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BACKGROUND: Recent studies have indicated that prostate cancer patients with the TMPRSS2–ERG gene fusion have a higher risk of
recurrence. To identify markers associated with TMPRSS2–ERG fusion and prognostic of biochemical recurrence, we analysed a
cohort of 139 men with prostate cancer for 502 molecular markers.
METHODS: RNA from radical prostatectomy tumour specimens was analysed using cDNA-mediated, annealing, selection, extension
and ligation (DASL) to determine mRNAs associated with TMPRSS2–ERG T1/E4 fusion and prognostic of biochemical recurrence.
Differentially expressed mRNAs in T1/E4-positive tumours were determined using significance analysis of microarrays (false discovery
rate (FDR) o5%). Univariate and multivariate Cox regression determined genes, gene signatures and clinical factors prognostic of
recurrence (P-value o0.05, log–rank test). Analysis of two prostate microarray studies (GSE1065 and GSE8402) validated the
findings.
RESULTS: In the 139 patients from this study and from a 455-patient Swedish cohort, 15 genes in common were differentially regulated
in T1/E4 fusion-positive tumours (FDR o0.05). The most significant mRNAs in both cohorts coded ERG. Nine genes were found
prognostic of recurrence in this study and in a 596-patient Minnesota cohort. A molecular recurrence score was significant in
prognosticating recurrence (P-value 0.000167) and remained significant in multivariate analysis of a mixed clinical model considering
Gleason score and TMPRSS2–ERG fusion status.
CONCLUSIONS: TMPRSS2–ERG T1/E4 fusion-positive tumours had differentially regulated mRNAs observed in multiple studies, the
most significant one coded for ERG. Several mRNAs were consistently associated with biochemical recurrence and have potential
clinical utility but will require further validation for successful translation.
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Prostate cancer prognosis after radical prostatectomy is incom-
pletely assessed by clinical markers such as Gleason score, tumour,
node, metastasis (TNM) stage, surgical margin status and
preoperative prostate-specific antigen (PSA) level. Recently
identified genetic markers could provide clinical utility for
prostate cancer progression and recurrence independent of the
current clinical markers, thereby improving patient management.
Examples of such markers include the E twenty-six (ETS) family of

transcription factors that were identified through outlier profile
analysis that detected an elevated expression of ETS factors
(Tomlins et al, 2005). Normal and benign prostate tissues, as well
as prostatic intraepithelial neoplasia lesions, lack the expression of
ERG, whereas expression of TMPRSS2–ERG fusion mRNAs occurs
uniquely in prostate adenocarcinoma because of the fusion of a
promoter/enhancer region of an androgen-responsive prostate-
specific serine protease 2-encoding gene, TMPRSS2, to the v-ets
erythroblastosis virus E26 oncogene homologue, ERG, or the ETS
variant 1 gene, ETV1 (Tomlins et al, 2005; Narod et al, 2008), and
over 20 other gene fusion variants (Perner et al, 2006; Mehra et al,
2007; Tu et al, 2007). Fusion of TMPRSS2 (21q22.2) and ERG
(21q22.3), which are within 3 Mb of each other, results from a
chromosome 21 microdeletion in approximately two-thirds of
fusion cases (Yoshimoto et al, 2006b). The most common variant
is a recombination between exon 1 of TMPRSS2 and exon 4 of
ERG, designated T1/E4 (Clark et al, 2007; Jhavar et al, 2008), and
some studies indicate that this variant accounts for 85% of
reported fusions (Wang et al, 2006; Mehra et al, 2007).

Revised 23 November 2009; accepted 1 December 2009; published
online 12 January 2010

*Correspondence: Dr B Leyland-Jones; E-mail: Leyland@emory.edu or
Dr M Abramovitz; E-mail: mark.abramovitz@mail.mcgill.ca
8 These authors contributed equally to this work.
9 Current address: Departments of Pathology and Oncology, Jewish
General Hospital, 3755 Cote Ste Catherine, Montreal, Quebec, Canada
H3T 1E2.
10 Current address: Centers for Disease Control and Prevention, 1600
Clifton Road, NE, Atlanta, GA 30333, USA.

British Journal of Cancer (2010) 102, 570 – 576

& 2010 Cancer Research UK All rights reserved 0007 – 0920/10 $32.00

www.bjcancer.com

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s

http://dx.doi.org/10.1038/sj.bjc.6605519
http://www.bjcancer.com
mailto:Leyland@emory.edu
mailto:mark.abramovitz@mail.mcgill.ca
http://www.bjcancer.com


Both the prevalence and prognostic significance of the
TMPRSS2–ERG T1/E4 fusion have been examined in multiple
studies with some discrepancy in results. Although TMPRSS2–
ERG fusion has typically been reported as prevalent in 40– 50% of
prostate tumours, the range has varied by as much as 25– 60%
(Nam et al, 2007; Setlur et al, 2008; Sun et al, 2008; Yoshimoto
et al, 2008; Hofer et al, 2009; Mosquera et al, 2009). The techniques
used for TMPRSS2–ERG detection, novel potential fusion products
and genetic differences in population cohorts may account for
these discrepancies. This is highlighted by the finding of Mosquera
et al (2009) that Caucasian populations were less likely to have the
TMPRSS2–ERG fusion and this could explain the 22.6% pre-
valence rate observed by Setlur et al (2008) in a Swedish cohort of
455 prostate cancer cases. Irrespective of the cause for reported
variation in prevalence, further studies are needed to clearly define
the prevalence rate of TMPRSS2–ERG fusions in the context of
population genetics.

Commensurate with the range in prevalence of TMPRSS2–ERG
fusions is the variation in reported prognostic significance. Several
studies have indicated that TMPRSS2–ERG fusions confer a worse
prognosis (Nam et al, 2007; Attard et al, 2008a; Clark et al, 2008),
whereas others have not (Gopalan et al, 2009). Discrepancies in the
reported prognostic significance of TMPRSS2–ERG fusions can be
explained in a similar manner by factors affecting the variation in
prevalence of TMPRSS2–ERG (i.e., cohort race/ethnicity, fusion
detection technique), and are also liable to the primary end point
of the study (i.e., biochemical recurrence, overall survival). The
complexity contributing to the discordant prognostic significance
of TMPRSS2 –ERG fusions was mentioned by FitzGerald et al
(2008), who reported that TMPRSS2–ERG fusions did not result in
reduced survival, but that the combination of TMPRSS2–ERG
fusion and amplification of the fusion gene conferred a worse
prognosis. As in the case of TMPRSS2–ERG fusion prevalence, to
properly understand the prognostic significance of TMPRSS2–
ERG fusions, further standardised studies are needed. Proper
patient tracking and characterisation in combination with proper
sample management can ensure accurate molecular characterisa-
tion and spur translation of clinical tools.

In an effort to better characterise the molecular implications of
TMPRSS2–ERG fusions in prostate cancer and to identify other
genetic prognostic markers, we have utilised RNA extracted from
radical prostatectomy specimens in a prospective cohort pre-
viously characterised for TMPRSS2–ERG T1/E4 fusion transcript
expression by qualitative PCR (Nam et al, 2007). This cohort
(hereafter referred to as the Toronto cohort) of 165 patients had 81
(49%) fusion-positive tumours in which patients with a detectable

fusion transcript had a significantly higher risk of biochemical
recurrence (58% at 5 years) than did patients whose tumours did
not express detectable fusion transcripts (8% at 5 years). There-
fore, TMPRSS2–ERG T1/E4 fusion was found to be a strong
prognostic factor independent of grade, stage and PSA level in this
cohort (Nam et al, 2007). We have subsequently made use of RNA
from 139 of the 165 patients and characterised the expression of
502 cancer-related genes using the cDNA-mediated, annealing,
selection, extension and ligation (DASL) assay.

MATERIALS AND METHODS

RNA samples

Total RNA samples from frozen prostate tumour specimens used in
this study were prepared previously (Nam et al, 2007). Aliquoted
RNA samples were shipped on dry ice to the Emory Biomarker
Service Center (EBSC), Emory University, Atlanta, GA, USA, for use
in the DASL assay. RNA concentration was quantified by a
Nanodrop spectrophotometer (Wilmington, DE, USA) and quality
was assessed using the Agilent Bioanalyzer (Foster City, CA, USA)
for which RNA integrity number of 47 was used as a quality criteria.

DASL assay performance, reproducibility and data
normalisation

The DASL assay was performed on Illumina’s 502-gene Human
Cancer Panel using 200 ng of input RNA. The manufacturer’s
instructions were followed without any changes. Samples were
hybridised on two Universal Array Matrices (UAMs). Hybridised
UAMs were scanned using the BeadStation 500 Instrument (Illumina,
San Diego, CA, USA). Data were interpreted and quantile normalised
using GenomeStudio v1.0.2 (Illumina). Experimental replicates
(same RNA assayed twice) were assessed for reproducibility and
subsequently averaged so as to represent each patient’s tumour
sample with one gene expression profile.

Data analysis and meta-analysis

Differential mRNA expression of TMPRSS2–ERG T1/E4 fusion-
positive vs fusion-negative tumours was assessed using signifi-
cance analysis of microarrays (Tusher et al, 2001) for which 1000
random class assignment permutations estimated a false discovery
rate (FDR) p5%. Hierarchical clustering was generated in R using
the heatmap.2 package in which distance was computed using a
Euclidean dissimilarity metric with an average-linkage clustering
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Figure 1 Characteristics of prostate cancer patients with and without the T1/E4 TMPRSS2–ERG fusion. (A) Patients with TMPRSS2–ERG fusion-positive
tumours experienced a higher rate of biochemical recurrence opposed to those who did not have the gene fusion (P-value 3.54� 10�8, log–rank test).
(B) ERG expression was upregulated in TMPRSS2–ERG fusion-positive tumours by 3.07-fold (P-value 3.48� 10�11, Student’s t-test).
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algorithm. Data were displayed with mRNA intensity z-score
normalised. Gene Ontology analysis was conducted using the
R package GOstats with a significance value of Po0.01 of over-
representation computed by the hypergeometric test using the
lumiHumanAll.db annotation file. Univariate Cox proportional
hazards regression was conducted in R using the Cox proportional
hazards survival package (CoxPH) and was conducted on each
gene expression profile and clinical factor independently. Multi-
variate Cox analysis considered the clinical factors that were
significant (Po0.05) in univariate analysis, as well as a recurrence
predictor built as a weighted average of the expression level of
genes, which were significant in univariate analysis in both the
Toronto data set and that from Nakagawa et al (2008). Kaplan–
Meier curves were generated in R using the survival package, and
significance testing utilised the survdiff function for which the
log– rank test determined the P-value. Analysis utilised expression
profiles from studies by both Setlur et al (2008) and Nakagawa
et al (2008), which were downloaded from Gene Expression

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and had the
series numbers GSE8402 and GSE10645, respectively. The same
differential annotation and prognostic analyses methods described
above were used on the meta-analysis sets.

RESULTS

After RNA and assay quality control, 139 patient tumours were
characterised on the DASL assay for 502 cancer-related genes
(GEO series GSE18655). Seven samples were run as experimental
replicates to estimate assay reproducibility for which an average
Pearson’s R2 of 0.965 indicated highly reproducible data (Supple-
mentary Figure 1). Moreover, unsupervised hierarchical clustering
of all samples and probes resulted in experimental replicates
clustering together without exception (Supplementary Figure 2).
The Toronto cohort, a subset of that previously characterised for
clinical markers (Nam et al, 2007), includes 69 patients with
TMPRSS2–ERG T1/E4 fusion-positive tumours and 70 prostate
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Figure 2 Validated genes differentially expressed in TMPRSS2–ERG fusion-positive tumours. (A) Significance testing of genes differentially regulated in
TMPRSS2–ERG fusion-positive prostate tumours in the Toronto cohort of 139 patients characterised for 502 genes (solid black line) was validated in a
Swedish cohort (Setlur et al, 2008) of 455 patients characterised for 6144 genes (dashed black line). Nine genes upregulated with the TMPRSS2–ERG fusion
in both cohorts are shown at the top (red box), whereas six genes downregulated in both cohorts are shown at the bottom (green box). Hierarchical
clustering of the 15 common differentially expressed genes segregates TMPRSS2–ERG fusion-positive tumours as indicated in black above the heatmaps and
below the clustering dendrogram in (B) the Toronto cohort of 139 patients and (C) the Swedish cohort of 455 patients.
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tumours that were TMPRSS2–ERG fusion negative. Fusion
status indicated a significantly worse outcome with respect to
biochemical recurrence (Figure 1A, P-value 3.54� 10�8 log–rank
test) similar to that observed in the entire cohort (Nam et al, 2007).
As previously reported, patients with TMPRSS2–ERG fusion-
positive tumours had a significantly higher expression of ERG
transcripts (Figure 1B, P-value 3.48� 10�11, two-sided Student’s
t-test), which is most likely a result of androgen-responsive
promoter elements in TMPRSS2 driving expression (Tomlins et al,
2005). Overexpression of ERG was validated using reverse
transcriptase PCR, which corroborated the ERG overexpression
found by microarray results (Supplementary Figure 3, P-value
8.13� 10�10, two-sided Student’s t-test).

To investigate molecular biomarkers differentially regulated in
TMPRSS2–ERG fusion-positive tumours, significance testing was
conducted using significance analysis of microarrays (Tusher et al,
2001) for both the Toronto cohort and that of the 455-patient
Swedish cohort (Setlur et al, 2008). Using an FDR p5% yielded 51
genes differentially regulated in TMPRSS2–ERG fusion-positive
tumours in the Toronto cohort (Supplementary Table 1). Nine
upregulated genes and six downregulated genes were validated by
replicating the analysis on the Swedish cohort (Setlur et al, 2008),
which was characterised for expression of 6144 transcripts

(Figure 2A, FDR o5%). In both the Toronto and Swedish cohorts,
ERG was uniquely the most significant differentially regulated
transcript in TMPRSS2–ERG fusion-positive tumours (Supple-
mentary Figure 4). Genes annotated for mismatch base repair and
histone deacetylation functions were over-represented in Gene
Ontology analysis of common upregulated genes in T1/E4-positive
tumours (Supplementary Table 2, Po0.01). Downregulated genes
were over-represented for annotations that included the insulin-
like growth factor (IGF) and Jak-Stat signalling pathways,
suggesting that these pathways may be attenuated in T1/E4-
positive tumours (Supplementary Table 2, Po0.01). Hierarchical
clustering of tumour expression profiles across common differen-
tially regulated genes resulted in segregation of TMPRSS2–ERG
fusion-positive tumours (Figures 2B and C), suggesting that
TMPRSS2–ERG fusion-positive tumours have a distinct molecular
metabolism that is replicated in multiple cohorts.

To determine the molecular factors associated with biochemical
recurrence (defined as a PSA increase of X0.2 ng ml�1 on at least
two consecutive measurements that are at least 3 months apart),
univariate Cox proportional hazards regression was conducted in
the Toronto cohort and replicated in a 596-patient Minnesota
cohort (Nakagawa et al, 2008). The Toronto data set yielded 16
genes associated with recurrence and 11 genes associated with
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Figure 3 Common genes prognostic of biochemical recurrence. (A) Univariate Cox proportional hazards regression determined genes associated with
biochemical recurrence in the Toronto cohort of 139 patients, and a Minnesota cohort of 596 patients (Nakagawa et al, 2008) identified seven genes in
common, five associated with recurrence and two associated with non-recurrence. Supervised heatmaps ordered by the seven-gene expression recurrence
score showed an increased incidence of recurrence with increased recurrence score in (B) the Toronto cohort of 139 patients and (C) the Minnesota
cohort of 596 patients (Nakagawa et al, 2008).
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non-recurrence (Supplementary Table 3, Po0.05). Repeating this
analysis in the Minnesota cohort validated five genes associated
with biochemical recurrence and four genes associated with non-
recurrence (Figure 3A, Po0.05). Gene Ontology functional
annotation of genes commonly associated with recurrence yielded
over-representation of deoxyribosylthymine monophosphate bio-
synthesis, negative regulation of leukocyte activation – specifically
T- and B-cell lymphocytes – and inhibition of cell-matrix adhesion.
Conversely, annotation of genes associated with non-recurrence
resulted in cell-matrix adhesion and collagen binding (Supple-
mentary Table 4, Po0.01). Common genes prognostic of
recurrence were used to build a recurrence score calculated as
the sum product of the expression intensity of each gene by its Cox
coefficient determined by regression analysis. Ordering samples by
the recurrence score in a supervised heatmap produced a trend
whereby patients who did not have recurrence were separated from
those who did in both the Toronto and Swedish cohorts (Figures
3B and C). More importantly, the recurrence score was significant
in univariate Cox regression and remained significant in a
multivariate model considering clinical factors that were signifi-
cant (Po0.05) in the univariate analysis, namely, preoperative PSA
level, Gleason score and TMPRSS2–ERG fusion status (Table 1 –
Toronto cohort). Furthermore, the nine-gene expression
recurrence score was significantly associated with biochemical
recurrence by itself (Figure 4A, P-value 0.000167) and in a
multivariate model considering the Gleason score and TMPRSS2–
ERG fusion status (i.e., those clinical data significant in univariate
analysis; Figure 4B, P-value 4.15� 10�7).

DISCUSSION

The previously identified TMPRSS2–ERG T1/E4 gene fusion
represents a potentially important factor in prostate cancer

progression, the prognostic value of which has yet to be fully
defined. In this cohort, the TMPRSS2–ERG T1/E4 gene fusion is
highly associated with biochemical recurrence and these findings
have been supported by other studies (Clark et al, 2008; Attard
et al, 2008b), although some have not found a worse prognosis
conferred by fusion status (Gopalan et al, 2009). Also of primary
clinical importance, and even less defined, is the potential
predictive value of TMPRSS2–ERG fusion (i.e., is treatment course
predicted by fusion status?). To these important prognostic and
predictive end points, this study makes two significant contribu-
tions.

First, this study finds 27 genes prognostic of biochemical
recurrence, with 16 genes associated with recurrence and 11 genes
associated with non-recurrence. Replication of this analysis in a
Minnesota cohort of 596 patients (Nakagawa et al, 2008) validated
five genes associated with recurrence and four associated with
non-recurrence (Figure 3A). Use of these nine genes to create a
recurrence score yielded a highly significant prognostic variable
that could be used to segregate patients into high- and low-risk
categories. This nine-gene expression recurrence score remained
significant in multivariate analysis considering clinical factors such
as Gleason score and other genetic factors such as TMPRSS2–ERG
fusion status. Although translation of any such prognostic test
would require more analysis and validation, not only by reverse
transcriptase PCR but also in other independent cohorts, this study
contributes to the current body of knowledge with respect to
identifying biomarkers with the potential to improve prostate
cancer patient management. Furthermore, certain genes that we
found prognostic of recurrence, which were not validated in the
Minnesota cohort, have previously been linked to prostate cancer
progression, such as mucin 1 (Cozzi et al, 2005), which has also
been proposed as a candidate for targeted therapy (Li and Cozzi,
2007), and may warrant further consideration as a prognostic
biomarker.

Table 1 Clinical and molecular factors for the Toronto – 139

TMPRSS2 –ERG T1/E4 fusion Recurrence model (P-value)

Total Positive Negative Univariate Multivariate

Cohort size (n) 139 69 70 — —
Biochemical recurrence 33 29 4 — —
Average follow-up (months) 30.9 25.8 36 — —
Average age (years) 61.7 61.1 62.2 0.0880 —

Preoperative PSA (ng ml�1) 0.0210 0.6200
Average 8.9 9.3 8.5
Range (2.2–43.0) (3.4–38.9) (2.2–43.0)

Gleason score 0.0190 0.0280
5–6 (%) 38 (27.3) 19 (27.5) 19 (27.1)
7 (%) 90 (64.7) 46 (66.7) 44 (62.9)
8–9 (%) 11 (7.9) 4 (5.8) 2 (10.0)

Pathological stage 0.0860 —
Organ confined (%) 59 (42.4) 29 (42.0) 30 (42.9)
Extraprostatic extension (%) 70 (50.4) 35 (50.7) 35 (50.0)
Seminal vesicle invasion (%) 10 (7.2) 5 (7.2) 5 (7.1)

Positive margin 0.4000 —
No (%) 62 (44.6) 33 (47.8) 29 (41.4)
Yes (%) 77 (55.4) 36 (52.2) 41 (58.6)

TMPRSS2–ERG fusion — — — 0.0000085 0.0004
Nine-gene recurrence score (95% CI) 2.01 3.37 (0.37, 7.18) 1.58 (�0.94, 4.25) 0.0000002 0.0270

Abbreviations: CI¼ confidence interval; PSA¼ prostate-specific antigen. Cohort clinical characteristics for the 139 prostate cancer patients in the Toronto cohort are listed out
for TMPRSS2–ERG T1/E4 fusion-positive and fusion-negative patients. Factors were assessed for their association with biochemical recurrence when relevant (indicated by a
univariate P-value). Factors prognostic of recurrence (Po0.05) were used in a multivariate model of recurrence. Significant factors are indicated in bold. The nine-gene recurrence
score (composed of the genes listed in Figure 3A) is composed of mRNAs replicated as prognostic of recurrence in this experiment and a 596-patient Minnesota experiment
(Nakagawa et al, 2008).
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Second, this study finds 51 differentially expressed genes
dependent on TMPRSS2–ERG T1/E4 fusion status, 15 (Supple-
mentary Table 1, in bold) of which are validated in a 455-patient
Swedish cohort (Setlur et al, 2008) using the same analysis.
Functional annotation of the 15 genes replicated in both cohorts
suggests that TMPRSS2– ERG fusion is associated with mismatch
base repair and histone deacetylation molecular functions. It is
therefore a reasonable hypothesis that therapeutic modalities
targeting these pathways may be well suited for TMPRSS2–ERG
fusion-positive prostate cancer patients. The histone deacetylation
inhibitors SAHA (vorinostat) and LBH589, both currently being
tested in clinical trials, can inhibit androgen receptor (AR)-
mediated transcriptional activation of a number of genes including
TMPRSS2–ETS fusion genes (Welsbie et al, 2009). Similarly,
mismatch base repair has the potential to be targeted with the use
of poly(ADP-ribose) polymerase inhibitors, a class of compounds
showing significant potential in the treatment of hereditary (BRCA
mutation) breast cancer and currently being tested in several
clinical trials (Fong et al, 2009). Conversely, prostate cancer
patients without the TMPRSS2–ERG fusion gene may be better
suited for therapies that target IGFs and Jak-Stat signalling, in
which IGF signalling can be targeted through the use of tyrosine
kinase inhibitors or monoclonal antibodies. Finally, although not
replicated in the Swedish cohort, we found attenuation of the
potent tumour-suppressor phosphatase and tensin homologue,
PTEN, in TMPRSS2– ERG fusion-positive tumours. Loss of PTEN
expression has been strongly associated with prostate cancer
progression (Koksal et al, 2004; Bertram et al, 2006; Yoshimoto
et al, 2006a; Schmitz et al, 2007) and has recently been implicated
as cooperating with TMPRSS2–ERG fusion in high-grade prostatic

intraepithelial neoplasia (Carver et al, 2009; King et al, 2009). Loss
of PTEN results in PI3K activation, which in turn can be targeted
with emerging modalities inhibiting PI3K or PI3K and mTor such
as SF1126 and BEZ235, respectively. This study supports other
evidence that TMPRSS2–ERG fusion status may have important
predictive implications of such therapies in the efficacious
treatment of prostate cancer.

Our findings of several replicated mRNAs prognostic of
recurrence indicate that there are consistent hallmarks of
refractory disease that may have clinical utility. Furthermore, the
TMPRSS2–ERG fusion may have an important prognostic and
predictive value, because of which differentially regulated mRNAs
(most notably ERG) in repeated experiments suggest that targeted
therapy in prostate cancer could be aided by this biomarker. These
hypotheses will require standardised clinical trials with proper
patient tracking and sample handling to translate these molecular
targets into meaningful clinical tools.
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