring the B. pseudomallei-like polysaccharide, and

known as B. thailandensis capsular variants (BTCV), were described [10]. To date BTCV have

only been isolated from environmental soil or water in areas where melioidosis is endemic,

notably in Thailand in 2018 [11] and Cambodia (strain E555) in 2010 [10]. There are a total of

three case reports involving infection with a BTCV strain between 2003 and 2017 in the U.S.

[9] and in China [7]. Remarkably, the BTCV possess several B. pseudomallei-like phenotypes

including the presence of a B. pseudomallei-like capsule, resistance to human complement

binding, and increased intracellular macrophage survival, although they were no more virulent

in a murine infection model than a prototypic B. thailandensis strain [10]. Interestingly,

immunization of mice with BTCV induced a significantly better protective immune response

to B. pseudomallei challenge than that of prototypic B. thailandensis, indicating the importance

of the B. pseudomallei-like capsule of the BTCV for immunogenic and protective efficiency

[12]. In addition, Riyapa et al. reported that the BTCV strain E555 induced less ROS and neu-

trophil extracellular trap formation in PMNs than B. thailandensis E264, suggesting the impor-

tance of the B. pseudomallei capsule in evading the induction and killing activity of neutrophil

extracellular trap formation [13]. Little is known about the distribution of the BTCV in the

environment, and its association with the immune status of people living in melioidosis

endemic areas. There is interest within the scientific community in the use of BTCV strains,

instead of the prototypic B. thailandensis strains, as a surrogate for experimental studies

involving B. pseudomallei [14, 15].

The other three members of the Burkholderia pseudomallei complex have been isolated

from the environment in very restricted geographical locations, specifically B. oklahomensis
from Oklahoma, US, B. humptydooensis from Humpty Doo in the Northern Territory of Aus-

tralia and B. singularis from a water source in Australia [3, 4, 16]. B. oklahomensis was associ-

ated with a non-fatal pelvic wound infection in a farmer as a result of a tractor accident.

Identical strains were isolated from the wound and the environment and shown to display
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significantly lower virulence in a Guinea pig model of infection [16], and more recently in

murine and hamster melioidosis models [17]. B. humptydooensis was initially described as a B.

thailandensis-like species able to assimilate arabinose in a similar manner to B. thailandensis,
and has been named the fifth member of the B. pseudomallei complex [18, 19]. At present this

microorganism has not been associated with any human disease and it is not possible to distin-

guish B. humptydooensis from closely related species by the commonly used biochemical and

fatty acid methyl ester analysis [19]. The sixth member of the Burkholderia pseudomallei com-

plex, B. singularis, was described by Vandamme et al in 2017 [4]. This micro-organism was iso-

lated from a water source in Australia. B. singularis appears to be an opportunistic pathogen of

Cystic Fibrosis (CF) patients, having been isolated from a CF patient in Germany and a patient

in Canada [4].

Besides the existence of B. thailandensis and its capsule variants, genetic diversity within the

B. pseudomallei strains also exists, where some geographically restricted strains express a B.

mallei-like BimA (BPBM). Originally identified in a proportion of Australian B. pseudomallei
clinical and environmental strains [20], these BPBMs have also been recorded in India [21].

BPBMs are implicated in neurological melioidosis in patients [22], and can only be distin-

guished from prototypic B. pseudomallei strains using molecular techniques. Although BPBMs

have not yet been isolated in Southeast Asia, the possibility that this variant strain could be

present in Thailand or other countries cannot be excluded. Taken together with BTCV, proto-

typic B. pseudomallei and BPBM strains represent an important group of microorganisms with

pathogenic potential, whose environmental presence would be indicative of significant human

and animal disease risk.

Conventional culture using Ashdown’s selective agar has remained the “gold standard” for

detection of B. pseudomallei, B. thailandensis and other related species from environmental

and clinical specimens. However, it is recognized that this method is limited by the length of

time to culture these organisms, and the similarities in appearance of colony morphology

make it redundant in the differentiation of B. pseudomallei from B. thailandensis [3, 23]. Addi-

tional assays are required to differentiate them. Therefore, singleplex PCR techniques targeting

a variety of different genes for example the T3SS1 [24] and a serine metalloprotease (mprA)

[25], have been established for detection of B. pseudomallei. A multiplex PCR targeting the B.

pseudomallei specific gene encoding a Tat domain protein (BPSS0658), a B. thailandensis-spe-

cific gene (BTH_I1515) and a conserved B. cenocepacia gene (BCAM2834) has been demon-

strated to detect B. pseudomallei, B. thailandensis and members of the B. cepacia complex in

both soil and clinical samples [26]. However, the current PCR-based techniques described to

date cannot detect the BTCV or differentiate B. pseudomallei from BPBM. Thus, a simple and

sensitive PCR assay to identify members of the B. pseudomallei complex with pathogenic

potential in environmental soil samples is required.

In this study, we developed a highly sensitive and specific multiplex PCR-based method

for screening for the presence of B. pseudomallei, B. thailandensis and their variant strains

with pathogenic potential in soil samples. An additional simplex PCR enabled discrimina-

tion between B. thailandensis and BTCV strains. The target DNA for amplification in these

assays is the bimA (Burkholderia intracellular motility A) gene, which is a bacterial virulence

factor that contributes to B. pseudomallei and B. thailandensis actin-based motility in

infected host cells [27, 28]. This robust PCR method was successful in the discrimination of

the different Burkholderia species and variant strains tested, and in spiked soil samples. This

method will be an invaluable tool for epidemiological studies in melioidosis endemic and

non-endemic areas.
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Materials and methods

Ethical considerations

All clinical strains used in our study were collected as part of previous clinical studies with

approval from the relevant Research Ethics committees, patient consent where required and

de-identified before use in this work. All soil and water sample collections which took place on

the private land were conducted after receiving permission from the owners.

Bacterial strains and DNA isolation

The bacterial strains used in this study are listed in Table 1. Burkholderia spp. DNA, including

B. pseudomallei (35 isolates), B. pseudomallei (BPBM) (20 isolates), B. thailandensis (30 iso-

lates), BTCV (10 isolates), B. mallei (2 isolates), B. cepacia (7 isolates), B. multivorans (3 iso-

lates), B. ubonensis (3 isolates), B. anthina (2 isolates), B. cenocepacia (2 isolates), B. diffusa (2

isolates), B. humptydooensis (2 isolates) B. territorii (2 isolates), B. pseudomultivorans (1 iso-

late), B. oklahomensis (1 isolate) and B. vietnamiensis (1 isolate) were used in this study. Bur-
kholderia spp. including, B. thailandensis, BTCV, B. cepacia, B. multivorans, B. oklahomensis
and B. vietnamiensis were cultured in Luria-Bertani broth (LB; Titan Biotech Ltd, Rajasthan,

India). Strains of other bacterial species used to determine the specificity of the multiplex PCR

were Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and Staphylococcus
aureus. These bacteria were also cultured in Luria-Bertani (LB) broth at 37˚C for 24 h.

All of the Burkholderia isolates were collected from previous study (Table 1). Clinical iso-

lates of B. pseudomallei from human were obtained from Sunpasitthiprasong Hospital, Ubon

Ratchathani province, Thailand and Royal Darwin Hospital, Darwin, Northern Territory, Aus-

tralia. Sources of the Burkholderia and non-Burkholderia isolates as well as their Multi Locus

Sequence Type (MLST) (where known) are shown in Table 1.

Bacterial genomic DNA was extracted from 1 ml of bacteria cultured in LB broth overnight

at 37˚C using a Genomic DNA Mini Kit (Geneaid Biotech Ltd., New Taipei City, Taiwan)

according to the manufacturer’s instructions. DNA extracts were stored at -20˚C. Alterna-

tively, a colony boiling method was used in which a loopful of bacteria cultured on LB agar

was suspended in 100 μl sterile distilled water, followed by heat inactivation at 99˚C for 15

min. One microliter of DNA from each Genomic DNA extraction was used for PCR

amplification.

PCR primers targeting Burkholderia bimA sequences

The bimA sequences of B. mallei (ATCC 23344), B. pseudomallei (K96243), and B. thailanden-
sis (E264) from the National Center for Biotechnology Information (NCBI) were aligned to

design PCR primers using Primer-BLAST service tools (https://www.ncbi.nlm.nih.gov/) with

default parameters. The structures of the selected primers were evaluated by Oligo Analyzer

3.1 (https://sg.idtdna.com/calc/analyzer), and synthesized by Integrated DNA Technologies,

Inc. (Coralville, IA, USA).

Multiplex PCR conditions

B. pseudomallei (K96243), B. thailandensis (E264), and B. mallei (NCTC12938) genomic DNA

were used as DNA templates for optimization of PCR conditions. Multiplex PCR detection

was performed in a total volume of 25 μl containing 1 μl of bacterial lysates or purified geno-

mic DNA, 0.2 mM of dNTPs, 1× of Q5 reaction buffer, 1× of Q5 high GC enhancer, 0.02 units

of Q5 high-fidelity DNA polymerase (New England Biolabs, Inc., MA, USA), five PCR primers
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Table 1. List of bacterial isolates used in this study.

Bacteria Strains/ isolates Sequence

type

Source/ location Reference

Burkholderia spp.

B. pseudomallei 576a 501 Human/Sunpasitthiprasong Hospital,

Ubon Ratchathani province, Thailand

[29, 30]

1026b 102

1106a 70

1710a 177

K96243 10

NCTC10276 46 Human/ Bangladesh [31]

956a, H2613a, H2659a, H2660a 54 Human/ Sunpasitthiprasong Hospital,

Ubon Ratchathani province, Thailand

[32]

1986a, H2644a, H2677a, H2689b 70

2396a 58

H1248a 298

H2708a, H2820a 60

E0024, E0411 54 Soil/ Thailand [11]

E0031, E0383 60

E0358, E0359 70

EFT01, EFT02, EFT03, EFT04, EFT05, EFT06, EFT07,

EFT08, EFT09, EFT10, EFT11

-

B. pseudomallei expresses a

B. mallei-like bimA
MSHR33 647 Human/Royal Darwin Hospital,

Darwin, Northern Territory, Australia

[20, 33]

MSHR491 126

MSHR668 129

MSHR1790 439

MSHR2262 435

MSHR2375 439

MSHR2585 778

MSHR3325 118

MSHR3326 734

MSHR3448 680

MSHR3509 259

MSHR3522 809

MSHR3677 456

MSHR3689 809

MSHR3739 838

MSHR3835 778

MSHR3902 844

MSHR4176 853

MSHR4238 869

MSHR4445 886

B. thailandensis D1, DV1 - Soil/ Thailand [34]

E264 80 Soil/ Thailand [35]

DW503 80

E27 74 Soil/ Thailand [11]

E327 77

E152, E153, E154, E158, E159, E169, E173, E174, E175, E177,

E201, E202, E205, E207, E421, E426, E427, E430, E433, E435,

E436, E438, E440, E441

-

(Continued)
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including 0.92 μM of BimAcom-R primer, 0.72 μM of BimABps-F primer, 0.10 μM of

BimABPBM-F primer and 0.30 μM each of BimABth-F and BimABth-R primers.

The DNA amplification involved initial denaturation at 98˚C for 3 min, and 35 cycles at

98˚C for 30 s, 68˚C for 45 s, and 72˚C for 30 s, followed by a final extension for 10 min. The

Table 1. (Continued)

Bacteria Strains/ isolates Sequence

type

Source/ location Reference

B. thailandensis expresses a

B. pseudomallei-like capsule

E555 696 Soil/ Cambodia [10]

SBXSR001, SBXSR007, SBXPL001, SBXPL015, SBXRY031,

SBXPR001, SBXCC001, SBXCC003

696 Soil/ Thailand [11]

WBXUBA33005104 696 Water/ Thailand [11]

B. mallei NCTC 3709 40 Animal/ India [36]

NCTC 12938 40 Animal/ China

B. cepacia U668, 10223 - Human/ Thailand [32]

NCTC10743, NCTC10744 Human/ US [36, 37]

ATCC 25416 10 Soil/ US [37]

MSMB591 1581 Soil/ Australia [36]

MSMB1184 1615

B. multivorans LMG16660 899 Human/ UK [38]

MSMB2008 1767 Soil/ Australia [36]

MSMB2021 1768

B. ubonensis DMST886 - Soil/ Thailand National Institute

of Health,

Thailand

MSMB22 1129 Soil/ Australia [36, 39]

MSMB1162 1171

B. anthina MSMB649, MSMB1506 - Soil/ Australia [36]

B. cenocepacia MSMB364 429 Water/ Australia [36]

MSMB384 320

B. diffusa MSMB375 131 Water/ Australia [36]

MSMB583 464

B. humptydooensis MSMB1588 1441 Soil/ Australia [36]

MSMB43 786 Water/ Australia [3]

B. territorii MSMB599 723 Soil/ Australia [36]

MSMB793

B. oklahomensis NCTC 13387 81 Human/ US [40]

B. pseudomulti- vorans MSMB2199 - Soil/ Australia [36]

B. vietnamiensis LMG6999 524 Human/ Vietnam [38]

Non-Burkholderia spp.

A. baumannii ATCC 19606 - Human/ US [41]

No.9, No. 40, No. 72 - Sewage/ Thailand This study

E. coli Ec1, Ec2, Ec3, Ec4, Ec5 - Sewage/ Thailand This study

P. aeruginosa ATCC27853 - Human/ US [42]

BF311, P256, P338, P362, SP5, SP749, SP770, SP780/2,

U1466

- Sewage/ Thailand This study

S. aureus ATCC25923 - Human/ US [43]

Staph04, Staph05, Staph40, Staph156 - Food/ Thailand This study

(-), not available.

https://doi.org/10.1371/journal.pone.0245175.t001
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PCR products were verified by 1.5% agarose gel electrophoresis (Vivantis Technologies Sdn.

Bhd., Selangor Darul Ehsan, Malaysia) and visualized using a UV transilluminator (Syngene,

Cambridge, UK). A GeneRuler 100 bp Plus DNA Ladder (Thermo Fisher Scientific, Inc., MA,

USA) was included as a DNA marker.

Singleplex PCR to differentiate B. thailandensis from the BTCV

PCR detection was performed in a total volume of 25 μl containing 1 μl purified genomic

DNA, 0.2 mM of dNTPs, 1× of Q5 reaction buffer, 1× of Q5 high GC enhancer, 0.02 units of

Q5 high-fidelity DNA polymerase (New England Biolabs, MA, US), and 0.4 μM of each

BimABth-2F and BimABth-R primers. The DNA amplification involved initial denaturation at

98˚C for 3 min, and 35 cycles at 98˚C for 30 s, 57˚C for 30 s, and 72˚C for 30 s, followed by a

final extension for 10 min. PCR products were visualized following 1.5% agarose gel electro-

phoresis (Vivantis Technologies Sdn. Bhd., Malaysia).

Detection of B. pseudomallei and B. thailandensis from spiked soil samples

Control soil lacking detectable B. pseudomallei and B. thailandensis by PCR targeting the 16S

rRNA gene, were used for extraction and sensitivity testing. Overnight cultures of B. pseudo-
mallei K96243, B. pseudomallei MSHR668 and B. thailandensis E555 were adjusted to 0.5

McFarlane with 1× phosphate-buffered saline (PBS). The number of viable bacteria was deter-

mined by plating the serial dilution of bacterial culture on LB agar. Bacterial suspensions were

serially 10-fold diluted with 1× PBS to approximately 10−103 CFU/ml, and then 100 μl of each

bacterium suspension was inoculated into 20 g soil to achieve 1–100 CFU/20 ml. The inocu-

lated soil samples were incubated in 20 ml of Ashdown’s broth at 37˚C for 24 h before DNA

extraction using a DNeasy PowerSoil Kit (Qiagen, Hilden, Germany). The final precipitated

DNA preparation was eluted with 20 μl of elution buffer (Qiagen, Hilden, Germany) or nucle-

ase-free water before amplification by the developed multiplex or singleplex PCR.

Soil sample testing

For analysis of the environmental samples, 34 soil samples were collected from a rice field in a

highly endemic area in Ubon Ratchathani (12 samples) and Khon Kaen (22 samples) prov-

inces, Northeast of Thailand. These two provinces are 282 km apart. Soil samples were col-

lected as previously described [44]. Essentially, 20 g of soil at 30 cm depth was collected and

cultured for B. pseudomallei, B. thailandensis and BTCV by standard culture method. All of

the soil samples were subjected to DNA extraction using a DNeasy PowerSoil Kit (Qiagen, Hil-

den, Germany) as described above. The extracted DNA samples were subjected to the multi-

plex PCR assay described above. E. coli 16S rRNA gene was amplified using the 27F and 518R

primers to generate a DNA fragment of 527 bps [45]. These primers were included as a control

following extraction from the soil samples.

Results

Design of PCR primers targeting bimA sequences for specific detection of

B. pseudomallei, BPBM, B. thailandensis and BTCV

The bimA gene, that contributes to B. pseudomallei and B. thailandensis actin-based motility in

infected host cells [46], varies in sequence specifically in the region of the gene encoding the

extracellular actin-binding portion of the protein [27, 46, 47]. We chose to use this information

to design PCR primers to discriminate between members of the Burkholderia pseudomallei
complex, especially those with known or pathogenic potential. In silico analysis of prototypic
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Burkholderia bimA genes of B. pseudomallei K96243 (NC_006351), B. thailandensis E264

(NC_007651), and B. mallei ATCC23344 (NC_006349) revealed 5 oligonucleotides of which

could be used in a multiplex PCR (Fig 1A). The BimABps-F and BimAcom-R primers were

designed to amplify 963 bp bimA amplicons of B. pseudomallei, whereas BimABth-F/BimABth-

R and BimBPBM-F/BimAcom-R primers could amplify 139 bp and 586 bp bimA DNA fragments

of the bimA genes of B. thailandensis and BPBM, respectively (Table 2). Since B. mallei is

unable to survive in the environment, any B. mallei-like bimA amplicons in this assay are most

likely to derive from a BPBM strain.

Fig 1. Schematic locations of PCR primers on various domains of Burkholderia bimA genes. (A) Locations of the multiplex PCR primers (BimABps-F/BimAcom-R,

BimBPBM-F/BimAcom-R, and BimABth-F/BimABth-R) for generating 963 bp, 586 bp, and 139 bp amplicons specific to B. pseudomallei, BPBM/ B. mallei, and B.

thailandensis/ BTCV, respectively. (B) Locations of simplex PCR primers (BimABth-SF and BimABth-SR) on central and acidic (CA) domain of bimA gene for

differentiation between typical B. thailandensis (strain E264) and BTCV (strain E555). Numbers refer to nucleotide positions on B. thailandensis E264 chromosome 2.

https://doi.org/10.1371/journal.pone.0245175.g001
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A caveat of the multiplex PCR was the inability to differentiate between B. thailandensis
and the BTCV since a 139 bp amplicon would be amplified from both. To aid in the design of

primers for differentiating these bimA genes, we sequenced the 139 bp bimA amplicons from

BTCV strain E555 and B. thailandensis strain E264 to identify sequence differences which

could be used to design primers for use in an additional simplex PCR reaction (Fig 1B). In

combination with primer BimABth-R, bimA PCR primer BimABth-SF based on central and

acidic (CA) domain of bimA gene (corresponding to nucleotide positions 1,026,797–1,026,815

of B. thailandensis E264, Fig 1A), would lead to amplification of an 87 bp bimA DNA fragment

from B. thailandensis strains but not from BTCV strains (Table 2).

Validation of the bimA primers for detection of B. pseudomallei, B.

thailandensis and their variants in multiplex and singleplex PCR assays

Genomic DNA from B. pseudomallei, B. thailandensis, B. mallei and their variant strains were

mixed, and subjected to multiplex PCR with the 5 primers BimABps-F, BimAcom-R, BimABth-F

BimABth-R and BimBPBM-F. Fig 2A shows that the bimA-specific primers can distinguish B.

pseudomallei from B. thailandensis and BPBM strains via the generation of distinctive 963 bp,

139 bp, and 586 bp DNA fragments, respectively. Notably, B. thailandensis could not be differ-

entiated from BTCV as well as B. mallei could not be differentiated from BPBM as they showed

the identical amplicons at 139 and 586 bp, respectively.

To differentiate B. thailandensis from the BTCV strains, a singleplex PCR was established

using primers BimABth-SF and BimABth-R. As demonstrated in Fig 2B, an 87 bp amplicon was

obtained from B. thailandensis strain E264, but not from BTCV strain E555. Ten further

BTCV isolates were tested in this assay, and whilst DNA amplicons of 139 bp were obtained in

the multiplex PCR, no PCR products were generated in the singleplex B. thailandensis-specific

PCR assay (S1 Fig). These findings indicate the successful combination of a multiplex and sin-

gleplex PCR to identify the BTCV.

In the Northern territory of Australia, a further member of the B. pseudomallei complex

known as B. humptydooensis has been isolated from the environment [18]. This microorgan-

ism has not been associated with human or animal disease and has only been isolated from a

restricted geographical area [19]. When genomic DNA from two B. humptydooensis strains

(MSMB43 and MSMB1588) were included in the multiplex PCR, amplicons identical to the

586 bp amplicon of B. mallei/ BPBM bimA gene were seen (Fig 2A). DNA sequencing con-

firmed that the 586 bp PCR product amplified from B. humptydooensis was indeed bimA, dem-

onstrating 99.05% homology to B. humptydooensis MSMB43 genome sequence in the NCBI

Table 2. Oligonucleotide primers and the size of bimA amplicons for detection of B. pseudomallei, B. thailandensis, B. mallei and their variants including BTCV

and BPBM.

Primer name Sequences 50 to 30 Size of amplicon For detection of References

BimABps-F GATCGCTGAAGAAAAATCCG 963 bp B. pseudomallei This study

BimAcom-R CCTTGAGGTTTTCGTTGATG

BimABPBM-F ATTCCTAACGCGACACCAAC 586 bp BPBM and B. mallei This study

BimAcom-R CCTTGAGGTTTTCGTTGATG

BimABth-F ATCCGAACGAAACACGCG 139 bp B. thailandensis and BTCV This study

BimABth-R TTCGTCGTCCGACCATGA

BimABth-SF AGGCGGGTAATCGACTCA 87 bp B. thailandensis This study and [48]

BimABth-R TTCGTCGTCCGACCATGA

27F AGAGTTTGATCMTGGCTCAG 527 bp E. coli [45]

518R ATTACCGCGGCTGCTGG 16S rRNA

https://doi.org/10.1371/journal.pone.0245175.t002
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database (GenBank No. CP013382; region 974821–975982). Comparisons of the B. humpty-
dooensis (MSMB43 and MSMB1588) bimA sequence with that of B. mallei ATCC23344, B.

pseudomallei MSHR491 (BPBM), B. thailandensis E264, B. pseudomallei K92643 and B. singu-
laris LMG28154 demonstrated 94.03%, 93.52%, 85.89%, 84.68% and 0% nucleotide sequence

Fig 2. Agarose gel electrophoretic analysis of amplified DNA fragments generated from multiplex and singleplex PCR assays. (A) Multiplex PCR

amplification of DNA templates from B. thailandensis strains E264, DV1 (lanes 1–2), the BTCV strains E555, SBXPR001 (lanes 3–4), BPBM strains

MSHR3326, MSHR4445 (lanes 5–6), B. pseudomallei strains K92643, 1026b (lanes 7–8), B. mallei strains NCTC3709, NCTC12938 (lanes 9–10), and B.

humptydooensis strains MSMB43, MSMB1588 (lanes 11–12). (B) Singleplex PCR amplification of B. thailandensis strains E264, DV1 (Bth; lanes 1–2)

and B. thailandensis strain E555, SBXPR001 (BTCV; lanes 3–4). Lanes P and N are positive (mixture of Burkholderia spp. DNA) and negative (distilled

water) controls, respectively. Lane M is 100 bp DNA ladder.

https://doi.org/10.1371/journal.pone.0245175.g002
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homology, respectively. The variation within B. humptydooensis MSMB43 and MSMB1588 is

95.01% and 91.08% of gene homology and amino acid homology, respectively. Thus, it can be

concluded that the B. humptydooensis bimA gene shows the greatest nucleotide sequence

homology with B. mallei and BPBM bimA than with B. thailandensis or B. pseudomallei (S2

Fig). Whilst B. humptydooensis and BPBM could be detected but not differentiated by our PCR

assay, we could use a second biochemical test to differentiate between the two since as B. hump-
tydooensis can assimilate arabinose [19] whereas BPBM cannot.

Specificity and sensitivity of multiplex PCR for detection of B.

pseudomallei and B. thailandensis
To investigate the specificity of the bimA PCR primers, amplification of purified genomic

DNA from Burkholderia spp. and other related bacterial species were undertaken. All B. pseu-
domallei (n = 35), B. thailandensis (n = 30), BTCV (n = 10), and BPBM (n = 20) produced

PCR amplicons at the expected DNA fragment lengths. Similar to BPBM, all 2 isolates of B.

mallei (NCTC3709, and NCTC12938) and 2 isolates of B. humptydooensis (MSMB43 and

MSMB1588) led to amplification of products of the same size, reinforcing the data in Fig 2 that

they could be detected, but could not be differentiated by the multiplex PCR and as predicted

from Table 3. Analysis of the sequence type (ST) of each Burkholderia strain included in this

study (Table 3) demonstrated that they belonged to multiple different ST, suggesting that our

developed assay is not restricted to a specific ST. In addition, we have also BLASTed our

Table 3. Specificity of the multiplex PCR assay against 121 isolates of Burkholderia spp. and 24 isolates of Gram-positive and Gram-negative bacteria.

Bacteria Source [References] No. of isolates No. of PCR positive/ Total No. of isolates (%)

Burkholderia spp.

B. pseudomallei Clinical [29, 30, 32, 49–52] 18 9/9 (100%)

Environment [11] 17 24/24 (100%)

BPBMa Clinical [20, 33] 20 20/20 (100%)

B. thailandensis Environment [10, 11, 34] 30 30/30 (100%)

BTCVb Environment [11] 10 10/10 (100%)

B. mallei Animal [53] 2 2/2 (100%)

B. humptydooensis Environment [3, 36] 2 2/2 (100%)

B. multivorans Environment [38, 54] 3 0/3 (0%)

B. ubonensis Environment [36, 39, 55] 3 0/3 (0%)

B. anthina Environment [36] 2 0/2 (0%)

B. cepacia Clinical [36, 37] 2 0/2 (0%)

Environment [36, 56] 5 0/5 (0%)

B. cenocepacia Environment [36] 2 0/2 (0%)

B. diffusa Environment [36] 2 0/2 (0%)

B. territorii Environment [36] 2 0/2 (0%)

B. pseudomultivorans Environment [36] 1 0/1 (0%)

B. oklahomemsis Clinical [40] 1 0/1 (0%)

B. vietnamiensis Clinical [38, 55] 1 0/1 (0%)

Non-Burkholderia spp.

S. aureus Clinical 1 0/1 (0%)

Food 4 0/4 (0%)

P. aeruginosa Environment 10 0/10 (0%)

E. coli Environment 5 0/5 (0%)

A. baumannii Environment 4 0/4 (0%)

aB. pseudomallei that expresses a B. mallei-like bimA; bB. thailandensis that expresses a B. pseudomallei-like capsule.

https://doi.org/10.1371/journal.pone.0245175.t003
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primers to genomic DNA sequences of B. singularis (annotated contigs accession number

FXAN01000001-FXAN01000135) and found no significant homology. Therefore, our assay is

unlikely to be able to identify strains from this rare species.

In contrast to B. pseudomallei, B. thailandensis, and their variant strains, no amplicons were

generated when testing against Burkholderia anthina, B. cepacia, B. cenocepacia, B. diffusa, B.

multivorans, B. oklahomensis, B. pseudomultivorans, B. vietnamiensis, B. ubonensis, and other

unrelated bacterial species, including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter
baumannii and Staphylococcus aureus (Table 3). These results validate the specificity of this

multiplex PCR assay for detection of Burkholderia species with known virulence or pathogenic

potential based on the known genetic variation in the bimA genes.

To investigate the sensitivity of the multiplex PCR, genomic DNA extracts from B. pseudomal-
lei, B. thailandensis, and B. mallei were 10-fold serially diluted from 100 to 0.1 ng/μl and used as a

template for the multiplex PCR. As shown in Fig 3, the sensitivity of the multiplex PCR for detect-

ing extracted bacterial DNA is approximately 0.1–1.0 ng/μl. The sensitivity of the assay for B. pseu-
domallei and BPBM is around 0.1 ng/μl, and approximately 1 ng/μl for B. thailandensis (Fig 3).

To detect B. pseudomallei and B. thailandensis in soil samples, we next tested the ability of

our PCR system to detect Burkholderia spp. in spiked soil samples. A crucial step of bacterial

enrichment is performed on the first day of our protocol, which is then followed by an effective

method for DNA extraction and finally PCR amplification. Twenty grams of sterile soil were

spiked with known colony forming unit (CFU) of B. pseudomallei, a BPBM strain and B. thai-
landensis, added to 20 ml of Ashdown’s broth, and incubated at 37˚C for 24 h with shaking.

Next, DNA was extracted and subjected to multiplex PCR. As shown in Fig 4, we obtained the

Fig 3. Sensitivity of multiplex PCR for detection of the Burkholderia spp. in a mixture of genomic DNA. Various

concentrations (1, 10, and 100 ng/μl) of each Burkholderia genomic DNA were subjected to multiplex PCR including

B. pseudomallei K92643 (Bps; 963 bp), B. pseudomallei MSHR491 (BPBM; 586 bp), and B. thailandensis E264 (Bth; 139

bp). Lanes M and N represent 100 bp DNA ladder and negative control (distilled water), respectively.

https://doi.org/10.1371/journal.pone.0245175.g003
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three expected DNA fragments of 963, 139, and 586 bp corresponding to B. pseudomallei, B.

thailandensis, and BPBM, respectively. The limit of detection of this assay in an inoculated soil

sample was as low as 127, 106 and 116 CFU/20 g soil, respectively, which is equivalent to

approximately 6, 5, and 6 CFU/g of soil sample.

Comparison of the sensitivity and specificity of the multiplex PCR with

culture on Ashdown’s agar

Finally, we chose to use this protocol to identify the presence of B. pseudomallei in natural soil

samples from Thailand, and compare the results from our multiplex PCR assay with detection

using the ‘gold standard’ culture on Ashdown’s agar. Rice field soil samples (n = 34) were col-

lected from Ubon Ratchathani and Khon Kaen provinces, an endemic area of melioidosis in

the Northeast of Thailand. All of the soil samples were cultured for B. pseudomallei, B. thailan-
densis and BTCV detection on Ashdown’s agar. Of the 34 samples, 12 were positive by both

method and the multiplex PCR. Two of the remaining culture-negative samples were positive

by multiplex PCR (Table 4). The remaining culture-negative samples were also negative when

screened using the multiplex PCR. (Table 4). The calculated sensitivity and specificity of the

multiplex assay are therefore 100% and 90.9%, respectively.

Discussion

The gold standard for detection of environmental B. pseudomallei and B thailandensis is based

on bacterial culture from soil or water samples [44], which is a time-consuming process. In

addition, the B. pseudomallei and B thailandensis variants BPBM [28] and BTCV [11], as well

Fig 4. Multiplex PCR assay to detect B. pseudomallei, BPBM and B. thailandensis in spiked soil samples. Ten-fold serial dilution (lanes 1–3) of

B. pseudomallei, BPBM and B. thailandensis were spiked into 20 g soil sample before DNA extraction and multiplex PCR. Lanes P (mixture of

Burkholderia spp. genomic DNA) and N (no added bacteria) are positive and negative controls, respectively. Lane M is 100 bp DNA ladder.

https://doi.org/10.1371/journal.pone.0245175.g004
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as B. humptydooensis [19] have all been shown to be present in the environment in melioidosis

endemic areas. Severe disease is associated with B. pseudomallei and its BPBM variants, with

some evidence of less fatal infections with the BTCV strains. Therefore, a simple technique to

distinguish these three Burkholderia spp. is required for rapid and thorough epidemiological

survey of these species in the environment, especially in Thailand where melioidosis is

endemic and B. thailandensis and its variant strains (BTCV) are commonly isolated from soil

and water.

In this study, we designed primers based on the known genetic variation of the bimA gene

and used these in a multiplex PCR. This assay was able to detect and simultaneously discrimi-

nate between the DNA amplified from B. pseudomallei (936 bp), B. thailandensis (139 bp) and

BPBM (586 bp). However, the assay could not differentiate B. humptydooensis from BPBM or

B. thailandensis from BTCV. Despite enumerable soil and water surveys in the endemic areas,

B. humptydooensis has only ever been isolated from a small and specific region of the Austra-

lian Northern territory [3] and has never been associated with disease in animals or humans.

Therefore, we predict that any BPBM-like amplicon in our test is most likely to arise from the

presence of a BPBM in the sample, rather than a B. humptydooensis strain.

Growing evidence supports the finding that BTCV strains can occasionally cause disease,

usually non-fatal, in humans [7, 9] and therefore can be considered of pathogenic potential.

Since the BTCV and B. thailandensis strains could not be differentiated by multiplex PCR, a

second simplex PCR was designed based on the few single nucleotide sequence differences in

the B. thailandensis and BTCV bimA genes (Fig 1B). As a result, only B. thailandensis bimA
amplicons are generated in this singleplex PCR. Testing this simplex PCR against 10 strains of

BTCV and 30 strains of B. thailandensis showed 100% accuracy in differentiation between B.

thailandensis and BTCV. This study represents the first PCR-based method that allows the dis-

crimination of B. thailandensis from BTCV strains. This is important since it is possible that

the presence of the BTCV in some melioidosis endemic regions may confer protection against

the development of melioidosis. Little is known about the prevalence of BTCV and its impact

on B. pseudomallei infection. Thus, the combined use of our multiplex and simplex PCRs

described in this study will be useful to survey the presence of BTCV in both non-endemic and

endemic areas, with the aim of understanding the genetic diversity, virulence and evolution of

these emerging organisms.

An additional key advantage of the bimA-based multiplex PCR assay is not only to detect B.

pseudomallei, B thailandensis and the BTCV, but also to discriminate B. pseudomallei from

BPBM in a single multiplex PCR reaction. BPBM strains have been associated with neurologic

melioidosis, which is a serious and potentially fatal form of B. pseudomallei infection [22, 57].

In an animal model, BPBM were more virulent when delivered intranasally or subcutaneously

than typical B. pseudomallei isolates [22]. To date, BPBM strains have not been isolated from

the environment in Southeast Asia, however it is possible that it is present but has been mis-

identified as B. pseudomallei. Therefore, the possibility that this variant strain is present in a

wider geographical area including Thailand cannot be excluded.

Table 4. Comparison between cultured-based method and bimA specific multiplex PCR to detect B. pseudomallei
from 34 soil samples collected from endemic areas of melioidosis.

bimA specific PCR-based method Culture-based method Total

Positive Negative

Positive 12 2 14

Negative 0 20 20

Total 12 22 34

https://doi.org/10.1371/journal.pone.0245175.t004
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By spiking soil samples with known numbers of viable B. pseudomallei, B. thailandensis and

BPBM, we were able to ascertain that the sensitivity of our multiplex PCR assay to be 5–6

CFU/g soil sample. Although the sensitivity of this assay is not as high as a previously reported

singleplex PCR to detect B. pseudomallei (1–1.5 CFU/g of soil sample) [58], our multiplex PCR

assay could simultaneously detect the Burkholderia species of most clinical importance. An

added benefit of our bimA-based PCR method is that the readout is easy to interpret, and

unlikely to be interpreted incorrectly, since it relies on significant differences in amplicon size

(936 vs 586 vs 139 bp). Furthermore, using natural soil samples we were able to compare the

sensitivity and specificity of the multiplex assay with the existing conventional bacterial culture

method [20, 59]. Multiplex PCR to detect B. pseudomallei from 34 soil samples revealed that

the sensitivity and specificity of the multiplex PCR, in comparison with culture on Ashdown’s

agar, are 100% and 90.9% respectively, suggesting that it is a reliable alternative method.

Although the sample size is small, the soil samples were collected from 2 different provinces

which approximately 282 km apart which were expected to contain different bacterial popula-

tions and differ in major soil nutrients. In addition, Burkholderia spp. included in this study

were composed of multiple different ST and were collected from Thailand and Australia, the

endemic area of melioidosis.

In conclusion, we report herein sets of PCR primers that can be used in a combined multi-

plex and singleplex PCR-based way to detect B. pseudomallei and B. thailandensis, BPBM and

BTCV in environmental samples. The multi-species differentiation assay using bimA-based

multiplex PCR technique presented here is a simple, specific, and sensitive technique that will

be useful for environmental sampling study and for prediction of areas of increased risk of dis-

ease in humans and animals.
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