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ABSTRACT: The mixing quality of polymer melts in the mixing
section of a single-screw extruder and an injection molding
machine has considerable effects on the properties of the molded
products. Therefore, the study of the flow field of polymer melts in
the mixing section is of great importance. The lattice Boltzmann
method (LBM) exhibits unique advantages in simulating non-
Newtonian fluids. Many researchers have used LBM to study the
flow of medium- and low-viscosity fluids. In their studies, the
Reynolds number of fluid flows is generally moderate. However,
polymer melts are typical high-viscosity fluids, and their flow
Reynolds number is generally very small. The single-relaxation-
time lattice Boltzmann method (SRT−LBM) has been used
previously to study the flow field of power law fluids in the mixing
section. Herein, the flow field of high-viscosity generalized Newtonian fluids in the mixing section of a single-screw extruder is
studied using SRT−LBM, the two-relaxation-time lattice Boltzmann method (TRT−LBM), and the multiple-relaxation-time lattice
Boltzmann method (MRT−LBM). Through comparison, TRT−LBM has been found to exhibit obvious advantages regarding
stability, calculation accuracy, calculation efficiency, and selection of simulation parameters. The TRT−LBM is more suitable for
studying high-viscosity generalized Newtonian fluids than SRT−LBM and MRT−LBM. SRT−LBM has low computational
efficiency when simulating high-viscosity generalized Newtonian fluids, and instability is easily caused when the fluid has a yield
stress. For MRT−LBM, only by studying the relaxation parameters can its advantages be fully utilized. However, optimizing the
accuracy and stability of the MRT−LBM via parameter research and linear stability analysis is difficult. For non-Newtonian fluids, it
is difficult to optimize the relaxation parameters to make the MRT−LBM more stable and accurate than the TRT−LBM. It is
difficult for the MRT−LBM to realize its potential when simulating high-viscosity generalized Newtonian fluids. In addition, we
studied the flow pattern in the cross section of the screw channel and compared it to the results reported in previous studies.

1. INTRODUCTION
Single-screw extruders and injection molding machines have
been widely used in the chemical industry. Every year,
extruders and injection molding machines process more than
114 million tons of polymer raw materials.1,2 Extruders are
widely used in the production of pipes, plates, profiles, cables,
fibers, coatings, and films. Extruders are often used for
compounding, mixing, granulation, and chemical reactions of
raw materials.1,2 In addition, extruders are also widely used in
food and medicine molding and 3D printing. Injection
molding machines are mainly used for the molding of plastic
products. Most plastic products are manufactured by injection
molding. Most polymers pass through an extrusion line at least
once in their life cycle.

The mixing quality of the mixing section of a single-screw
extruder and an injection molding machine has considerable
effects on the properties of the molded products. However,

observing the mixing process of polymer melts in a barrel is
difficult. Therefore, using mathematical models to study the
mixing process of polymer melts in the mixing section of an
extrusion screw is of great importance. Figure 1a shows the
mixing section of a standard extrusion screw, and Figure 2a
shows the pin mixing section of an extrusion screw. Generally,
the height of the screw flight is small compared with the
diameter of the barrel. When the effects of the curvature of the
screw on the melt flow are ignored, the screw can be
considered as a flat rectangular channel.1,2 According to the
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principle of reversed motion, the screw is considered fixed, and
the barrel is considered rotated.2 Therefore, the complex screw
mixing section can be simplified into a moving plate and a fixed
rectangular channel, as shown in Figures 1b and 2b.

McKelvey3 considered polymer melts as Newtonian fluids
and obtained the analytical solution of the velocity profile
along the vertical centerline of the cross section of a screw
channel. Yao et al.4,5 considered polymer melts as Newtonian
fluids and numerically simulated the flow field in the cross
section of a screw channel with and without pins by using the
finite difference method (FDM). Yao et al.4,5 designed a
visualization experiment device and conducted an experimental
study using high-viscosity corn syrup. The experimental results
verified the simulation results. Horiguchi et al.6 used the lattice
gas method (LGM) to numerically simulate the flow pattern in
the cross section of a screw channel with and without pins. The
numerical results agree well with the visualization experimental
results of Yao et al.4,5 Horiguchi et al.6 compared the numerical
results of the velocity profile along the vertical centerline of the
cross section of the screw channel with McKelvey’s analytical
solution. By comparison, the numerical results using the LGM
were found to be more accurate than those using the FDM.
However, some differences were observed between the
numerical solution obtained using the LGM and McKelvey’s
analytical solution. Buick and Cosgrove7 used the single-
relaxation-time lattice Boltzmann method (SRT−LBM) to
study the flow field of Newtonian fluids in the cross section of
a screw channel. By comparison, the SRT−LBM was found to
be more effective and accurate than the LGM. Generally,
polymer melts exhibit non-Newtonian properties. Buick and
Cosgrove8,9 used the SRT−LBM to study the flow field of
power law fluids in the cross section of the screw channel.
They compared the effects of the power law index on the
distribution of velocity and shear rates and pointed out that the
LBM has unique advantages in simulating non-Newtonian
fluids.

The LBM is simple to program, convenient to calculate, and
naturally parallel. The LBM with a BGK collision operator is
called the SRT−LBM.10 The SRT−LBM is simple, efficient,

and very popular. For Newtonian fluid with medium Reynolds
number, the SRT model is the simplest and most effective
model. However, when the Reynolds number is too large or
too small, the SRT−LBM may be divergent, unstable, or
inaccurate. When the Reynolds number Re = |u|NΔx/v is very
large, the viscosity v(γ) needs to be taken as a very small value.
According to the formula τ = 3v(γ) + 0.5, when the viscosity is
close to 0, the relaxation time τ is close to 0.5. However, τ > 1/
2 is a necessary condition for stability. When τ is close to 0.5,
the SRT−LBM will be unstable. When the Reynolds number
Re = |u|NΔx/v is very small, the viscosity v(γ) needs to be
taken as a very large value. According to the formula τ = 3v(γ)
+ 0.5, when the viscosity is large, the relaxation time τ ≫ 1. It
is not recommended to use the relaxation time τ ≫ 1 as the
numerical errors of the SRT−LBM grow with (τ/Δt − 1/2)2.
When the relaxation time τ ≫ 1, the SRT−LBM will be
inaccurate. D’Humier̀es proposed the multiple-relaxation-time
lattice Boltzmann method (MRT−LBM) in 1992.11 Lallemand
and Luo12 conducted a theoretical study on the MRT model in
2000 and showed that the MRT model can overcome the
shortcomings of the SRT model. The MRT model contains
many free parameters that can adjust accuracy and stability and
is the most general model. The MRT−LBM can effectively
simulate high Reynolds number flows. Many scholars have
used the MRT−LBM to study high Reynolds number
flows.13−16 However, there are few studies on high-viscosity
and low-Reynolds number flows.

In recent years, more and more scholars have used the LBM
to study the flow of non-Newtonian fluids.7−9,17−24 The LBM
has greater advantages than the conventional computational
fluid dynamics methods when simulating non-Newtonian
fluids. When using LBM for simulation, the shear rate tensor
can be calculated locally without calculating the velocity
gradient. Therefore, the LBM has natural parallelism and can
greatly improve the computational efficiency. Deng et al.25 and
Mohebbi et al.26 compared the LBM with the finite element
method (FEM) and found that the LBM considerably saves
the calculation time than the FEM. The SRT−LBM has been
successfully used in the study of power law fluids. However,

Figure 1. Mixing section of a standard extrusion screw: (a) structure of the mixing section and (b) simplified model.

Figure 2. Pin mixing section of an extrusion screw: (a) structure of the pin mixing section and (b) simplified model.
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when the power law index is too large or too small, the SRT−
LBM may be inaccurate and unstable. The apparent viscosity
of non-Newtonian fluids is related to the shear rate. The
relaxation time τ of the SRT−LBM is determined by the
apparent viscosity of the fluid domain. If the apparent viscosity
is too large, then τ ≫ 1, and the SRT−LBM may be
inaccurate.27 When the apparent viscosity is too small, then τ
approaches 0.5, and the SRT−LBM may be unstable.28

Therefore, some scholars have improved the SRT−
LBM.29−32 However, these improved models are mostly for
power law fluids, and their effectiveness for other non-
Newtonian fluids has not been verified.

Chai et al.33 used the MRT model for the first time to study
generalized Newtonian fluids. Li et al.34 studied the flow of
power law fluids in a two-dimensional square cavity using the
MRT model. Bisht and Patil35 simulated the two-dimensional
flow of the power law fluids, Carreau fluids, Carreau−Yasuda
fluids, and Cross fluids using the MRT model. Chen et al.36

studied the two-dimensional Poiseuille flow, lid-driven cavity
flow, and sudden expansion flow of Bingham fluids using the
MRT model. In addition, they also studied the flow of
Bingham fluids around solid particles. Grasinger et al.37

compared the accuracy and stability of SRT and MRT models
in simulating non-Newtonian fluids. In their study, the
Reynolds number is between 100 and 10,000. They pointed
out that the MRT model is more accurate and stable in
simulating non-Newtonian fluids but that the MRT model
requires more computational time, sometimes 5 times that of
the SRT model. Chen et al.38 studied the three-dimensional
Poiseuille flow of Bingham fluids in the circular and square
tubes using the MRT model and found that the relaxation
parameters of the MRT model have considerable effects on the
accuracy and stability of the simulation, and only by optimizing
the relaxation parameters reasonably can the high-precision
results be obtained. However, the MRT model, especially
three-dimensional model, contains many relaxation parameters,
which are difficult to optimize.39 In previous studies, the same
set of relaxation parameters was chosen, and the optimization
method of relaxation parameters was not given.33−37

Ginzburg40 proposed the two-relaxation-time lattice Boltz-
mann method (TRT−LBM) in 2005. The TRT−LBM has two
relaxation times, τ+ and τ−. τ+ is related to the apparent
viscosity of the fluid. τ− is a free parameter. The magic
parameter, Λ, is a function of τ+ and τ−. When the TRT−LBM
is used for simulation, if the viscosity changes, just by adjusting
the relaxation time τ− to keep the magic parameter fixed, the
accuracy error can be independent of the viscosity. The TRT
model is as simple and efficient as the SRT model, while
absorbing the advantages of the accuracy and stability of the
MRT model.41−43 At present, the TRT model has not received
sufficient attention and is not as popular as the SRT and MRT
models.39 With the continuous deepening of research, the
advantages of the TRT model are gradually evident, and the
TRT model is being used more and more widely.44−47

First, we use the TRT model to study the flow of generalized
Newtonian fluids in a lid-driven cavity and verify the validity of
the TRT model. Second, the velocity profiles of high-viscosity
power law fluids and Bingham fluids in the cross section of a
screw channel are studied using the SRT and TRT models,
respectively. The stability, calculation accuracy, and calculation
efficiency of the SRT and TRT models are compared in detail.
Third, the MRT model is used to study the high-viscosity
power law fluids in the screw channel. The effectiveness of the

MRT model for high-viscosity generalized Newtonian fluids is
further studied. Finally, the flow patterns of the generalized
Newtonian fluids in the cross section of the screw channel are
studied using the TRT model. The results of the TRT model
are compared with the simulation results of Buick et al.7−9 and
the visualization experiment results of Yao et al.4,5 In addition,
we use the TRT model to study the flow patterns of
generalized Newtonian fluids in the pin mixing section of the
screw channel and compare it with the visualization
experimental results of Yao et al.4,5

2. CONSTITUTIVE EQUATIONS OF GENERALIZED
NEWTONIAN FLUIDS

The polymer melt has viscoelastic characteristics. In many
cases, the elastic effect of polymer melts can be ignored.
Whether the elastic effect of the polymer melt can be ignored
needs to be determined according to the specific application.
Generally, when the flow field in the extruder is studied, the
elastic effect of the polymer melt can be ignored. The
generalized Newtonian fluid model can describe the rheo-
logical properties of the polymer melt well and is widely used
in the flow field analysis of polymer processing.1

2.1. Power Law Model. The apparent viscosity of power
law fluids is defined by48

= | |v m( ) n
P

1 (1)

where m represents the flow consistency coefficient of the fluid,
n represents the power law index of the fluid, and γ represents
the shear rate tensor. The power law fluids include shear-
thinning fluids (n < 1) and shear-thickening fluids (n > 1). If n
= 1, then the power law fluids become the Newtonian fluids.
2.2. Bingham Plastic Model. The constitutive equations

of the Bingham model have been proposed by Bird,49 which
can be expressed as
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where τ represents the shear stress tensor, τB represents the
Bingham yield stress, and μB represents the plastic viscosity.
When τB = 0, the fluid is a Newtonian fluid. Papanastasiou50

proposed a modified equation to overcome the discontinuity of
eq 2, which can be expressed as
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where m represents the stress growth exponent. When m is
large enough, eq 3 can be well approximated to eq 2.

The apparent viscosity of the Bingham plastic model can be
determined by eq 3

= = +
| |

| |v ( ) (1 e )m
B B

B

(4)

3. NUMERICAL METHOD
3.1. SRT−LBM. The evolution equation of SRT−LBM can

be expressed as
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where Ωi is the collision operator and ei are the discrete
velocities in the D2Q9 model (see Figure 3), which can be
determined as
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The BGK collision operator of the SRT model can be
expressed as51

= [ ]x t t f x t f x t( , ) ( , ) ( , )i i i
eq

(7)

where f i represents the distribution function of ei and f ieq

represents the equilibrium distribution function for the D2Q9
lattice, which can be expressed as39
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where ω0 = 4/9, ωi = 1/9(i = 1−4), ωi = 1/36(i = 5−8), and
=c 1/ 3s is the sound speed.
The relaxation time, τ, depends on the kinematic viscosity,

which can be determined by

= +v3 ( )
1
2 (9)

The evolutionary progress of the SRT model includes the
following two steps:
(1) the collision step

* = [ ]f x t f x t t f x t f x t( , ) ( , ) ( , ) ( , )i i i i
eq

(10)

where f i*(x,t) represents the distribution function after the
collision; and
(2) the propagation step

+ + = *f x e t t t f x t( , ) ( , )i i i (11)

The macroscopic density, ρ, and velocity, u, at each node
can be determined directly as
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3.2. TRT−LBM. The evolution equation of the TRT−LBM
can be expressed as

+ + = + =f x e t t t f x t x t i( , ) ( , ) ( , ) ( 0 8)i i i i

(13)

where Ωi is the collision operator and ei are the discrete
velocities in the D2Q9 model (see Figure 3), which can be
determined by eq 6.

The distribution function of the TRT model includes the
symmetric and antisymmetric parts

Figure 3. Discrete velocity vectors at a grid site in the D2Q9 model.

Figure 4. Comparison of TRT−LBM results of power law fluids with those of previous studies.55 (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of v-velocity along the horizontal centerline of the simulation domain.
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= + =+ +f f f f f f,i i i i i i (14)

where f i represents the distribution function of ei, fi
represents the distribution function of e i = -ei, and f i+ and f i−

represent the symmetric and antisymmetric parts of the
distribution function, respectively, which can be determined by

= + =+f f f f f f
1
2

( ),
1
2

( )i i i i i i (15)

The equilibrium distribution function f ieq of the D2Q9 TRT
model can be expressed by eq 8.

The equilibrium distribution function of the TRT model
includes the symmetric and antisymmetric parts

= + =+ +f f f f f f,i i i i i i
eq eq eq eq eq eq

(16)

where f ieq represents the equilibrium distribution function of ei,
f i

eq represents the equilibrium distribution function of e i = −ei,

and f ieq+ and f ieq− represent the symmetric and antisymmetric
parts of the equilibrium distribution function, respectively,
which can be expressed as
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The relaxation time, τ+, depends on the kinematic viscosity,
which can be determined by

= ++ v3 ( )
1
2 (18)

The magic parameter, Λ, connects the relaxation rate ω+ to
ω−
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where ω+ = 1/τ+ and ω− = 1/τ−.

Figure 5. Comparison of TRT−LBM results of Bingham fluids with those of previous studies.56 (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of v-velocity along the horizontal centerline of the simulation domain.

Figure 6. Comparison of simulation accuracy of the TRT−LBM under different magic parameters, Λ. (a) Power law fluids (n = 1.5) and (b)
Bingham fluids (Bn = 1.5).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c06663
ACS Omega 2023, 8, 47991−48018

47995

https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c06663?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The relaxation time, τ−, can be derived from eqs 18 and 19,
which can be expressed as

= ++
2

2 1
1
2 (20)

The collision operator Ωi of the TRT model can be
expressed as40

= [ ]

[ ]

+ + +x t f x t f x t
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The evolutionary progress of the TRT model includes the
following two steps:
(1) the collision step

* = [ ]
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where f i*(x,t) represents the distribution function after the
collision; and
(2) the propagation step

+ + = *f x e t t t f x t( , ) ( , )i i i (23)

The macroscopic velocity, u, and density, ρ, at each node
can be calculated directly from eq 12.
3.3. MRT−LBM. The evolution equation of the MRT−

LBM can be expressed as12

+ + = [ ]f x e t t t f x t M SM f f( , ) ( , )i i i i i
1 eq

(24)

where f i and f ieq are the distribution function and equilibrium
distribution function of ei, respectively, M is the transformation
matrix, and S is the diagonal relaxation matrix.

The f ieq of the D2Q9MRT model can be expressed as in eq
8.

The M in the D2Q9MRT model is given by12
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The S of the D2Q9MRT model can be defined as

=S s s s s s sdiag(0, , ,0, ,0, , , )e q q v v (26)

The relation between the kinematic viscosity and relaxation
time, τ, can be expressed as

= =v c
s

s( )
1 1

2
,

1

v
vs

2
t

i
k
jjjjj

y
{
zzzzz (27)

where =c 1/ 3s .
M is used to change f i and f ieq of ei to the moment space with

m = M f and meq = M feq.

= [ ]m e j q j q p p, , , , , , , ,x x y y xx xy
T

(28)

= [ + ]
=u

m u u u u v v u v uv

u v

1, 2 3 ,1 3 , , , , , , ,

( , )

eq 2 2 2 2

(29)

The evolutionary progress of the MRT model includes the
following two steps:
(1) the collision step
Unlike the SRT and TRT models, the collision step of the

MRT model is performed in the moment space

* = [ ]f x t f x t M SM f f( , ) ( , )i i i i
1 eq

(30)

where f i*(x,t) represents the distribution function after the
collision.
(2) the propagation step

+ + = *f x e t t t f x t( , ) ( , )i i i (31)

The macroscopic velocity, u, and density, ρ, at each node
can be calculated directly from eq 12.
3.4. Generalized Newtonian Fluid Simulation. The

apparent viscosities of power law fluids and Bingham fluids are
determined by eqs 1 and 4, respectively. The shear rate γ at
each node can be defined as

= D2 II (32)

where DII represents the second invariant of the strain-rate
tensor, which can be defined as

=
=

D S SII
, 1

2

(33)

with Sαβ representing the strain-rate tensor at each node.
The Sαβ for the SRT and TRT models can be expressed as52

= [ ]+
=

e e x xS
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The Sαβ for the MRT model can be expressed as33

= [
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3.5. Boundary Conditions. As shown in Figures 1b and
2b, to compare with the results of previous studies, we ignore
the longitudinal velocity component of the screw channel and
study only the flow field in the cross section of the screw
channel. The upper boundary is a moving boundary with a
constant velocity, and all other boundaries of the screw
channel are stationary. The boundaries of the pins are
stationary. The halfway bounce-back53,54 boundary conditions
were applied at moving and stationary walls. The distribution
function on the boundary can be calculated by

+ = * ·e u
f x t t f x t w

c
( , ) ( , ) 2i i i

i
b b w

w

s
2 (36)

where fi is the distribution function of e i = −ei, f i*is the
distribution function after collision, and ρw and uw are the
density and velocity, respectively, at the wall location
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= +x x e tiw b
1
2

. For stationary walls, eq 36 can be simplified
as

+ = *f x t t f x t( , ) ( , )i ib b (37)

3.6. Dimensionless Parameters. According to similarity
theory, the physical conditions of the fluid flow in the screw
channel can be defined by dimensionless parameters. The
dimensionless spatial coordinates and fluid velocities can be
defined as

* = * = * = * =

* = * + *

x x
H

y
y

H
u u

V
v v

V

U u v

, , , ,

( ) ( )

bx bx

2 2
(38)

where W represents the width of the screw channel, H
represents the height of the screw flight, and Vbx represents the
lateral velocity component of the screw channel.

The dimensionless shear rate can be defined as

* = | |H
Vbx (39)

The Reynolds number of the power law fluids can be defined
as

=Re
V H

m
bx

n n

P

2

(40)

where m and n represent the flow consistency coefficient of the
fluid and the power law index of the fluid, respectively.

The Reynolds number and Bingham number of the Bingham
fluids can be defined as

= =Re
V H

Bn
H
V

,bx

bx
B

B

B

B (41)

where τB and μB represent the Bingham yield stress and plastic
viscosity, respectively.
3.7. Numerical Procedure of the LBM of Generalized

Newtonian Fluids. The program execution process of the
TRT model of generalized Newtonian fluids is as follows. The

Figure 7. Simulation results of the TRT−LBM for power law fluids at n = 0.5 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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program execution process of the SRT and MRT models is
similar to that of the TRT model. Herein, MATLAB 2018a
software is used for calculation.
(1) Initialize the density and velocity of the fluid domain, by

setting ρ(x,t) = 1 and u (x,t) = 0. f ieq(x,t) can be
calculated by eq 8. Initialize the distribution function, by
setting f i(x,t) = f ieq(x,t).

(2) f i+ and f i− can be determined by eq 15, and f ieq+ and
f ieq−can be determined by eq 17.

(3) The collision step can be implemented by eq 22.
(4) The propagation step can be implemented by eq 23.
(5) The unknown distribution functions at moving and

stationary walls can be determined by eqs 36 and 37,
respectively.

(6) Sαβ can be calculated by eq 34, DII can be calculated by
eq 33, and γ can be determined by eq 32.

(7) The apparent viscosity v(γ) of power law fluids and
Bingham plastic fluids can be calculated by eqs 1 and 4,
respectively. τ+ can be determined by eq 18, and τ− can
be derived from eq 20.

(8) The macroscopic density, ρ, and velocity, u, can be
determined by eq 12.

(9) Go to step (2) and continue to the next time step. The
simulation process ends when the following convergence
condition is met:

| * + * |
*

U x t U x t
U x t

( , 40) ( , )
( , )

10 6

(42)

4. NUMERICAL RESULTS AND DISCUSSION
4.1. Validation of the TRT−LBM for Generalized

Newtonian Fluids. At present, the TRT−LBM is not as
popular as the SRT−LBM and MRT−LBM. There are few
studies on the use of the TRT−LBM to simulate generalized
Newtonian fluids flow. To verify the effectiveness of the TRT−
LBM in simulating generalized Newtonian fluids, we simulated
the fluid flow in a lid-driven cavity.

First, we used the TRT−LBM to study the velocity profiles
of power law fluids in a lid-driven cavity at different n values
(0.5, 1, and 1.5). The Reynolds number Rep = 100. As shown

Figure 8. Simulation results of the SRT−LBM for power law fluids at n = 0.5 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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in Figure 4, the results of the TRT−LBM agree well with the
results of Bell and Surana.55

Subsequently, we used the TRT−LBM to study the velocity
profiles of Bingham fluids in a lid-driven cavity at different Bn
values (0.01, 0.1, and 1). The Reynolds number ReB = 100. As
shown in Figure 5, the results of the TRT−LBM agree well
with the results of Neofytou.56

4.2. Effectiveness of the TRT− and SRT−LBM for
High-Viscosity Generalized Newtonian Fluids. The TRT
and SRT models are used to simulate the power law fluids and
Bingham fluids in the cross section of the screw channel. The
ability of the TRT and SRT models to simulate high-viscosity
generalized Newtonian fluids is compared. The simulation
accuracy, stability, convergence rate, and selection of
simulation parameters of TRT−LBM and SRT−LBM are
compared in detail.

Herein, to facilitate the comparison of our results with the
results of Horiguchi et al.6 and Buick et al.,7−9 the ratio of the
width W to height H (W/H) of the screw channel is fixed at 3,
and the Reynolds number (Rep, ReB) is fixed at 0.144. The

upper boundary is a moving boundary, with a constant
velocity, and all other boundaries of the screw channel are
stationary. The simulation domain is divided into 153 × 51
grid points in the x and y directions. However, the simulation
domain is divided into 49 × 16 grid points in the study of
Buick et al.7−9 By numerical simulation, we found that the
distribution of u-velocity along the vertical centerline of the
simulation domain has high accuracy when the simulation
domain is divided into 49 × 16. However, the distribution of v-
velocity along the horizontal centerline of the simulation
domain has large errors. After verification, the grid point
number 153 × 51 is found to be appropriate for deriving grid-
independent results.

4.2.1. Selection of Magic Parameter. The magic parameter,
Λ, affects the accuracy, stability, and computational efficiency
of the simulation. For a given problem, we should try using
different magic parameter values to simulate and compare the
stability, convergence rate, and accuracy of the simulation
process. The more suitable value of the magic parameter is
determined by comparison. According to previous research, Λ

Figure 9. Simulation results of the TRT−LBM for power law fluids at n = 1 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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= 1/12 can cancel the third-order spatial error, Λ = 1/6 can
cancel the fourth-order spatial error, and Λ = 1/4 can provide
the most stable simulations.

In this paper, the power law fluids (n = 1.5) and Bingham
fluids (Bn = 1.5) in the cross section of the screw channel have
been studied with different magic parameters Λ (Λ = 1/12, 1/
6, and 1/4). To compare the accuracy of the TRT−LBM
under different magic parameters Λ, we calculate the relative
error. The L2 error norm can be defined as

* =
[ * * ]

*U
U x y U x y

U x y
Err( )

( , ) ( , )

( , )
x y

x y

( , ) n r
2

( , ) r
2

(43)

where Err(U*) represents the relative error, Un*(x,y)
represents the numerical result of velocity U*, Ur*(x,y)
represents the reference solution of velocity U*, and ∑(x,y)
represents the sum of all grid points in the simulation domain.

Since there is no analytical solution, we take the numerical
results corresponding to the lattice velocity, U = 0.0005, and
the magic parameter, Λ = 1/6, as the reference solution,

because within a certain range, the smaller the lattice velocity,
the higher the simulation accuracy. Figure 6 shows the effects
of different magic parameters on the simulation accuracy of
TRT−LBM.

Figure 6a shows the effects of different magic parameters
and lattice velocity on the simulation accuracy of power law
fluids (n = 1.5). As can be seen from Figure 6a, high-accuracy
results can be obtained when the magic parameters, Λ, are
taken as 1/12, 1/6, and 1/4. For Λ = 1/12, when the lattice
velocity, U, is 0.0005, 0.001, 0.002, and 0.004, the
corresponding iteration steps are 5880, 4880, 2880, and
1480, respectively. For Λ = 1/6, when the lattice velocity, U, is
0.0005, 0.001, 0.002, and 0.004, the corresponding iteration
steps are 5880, 4880, 2880, and 1840, respectively. For Λ = 1/
4, when the lattice velocity, U, is 0.0005, 0.001, 0.002, and
0.004, the corresponding iteration steps are 5880, 4880, 2880,
and 1800, respectively. It can be found that for the same lattice
velocity, U, the convergence rate is almost the same when the
magic parameter, Λ, is set to 1/12, 1/6, and 1/4.

Figure 6b shows the effects of different magic parameters
and lattice velocity on the simulation accuracy of the Bingham

Figure 10. Simulation results of the SRT−LBM for power law fluids at n = 1 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c06663
ACS Omega 2023, 8, 47991−48018

48000

https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c06663?fig=fig10&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c06663?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


fluid (Bn = 1.5). As shown in Figure 6b, high-accuracy results
can be obtained when the magic parameters, Λ, are taken as 1/
12, 1/6, and 1/4, respectively. For Λ = 1/12, when the lattice
velocity, U, is 0.0005, 0.001, 0.003, and 0.004, the
corresponding iteration steps are 7760, 5640, 2720, and
1640, respectively. For Λ = 1/6, when the lattice velocity, U, is
0.0005, 0.001, 0.003, and 0.004, the corresponding iteration
steps are 7760, 5640, 2720, and 1880, respectively. For Λ = 1/
4, when the lattice velocity, U, is 0.0005, 0.001, 0.003, and
0.004, the corresponding iteration steps are 7760, 5640, 2400,
and 1880, respectively. It can be found that for the same lattice
velocity, U, the convergence rate is almost the same when the
magic parameter, Λ, is set to 1/12, 1/6, and 1/4.

Therefore, when the TRT−LBM is used to study the power
law fluids and Bingham fluids in the cross section of the screw
channel, the magic parameters, Λ, equal to 1/12, 1/6, and 1/4
can all meet the high-accuracy requirements. The computa-
tional efficiency is almost the same when the magic parameter,
Λ, is set to 1/12, 1/6, and 1/4. In this study, the magic
parameter, Λ, is set to 1/6.

4.2.2. Flow of Power Law Fluids in the Cross Section of
the Screw Channel. The results of the TRT and SRT models
when the power law index n = 0.5, 1, and 1.5 are shown in
Figures 7 and 8, 9 and 10, and 11 and 12, respectively. The
distributions of u-velocity along the vertical centerline of the
simulation domain are shown in Figures 7a−12a, and those
along vertical line x = 25 of the simulation domain are shown
in Figures 7b−12b. Similarly, the distributions of v-velocity
along the horizontal centerline of the simulation domain are
shown in Figures 7c−12c, and velocity Up* that varies with
time step at the grid point (25, 45) is shown in Figures
7d−12d. The flow field is steady state. The variation of velocity
Up* with time step is the numerical value generated by the
LBM model algorithm during the iteration process.

To compare the accuracy of TRT−LBM and SRT−LBM in
simulating power law fluids, we used eq 43 to calculate the
relative errors at different lattice velocities. Since there is no
analytical solution, we take the numerical results of the TRT−
LBM corresponding to the lattice velocity, U = 0.0005, as the
reference solution, Ur*(x,y). Because, in general, the smaller
the lattice velocity, the higher the simulation accuracy. Figure

Figure 11. Simulation results of the TRT−LBM for power law fluids at n = 1.5 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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Figure 12. Simulation results of the SRT−LBM for power law fluids at n = 1.5 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25,45).

Figure 13. Effects of lattice velocity U on the simulation accuracy of power law fluids. (a) Simulation accuracy of TRT−LBM and (b) Simulation
accuracy of SRT−LBM.
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13 shows the effects of the lattice velocity on the simulation
accuracy of power law fluids. Figure 13a shows the effects of
lattice velocity on the simulation accuracy of the TRT−LBM.
Figure 13b shows the effects of lattice velocity on the
simulation accuracy of SRT−LBM. As can be seen from
Figure 13a, for TRT−LBM, with the increase in lattice
velocity, the relative error increases slowly along the nonlinear
curve. The fitting functions corresponding to n = 0.5, 1, and
1.5 are Err(U*) = 64.74U1.98, Err(U*) = 150.2U2.024, and
Err(U*) = 5058.97U2.48, respectively. As shown in Figure 13b,
for SRT−LBM, with an increase of lattice velocity, the relative
error increases sharply. By comparing Figure 13a,b, it can be
found that the accuracy of TRT−LBM is much higher than
that of SRT−LBM.

As shown in Figures 7−13, lattice velocity U has
considerable effects on the stability and convergence rate of
the simulation. As can be seen from Figures 7, 9, 11, and 13a,
for the TRT−LBM, the lattice velocity, U, has a slight effect on
the simulation accuracy but notable effects on the convergence
rates. In a certain range, the larger the lattice velocity is, the
faster the convergence rate. As shown in Figures 8, 10, 12, and
13b, for the SRT−LBM, the lattice velocity, U, has
pronounced effects on simulation accuracy and convergence
rates. In a certain range, the larger the lattice velocity U, the

faster the convergence rate but the lower the simulation
accuracy. By comparing Figures 7 and 8, 9 and 10, 11 and 12,
and 13a,b, it can be observed that the TRT model can select
the lattice velocity, U, in a larger range to improve the
convergence rate and retain the accuracy basically unchanged.
However, the accuracy of the SRT model is closely related to
the lattice velocity, U, and the larger the lattice velocity, the
lower the accuracy.

As can be seen from Figures 7, 8, and 13, for the TRT−
LBM, when n = 0.5 and lattice velocity U = 0.002, it takes 5720
time steps to converge, and the relative error is 0.000269.
When lattice velocity U = 0.008, it only takes 1880 time steps
to converge; the relative error is 0.00447. However, for the
SRT−LBM, when lattice velocity U = 0.001, it takes 8680 time
steps to converge; the relative error is 0.01377. When lattice
velocity U = 0.002, it takes 6840 time steps to converge; the
relative error is 0.01281. When lattice velocity U = 0.004, it
takes 4400 time steps to converge; the relative error is 0.03176.
Therefore, when n = 0.5, the time step required by the SRT−
LBM is approximately 3−5 times that of the TRT−LBM for
meeting the accuracy requirements.

As shown in Figures 9, 10, and 13, for the TRT−LBM, when
n = 1 and lattice velocity U = 0.008, it only takes 1560 time
steps to converge; the relative error is 0.00858. However, for

Figure 14. Simulation results of the TRT−LBM for Bingham fluids at Bn = 0.5 (ReB = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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the SRT−LBM, when lattice velocity U = 0.0005, it takes
11,280 time steps to converge; the relative error is 0.0031.
When lattice velocity U = 0.001, it takes 6400 time steps to
converge, and the relative error is 0.01659. When lattice
velocity U ≥ 0.003, the relative error is greater than or equal to
0.07172, and the accuracy is considerably decreased. There-
fore, when n = 1, the time step required by the SRT−LBM is
approximately 4−6 times that of the TRT−LBM for meeting
the accuracy requirements.

As can be seen from Figures 11−13, for the TRT−LBM,
when n = 1.5 and lattice velocity U = 0.004, it only takes 1840
time steps to converge, and the relative error is 0.00585.
However, for the SRT−LBM, when lattice velocity U = 0.0005,
it takes 4720 time steps to converge, and the relative error is
0.03786. When lattice velocity U = 0.001, it takes 3960 time
steps to converge, the relative error is 0.06732, and the
accuracy is considerably decreased. When lattice velocity U ≥
0.002, the relative error is greater than or equal to 0.11683, the
simulation accuracy is considerably decreased, and the
simulation process is unstable. Therefore, when n = 1.5, the
time step required by the SRT−LBM is approximately 2−3

times that of the TRT−LBM for meeting the accuracy
requirements.

Relaxation time τ has notable effects on the accuracy and
stability of the LBM. According to eqs 9, 18, and 27, τ is
dependent on the apparent viscosity of the fluid. The SRT−
LBM has only one relaxation time τ, and the sufficient
condition for the simulation process to be stable is relaxation
time τ > 1/2.57,58 The relaxation time cannot be much greater
than 1; otherwise, the simulation accuracy will be
decreased.39,42 Relaxation time τ is generally selected around
1 but cannot be close to 0.5.

For the flow of high-viscosity fluids, the Reynolds number is
generally very small. To avoid relaxation time τ ≫1, lattice
velocity U must be very small; otherwise, the accuracy will be
considerably decreased. However, when the lattice velocity U
is very small, the SRT−LBM requires a large number of time
steps to converge. Therefore, when the Reynolds number is
very small, SRT−LBM requires a large amount of computa-
tional time to converge.

The apparent viscosity of non-Newtonian fluids is closely
related to the shear rate. Therefore, there is a large difference

Figure 15. Simulation results of the SRT−LBM for Bingham fluids at Bn = 0.5 (ReB = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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in the apparent viscosity at each grid point in the fluid domain.
The relaxation time, τ, of each grid point in the simulation
domain is different. When the τ value of some grid points in
the computational domain approaches 0.5, the simulation
process becomes unstable; however, when the τ value of some
grid points in the computational domain is much greater than
1, the simulation accuracy will be considerably decreased.

The TRT−LBM has two relaxation times: τ+ and τ−.
According to eq 18, τ+ is related to the apparent viscosity of
the fluid and τ− is a free parameter. Equation 19 shows that τ+

and τ− are linked together by the magic parameter, Λ.42 When
the viscosity of the fluid changes, τ+ changes accordingly. As
long as the magic parameter Λ remains fixed, by adjustment of
τ−, the stability and accuracy of the simulation remain basically
unchanged.

4.2.3. Flow of Bingham Fluids in the Cross Section of the
Screw Channel. The results of the TRT and SRT models
when the Bingham numbers Bn = 0.5, 1.5, and 2.5 are shown in
Figures 14 and 15, 16 and 17, and 18 and 19, respectively. The
distributions of u-velocity along the vertical centerline of the
simulation domain are shown in Figures 14a−19a, and those

along vertical line x = 25 of the simulation domain are shown
in Figures 14b−19b. Similarly, the distributions of v-velocity
along the horizontal centerline of the simulation domain are
shown in Figures 14c−19c, and the velocity, Up*, that varies
with time step at the grid point (25, 45) are shown in Figures
14d−19d. The flow field is steady state. The variation of
velocity Up* with the time step is the numerical value
generated by the LBM model algorithm during the iteration
process.

To compare the accuracy of TRT−LBM and SRT−LBM in
simulating Bingham fluids, we used eq 43 to calculate the
relative errors at different lattice velocities. Since there is no
analytical solution, we take the numerical results of TRT−
LBM corresponding to lattice velocity U = 0.0005 as reference
solution Ur*(x,y) because, in general, the smaller the lattice
velocity, the higher the simulation accuracy. Figure 20 shows
the effects of the lattice velocity on the simulation accuracy of
Bingham fluids. Figure 20a shows the effects of lattice velocity
on the simulation accuracy of the TRT−LBM. Figure 20b
shows the effects of lattice velocity on the simulation accuracy
of SRT−LBM. As can be seen from Figure 20a, for TRT−

Figure 16. Simulation results of the TRT−LBM for Bingham fluids at Bn = 1.5 (ReB = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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LBM, with the increase in lattice velocity, the relative error
increases slowly along the nonlinear curve. As shown in Figure
20b, for SRT−LBM, when Bn = 0.5, with the increase of lattice
velocity, the relative error first decreases slowly and then
increases slowly. The SRT−LBM can obtain high-accuracy
results when Bn = 0.5. However, when Bn = 1.5 and 2.5, with
the increase of lattice velocity, the relative error first decreases
sharply and then increases sharply. When Bn = 1.5 and 2.5, the
SRT−LBM is difficult to obtain high-accuracy results. By
comparing Figure 20a,b, it can be found that the accuracy of
the TRT−LBM is much higher than that of the SRT−LBM.

As shown in Figures 14, 15, and 20, for the TRT−LBM,
when Bingham number Bn = 0.5 and lattice velocity U = 0.002,
it takes 4160 time steps to converge, and the relative error is
0.0006097. When lattice velocity U = 0.006, it only takes 1760
time steps to converge; the relative error is 0.00577. However,
for the SRT−LBM, when lattice velocity U = 0.0001, it takes
18,560 time steps to converge, and the relative error is
0.01177. When lattice velocity U = 0.0003, it takes 11,680 time
steps to converge, and the relative error is 0.00621. When

lattice velocity U = 0.0005, it takes 6520 time steps to
converge, the relative error is 0.0089, and the simulation
process is unstable. Therefore, when Bingham number Bn =
0.5, the time step required by the SRT−LBM is approximately
6−7 times that required by the TRT−LBM for meeting the
accuracy requirements.

As can be seen from Figures 16, 17, and 20, for the TRT−
LBM, when Bingham number Bn = 1.5 and lattice velocity U =
0.002, it takes 3480 time steps to converge, and the relative
error is 0.0008166. When lattice velocity U = 0.004, it only
takes 1880 time steps to converge, and the relative error is
0.00339. However, for the SRT−LBM, when lattice velocity U
= 0.00008, it takes 13,360 time steps to converge; the relative
error is 0.01614. When lattice velocity U = 0.0001, it takes
12,560 time steps to converge, the relative error is 0.01511.
When lattice velocity U = 0.0003, it takes 5800 time steps to
converge, and the relative error is 0.02987. When lattice
velocity U = 0.0005, it takes 6440 time steps to converge, and
the relative error is 0.03839. Therefore, when Bingham number
Bn = 1.5, the time step required by the SRT−LBM is

Figure 17. Simulation results of the SRT−LBM for Bingham fluids at Bn = 1.5 (ReB = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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approximately 6−7 times that of the TRT−LBM for meeting
the accuracy requirements. The accuracy of the TRT−LBM is
significantly higher than that of the SRT−LBM.

As can be seen from Figures 18, 19, and 20, for the TRT−
LBM, when Bingham number Bn = 2.5 and lattice velocity U =
0.001, it takes 5000 time steps to converge, and the relative
error is 0.0004373. When lattice velocity U = 0.003, it takes
only 2320 time steps to converge, and the relative error is
0.0024. However, for the SRT−LBM, when lattice velocity U =
0.00006, it takes 15,480 time steps to converge, the relative
error is 0.0209, and the simulation process is unstable. When
lattice velocity U = 0.0001, it takes 8720 time steps to
converge, the relative error is 0.02046, and the simulation
process is unstable. When lattice velocity U = 0.0003, it takes
7320 time steps to converge, the relative error is 0.05339, and
the simulation process is very unstable and divergence.
Therefore, when Bingham number Bn = 2.5, the TRT−LBM
can simulate efficiently, stably, and accurately. However, the
SRT−LBM is inaccurate and unstable, and the computational
efficiency is very low.

Many materials, such as Bingham fluids, Casson fluids, and
Herschel−Bulkley fluids, have yield stress. When the shear rate
of the local area in the simulation domain is very small, the
apparent viscosity of the local area will be very large; the
relaxation time of the local area may be much greater than 1,
and the simulation accuracy is considerably decreased.
According to eq 41, when ReB and Bn are constant, the
apparent viscosity and yield stress can be reduced by reducing
the lattice velocity so that the relaxation time is within a
reasonable range. Therefore, for the SRT−LBM, when the
lattice velocity is very small, we can obtain accurate results. As
shown in Figures 15, 17, and 19, for the SRT−LBM, the larger
the Bingham number, the smaller the lattice velocity must be,
the more unstable the simulation process, and the more time
steps required.

For fluids with yield stress, the apparent viscosity of the local
area in the simulation domain may be very large, resulting in
relaxation time τ+ ≫ 1. The TRT−LBM can overcome these
difficulties effectively. For the TRT−LBM, as long as the
relaxation time, τ−, of each grid point in the simulation domain
is adjusted to maintain the magic parameter, Λ, of each grid

Figure 18. Simulation results of the TRT−LBM for Bingham fluids at Bn = 2.5 (ReB = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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Figure 19. Simulation results of the SRT−LBM for Bingham fluids at Bn = 2.5 (ReB = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).

Figure 20. Effects of lattice velocity U on simulation accuracy of Bingham fluids. (a) Simulation accuracy of TRT−LBM. (b) Simulation accuracy
of SRT−LBM.
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point fixed, the simulation process can be stable, and high-
accuracy results can be obtained. Moreover, the relaxation
time, τ+, should be increased within a certain range; if τ+ is too
large, the simulation accuracy will decrease.
4.3. Effectiveness of the MRT−LBM for High-Viscosity

Power Law Fluids. The MRT−LBM has multiple relaxation
parameters, and its stability is better than that of SRT−LBM,
especially for high Reynolds number problems. To the best of
our knowledge, few people have used the MRT−LBM to study
generalized Newtonian fluids with high viscosities. To verify
the effectiveness of the MRT model in simulating high-
viscosity generalized Newtonian fluids, we used the MRT−
LBM to study the flow field of power law fluids in the cross
section of the screw channel. The diagonal relaxation matrix S
has considerable effects on the stability and accuracy of
simulation. The relaxation parameters of the MRT model
selected in this paper are optimized by other researchers for
non-Newtonian fluids. When the MRT model is used to study
non-Newtonian fluids, many researchers use the same set of
relaxation parameters.33−37 This set of relaxation parameters is
S = diag(0, 1.1, 1.0, 0, 1.2, 0, 1.2, 1/τ, 1/τ). These relaxation
parameters were selected by predecessors based on Lallemand
and Luo12 and are not the optimal parameters obtained by
mathematical analysis. These relaxation parameters have been
verified by predecessors and are suitable for non-Newtonian

fluids, but they are not necessarily the optimal parameters. At
present, the optimal relaxation parameters suitable for non-
Newtonian fluids have not been obtained. Herein, we
attempted to use other relaxation parameters, but the effect
was not notable.

The simulation results of the MRT−LBM when power law
index n = 0.5, 1, and 1.5 are shown in Figures 21, 22, and 23,
respectively. The distributions of u-velocity along the vertical
centerline of the simulation domain are shown in Figures
21a−23a, and those along vertical line x = 25 of the simulation
domain are shown in Figures 21b−23b. Similarly, the
distributions of v-velocity along the horizontal centerline of
the simulation domain are shown in Figures 21c−23c, and
velocity Up* that varies with time step at the grid point (25,
45) is shown in Figures 21d−23d. The flow field is steady
state. The variation of velocity Up* with the time step is the
numerical value generated by the LBM model algorithm during
the iteration process.

Figure 24 shows the effects of lattice velocity on the accuracy
of the MRT−LBM in simulating power law fluids. As can be
seen from Figure 24, when n = 1, with the increase of lattice
velocity, the relative error increases slowly. However, when n =
0.5 and 1.5, with the increase of lattice velocity, the relative
error increases sharply; only when the lattice velocity is very

Figure 21. Simulation results of the MRT−LBM for power law fluids at n = 0.5 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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small can high accuracy results be obtained, which requires a
lot of computational time.

As can be seen from Figures 21 and 24, for n = 0.5, when
lattice velocity U = 0.00005, it takes 37,000 time steps to
converge; the relative error is 0.02918. When lattice velocity U
= 0.0002, it takes 23,880 time steps to converge, and the
relative error is 0.04672. When lattice velocity U = 0.0003, it
takes 15,840 time steps to converge, and the relative error is
0.05666. As shown in Figures 22 and 24, for n = 1, when lattice
velocity U = 0.0005, it takes 11,560 time steps to converge, and
the relative error is 0.000368. When lattice velocity U = 0.002,
it takes 4800 time steps to converge, the relative error is
0.01158. When lattice velocity U = 0.008, it takes 1800 time
steps to converge, and the relative error is 0.03601. As can be
seen from Figures 23 and 24, for n = 1.5, when lattice velocity
U = 0.0001, it takes 16,520 time steps to converge; the relative
error is 0.00825. When lattice velocity U = 0.0005, it takes
6880 time steps to converge, and the relative error is 0.0252.
When lattice velocity U = 0.002, it takes 4560 time steps to
converge, and the relative error is 0.05067. Therefore, when

the Reynolds number is very small, the MRT−LBM can
simulate Newtonian fluids efficiently and accurately. However,
for shear-thinning fluids and shear-thickening fluids, the
accuracy of the simulation results depends on the lattice
velocity. Only when the lattice velocity is very small can high-
accuracy results be obtained, which requires a large amount of
computational time.

The MRT model contains many free parameters that can
adjust accuracy and stability and is the most general model.
The MRT model can be simplified to the TRT or SRT model.
For the MRT model, when all even order moments are relaxed
with ω+ and all odd order moments with ω−, and eq 19 is
satisfied, the MRT model can be simplified to the TRT model.
However, only by optimizing the relaxation parameters can the
advantages of the MRT model be fully utilized. Unfortunately,
currently, no effective method is available to optimize these
relaxation parameters.39 The optimization of the accuracy and
stability of the MRT models via parameter research or linear
stability analysis is difficult.

Figure 22. Simulation results of the MRT−LBM for power law fluids at n = 1 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).
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For Newtonian fluids, the viscosity does not vary with the
shear rate, and the relaxation time corresponding to the
viscosity is fixed. First, we can simplify the MRT model to the
TRT model and then adjust some free parameters separately.
By reasonably fine-tuning the free parameters, the MRT model
can obtain more stable and accurate results than the TRT
model. However, for non-Newtonian fluids, the apparent
viscosity is related to the shear rate, and the relaxation times of
each grid point in the fluid domain are very different. It is
difficult to make the accuracy and stability of the MRT model
superior to those of the TRT model by adjusting the free
parameters. For high-viscosity non-Newtonian fluids, optimiz-
ing the relaxation-time parameters of the MRT model is more
difficult. In addition, although the MRT model can be
simplified to the TRT model, the execution process of its
program remains unchanged and requires a larger computa-
tional memory and longer computational time than the TRT
model. Therefore, it is difficult for the MRT−LBM to realize
its potential when simulating high-viscosity non-Newtonian
fluids.

Figure 23. Simulation results of the MRT−LBM for power law fluids at n = 1.5 (Rep = 0.144). (a) Distributions of u-velocity along the vertical
centerline of the simulation domain. (b) Distributions of u-velocity along vertical line x = 25 of the simulation domain. (c) Distributions of v-
velocity along the horizontal centerline of the simulation domain. (d) Velocity Up* that varies with time step at the grid point (25, 45).

Figure 24. Effects of the lattice velocity on the accuracy of the MRT−
LBM in simulating power law fluids.
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4.4. Flow Patterns of Generalized Newtonian Fluids
in the Cross Section of the Screw Channel. 4.4.1. Flow
Patterns of Power Law Fluids in the Screw Channel. The
flow patterns of power law fluids in the cross section of the
screw channel are shown in Figure 25; the velocity magnitude
and streamlines at n = 0.5, 0.75, 1, 1.25, and 1.5 are shown in
Figure 25a,c,e,g,i, and the shear rates at n = 0.5, 0.75, 1, 1.25,
and 1.5 are shown in Figure 25b,d,f,h,j, respectively.

As shown in Figure 25, power law index n has considerable
effects on the flow field in a single-screw extruder. When n = 1,
1.25, and 1.5, small circulations are observed at the bottom
corner of the screw channel. However, when n = 0.5 and 0.75,
small circulations are not observed at the bottom corner of the
screw channel. For Newtonian fluids (n = 1), both the
visualization experimental results of Yao et al.4,5 and the
simulation results obtained by Horiguchi et al.6 indicated small
circulations at the bottom corner of the screw channel.

Figure 25. Flow patterns of power law fluids in the screw channel for various n values (Rep = 0.144). (a,c,e,g,i) Velocity and streamlines at n = 0.5,
0.75, 1, 1.25, and 1.5. (b,d,f,h,j) Shear rates at n = 0.5, 0.75, 1, 1.25, and 1.5, respectively.
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However, Buick et al.7−9 did not observe small circulations at
the bottom corner of the screw channel.

As shown in Figure 25a,c,e,g,i, the power law index has
considerable effects on the velocity distribution of polymer
melts. Fluid particles circulate along fixed trajectories in the
cross section of the screw channel. As shown in Figure 25, in a
cycle, the shear deformation of fluid particles at different
positions is different. The polymer melt is a high-viscosity fluid,
and its mixing process is mainly achieved via laminar shear.
The magnitude and distribution of the shear rate can reflect
the mixing effect of the polymer melts. As shown in Figure
25b,d,f,h,j, the mixing effect of the fluid that is located in the
neighborhood of the barrel, and the screw is better than that in
the middle of the channel. Under the same operating
conditions, the smaller the n, the poorer the mixing effect of
the fluid domain in the middle of the screw channel. When n ≤
0.5, the mixing quality of the polymer melt is poor, and the
mixing quality needs to be improved by increasing the
rotational speed of the screw or changing the width/height
ratio of the screw channel. In addition, as shown in Figure
25b,d,f,h,j, the shear rate at the bottom corner of the screw
channel is very small, and the mixing effect of the fluid is very
poor. Therefore, the bottom corner of the screw should be
designed as rounded corners.

4.4.2. Flow Patterns of Bingham Fluids in the Screw
Channel. Figure 26 shows the flow patterns of Bingham fluids
in the cross section of the screw channel. The velocity

magnitude and streamlines at Bn = 0.5, 1.5, and 2.5 and the
shear rates at Bn = 0.5, 1.5, and 2.5 are shown in Figures
26a,c,e and 26b,d,f, respectively. As shown in Figure 26, the
Bingham number has notable effects on the velocity
distribution and shear rate distribution. Fluid particles circulate
along fixed trajectories in the screw channel. As shown in
Figure 26a,c,e, for Bingham fluids, small circulations are not
observed at the bottom corner of the screw channel. As shown
in Figure 26b,d,f, the mixing effect of the fluid that is located in
the neighborhood of the barrel and the screw is better than
that in the middle of the channel. Under the same operating
conditions, the larger the Bingham number, the poorer the
mixing effect of the fluid domain in the middle of the screw
channel. Therefore, the mixing quality needs to be improved
by increasing the rotational speed of the screw or changing the
width/height ratio of the screw channel. In addition, as shown
in Figure 26b,d,f, the shear rate at the bottom corner of the
screw is very small, and the mixing effect of the fluid is very
poor. Therefore, the bottom corner of the screw should be
designed as rounded corners.
4.5. Flow Patterns of Generalized Newtonian Fluids

in the Pin Mixing Screw. Yao et al.4,5 have studied the flow
of fluids in the pin mixing screw by visualization experiments.
In their experiment, the width, W, and height, H, of the
rectangular cavity are 0.225 and 0.066 m, respectively, and the
width, w, and height, h, of the pins are 0.0231 and 0.0479 m,
respectively. The fluid used in the experiment is corn syrup.

Figure 26. Flow patterns of Bingham fluids in the screw channel for various Bn values (ReB = 0.144). (a,c,e) Velocity and streamlines at Bn = 0.5,
1.5, and 2.5. (b,d,f) Shear rates at Bn = 0.5, 1.5, and 2.5, respectively.
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The viscosity of the corn syrup is 12 Pa s, and the density of
the corn syrup is 1.4 × 103 kg/m3. The speed of the drive belt
is 0.007 m/s. Based on the experimental parameters of Yao et
al.,4,5 we divided the simulation domain into 174 × 51 grid
points in x and y directions, respectively. The pin is divided
into 38 × 18 grid points. According to eq 40, Rep = 0.054. The
Reynolds number (Rep, ReB) is fixed at 0.054.

4.5.1. Flow Patterns of Power Law Fluids in the Pin
Mixing Screw. Figure 27 shows the flow patterns of power law
fluids in the cross section of a pin mixing screw. The velocity
magnitude at n = 0.5, 1, and 1.5 and the streamlines at n = 0.5,
1, and 1.5 are shown in Figure 27a,d,h and 27b,e,i, respectively.
Figure 27g shows the experimental result at n = 1. The shear
rates at n = 0.5, 1, and 1.5 are shown in Figure 27c,f,j.

Figure 27. Flow patterns of power law fluids in the pin mixing screw for various n values (Rep = 0.054). (a,d,h) Velocity magnitude at n = 0.5, 1,
and 1.5; (b,e,i) streamlines at n = 0.5, 1, and 1.5; and (c,f,j) shear rates at n = 0.5, 1, and 1.5, respectively. (g) Experimental result at n = 14,5
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As shown in Figure 27, the power law index, n, has
considerable effects on the velocity and shear rate distributions
of polymer melts. As shown in Figure 27b,e,i, when n = 1 and
1.5, small circulations are observed at the bottom corner of the
screw channel. However, when n = 0.5, small circulations are
not observed at the bottom corner of the screw channel. As
shown in Figure 27e,g, the numerical results by the TRT−

LBM agree well with the visualization experimental results of
Yao et al.4,5 As shown in Figure 27c,f,j, the smaller the n, the
poorer the mixing effect. When n = 0.5, the mixing effect is
poor. The mixing quality can be improved by increasing the
rotational speed of the screw, changing the width/height ratio
of the screw channel, or changing the geometric parameters
and distribution form of the pins. As shown in Figure 27c,f,j,

Figure 28. Flow patterns of Bingham fluids in the pin mixing screw for various Bn values (ReB = 0.054). (a,d,g) Velocity magnitude at Bn = 0.5, 1.5,
and 2.5; (b,e,h) streamlines at Bn = 0.5, 1.5, and 2.5; and (c,f,i) shear rates at Bn = 0.5, 1.5, and 2.5.
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the shear rates at the bottom corner of the screw channel and
the root of the pins are very small, and the mixing effect of the
fluid is poor. Therefore, the bottom corners of the screw
channel and the root of the pins should be designed as
rounded corners. For the conventional extrusion screw, the
fluid particles move along a helical trajectory in the screw
channel. Fluid particles move along fixed shells and cannot
migrate into other shells. For the pin mixing screw, the pins are
evenly distributed along the down channel of the screw,
causing the polymer melts to afford chaotic mixing and thus
improving the mixing effect.

4.5.2. Flow Patterns of Bingham Fluids in the Pin Mixing
Screw. Figure 28 shows the flow patterns of Bingham fluids in
the cross section of the pin mixing screw. The velocity
magnitudes at Bn = 0.5, 1.5, and 2.5; the streamlines at Bn =
0.5, 1.5, and 2.5; and the shear rates at Bn = 0.5, 1.5, and 2.5
are shown in Figure 28a,d,g; 28b,e,h; and 28c,f,i, respectively.
As shown in Figure 28, the Bingham number has considerable
effects on the velocity and shear rate distributions. As shown in
Figure 28b,e,h, for Bingham fluids, small circulations are not
observed at the bottom corner of the screw channel. However,
as shown in Figure 28c,f,i, for Bingham fluids, the mixing effect
is poor; the larger the Bingham number, the poorer the mixing
effect. The mixing quality can be improved by increasing the
rotational speed of the screw, changing the width/height ratio
of the screw channel, or changing the geometric parameters
and distribution form of the pins.

5. CONCLUSIONS
The SRT−LBM, TRT−LBM, and MRT−LBM have been
used to study the flow field of high-viscosity generalized
Newtonian fluids in the cross section of the screw channel. The
stability, calculation accuracy, and calculation efficiency of
SRT−LBM, TRT−LBM, and MRT−LBM have been
compared in detail. The flow patterns in the cross section of
a standard extrusion screw channel and an extrusion screw
channel with pins were studied and compared with previous
studies. The effects of the non-Newtonian properties of the
fluid on the flow patterns and mixing quality have been
studied. The conclusions are as follows:

1. The calculation accuracy of the SRT−LBM is heavily
dependent on simulation parameters when simulating
high-viscosity power law fluids. Only when the lattice
velocity is very small can the accurate result be obtained,
which requires a large amount of computation time. The
SRT−LBM has low computational efficiency and is
prone to instability when simulating high-viscosity
Bingham fluids.

2. The TRT−LBM is efficient, stable, and accurate when
simulating high-viscosity power law fluids and Bingham
fluids. The TRT−LBM can flexibly select simulation
parameters while maintaining high accuracy and can
efficiently simulate fluids with yield stress, such as
Bingham fluids, Casson fluids, and Herschel−Bulkley
fluids.

3. The MRT−LBM can simulate high-viscosity Newtonian
fluids efficiently and accurately. However, for the high-
viscosity shear-thinning fluids and shear-thickening
fluids, the accuracy of simulation results depends on
the lattice velocity. Only when the lattice velocity is very
small, can high-accuracy results be obtained, which
requires a large amount of computational time.

4. The non-Newtonian properties of polymer melts have
considerable effects on the flow patterns and mixing
effect in the screw channel. It is necessary to consider
the non-Newtonian properties of polymer melts when
designing extrusion screw. The TRT−LBM simulation
results of the flow pattern agree well with the
visualization experimental results of Yao et al. This
study can provide a reference for the application of LBM
in the chemical industry.
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