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Rapid and widespread implementation of infectious disease surveillance is a
critical component in the response to novel health threats. Molecular assays
are the preferred method to detect a broad range of viral pathogens with
high sensitivity and specificity. The implementation of molecular assay testing
in a rapidly evolving public health emergency, such as the ongoing COVID-19
pandemic, can be hindered by resource availability or technical constraints.
We present a screening strategy that is easily scaled up to support a sustained
large volume of testing over long periods of time. This non-adaptive pooled-
sample screening protocol employs Bayesian inference to yield a reportable
outcome for each individual sample in a single testing step (no confirmation
of positive results required). The proposed method is validated using clinical
specimens tested using a real-time reverse transcription polymerase chain
reaction test for SARS-CoV-2. This screening protocol has substantial advan-
tages for its implementation, including higher sample throughput, faster
time to results, no need to retrieve previously screened samples from storage
to undergo retesting, and excellent performance of the algorithm’s sensitivity
and specificity compared with the individual test’s metrics.
1. Introduction
Epidemiological strategies to control the spread of infectious respiratory diseases
include contact, droplet and/or aerosol precautions, asymptomatic screening,
contact tracing, case isolation, ring containment and social distancing [1–7].
While the specific set of strategies employed depends on the aetiological agent,
the use of microbiological and molecular testing to identify disease cases is a cru-
cially important element. In general, two key parameters for the performance of a
diagnostic test are its sensitivity (a measure of its ability to correctly detect a posi-
tive case) and its specificity (a measure of its ability to only yield a positive result
for the agent in question). Reducing the sensitivity of a test leads to an increase in
false-negative results; a reduction in the specificity leads to an increase in false-
positive-results. For practical purposes, other considerations for deploying
diagnostics tests can include their ease of use, portability, cost and throughput.
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Figure 1. Visual representation of three pooled-sample approaches to screen
64 specimens, one of which is positive (marked in red), using (a) two-stage
adaptive 1D pooling, (b) non-adaptive 2D pooling based on the intersection
of positive pools and (c) non-adaptive 3D pooling with Bayesian inference.
Pools that contain the positive specimen are highlighted, and in the case
of 3D pooling, copied outside of the cube for clarity.
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The present COVID-19 pandemic has caused significant
public health challenges, which have been compounded by
resource constraints and the unprecedented scale of testing
required to effectively control its spread [8–13]. To solve these
challenges, sample pooling has been proposed as a means to
scale up screening at a population level and to assess the preva-
lence of the disease [14–20]. However, currently available
pooling protocols have significant limitations. First, the require-
ment of retesting individual samples for the identification of
positive cases incurs substantial logistical challenges when
screening a large number of samples at a constant rate for a pro-
longed period of time. Second, multi-dimensional pooling
strategies that identify cases via the intersection of positive
pools suffer from reduced performance when imperfect tests
are used (i.e. sensitivity and/or specificity less than 100%).
Finally, while high viral load samples can be diluted by pooling
and still yield accurate test results, dilution of low viral load
samples into large pools at low prevalence rates lowers the sen-
sitivity of pooled tests [14]. Limiting the size of pools can reduce
the effect of sensitivity loss, but it also reduces efficiency gains.
Here, we report a screening strategy that employs multi-
dimensional sample pooling and applies Bayesian inference to
provide reportable results at the individual level in a single test-
ingstep. This strategy increases testing throughputwithminimal
or no loss of sensitivity over a reasonable range of disease preva-
lence. Importantly, this strategy is easily scalable to support a
sustained large volume of testing over long periods of time.

In standard two-stage one-dimensional (1D) sample pool-
ing (figure 1a), specimens from Ns patients are randomly
pooled into groups of m samples each. Pooled samples are
interrogated with the diagnostic test. If pooled testing yields
a negative result, no further testing is conducted and all
samples in that pool are assigned a negative result. If pooled
testing yields a positive result, all patients in that pool are
tested individually. This adaptive protocol, known as
Dorfman pooling, was introduced in the 1940s, and sub-
sequent developments include multiple levels of hierarchical
testing where positive pools are divided into smaller pools
until testing at the individual level is reached [21–26]. Adap-
tive pooling methods can yield considerable improvements
in sample throughput, especially at low prevalence. However,
large efficiency gains require large pool sizes and are affected
by a reduction in sensitivity because of dilution. Some adap-
tive pooling strategies include an intermediate pool design
step to maximize the information gained with each round of
tests, increasing the algorithm efficiency [27]. Even without
intermediate pool design steps, the logistical complications of
retrieving samples belonging to positive pools and the need
to undergo multiple rounds of testing can negatively impact
the time required to identify positive specimens.

To circumvent the drawbacks of adaptive pooling, var-
ious non-adaptive pooling methods in multiple dimensions
have been introduced (e.g. shifted transversal design)
[28–31]. In a simple example of two-dimensional (2D) non-
adaptive pooling, specimens are arranged in a matrix and
samples are pooled along each row and along each column
(figure 1b). Positive specimens are identified by the intersec-
tions of rows and columns that yield a positive test result,
which requires close-to-ideal test characteristics. Non-adap-
tive screening methods have been developed to account for
non-idealities [32], and similar tools used for DNA library
screening have included Markov chain analysis and Bayesian
probability estimation to interpret test results [33]. Here, we
present a non-adaptive multi-dimensional pooling method
that incorporates Bayesian inference to assess the probability
of all individual specimens, and we explore the effects of
dimensionality, pool size and test characteristics on its
performance, efficiency and complexity.
2. Methods
The result of a diagnostic test can be evaluated with a Bayesian
probability formalism [34–36]. In the context of an individual
sample, this analysis takes into account the probability of
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detecting a positive case (sensitivity, Se) and the probability of a
positive result from healthy samples (whose complement is the
specificity, Sp). Bayesian inference requires the assessment of a
prior probability for the presence of disease in a sample, P(D),
which is updated to a posterior probability given a positive/
negative test result with conditional probabilities P(Djþ) or
P(Dj�), as shown in the following equations:

P(Djþ) ¼ P(D) � Se
Ppool(þ )

, ð2:1aÞ

P(Dj�) ¼ P(D) � (1� Se)
1� Ppool(þ )

, ð2:1bÞ

where Se is the test’s sensitivity and Ppool(þ ) is the overall prob-
ability of the pool yielding a positive test outcome. The
probability of a positive result in a pooled sample is based on
all prior probabilities for specimens in the pool. Upon extension
to pooled-sample testing, a pool size-dependent reduction in test
sensitivity is included by assuming that a fraction g of true-
positive specimens will be diluted below detectable levels
due to pooling (details in electronic supplementary material,
figure S1 and accompanying supplementary text). In this
way, the probability of a positive test result in a pool is the
sum of two contributions: the probability of having a non-zero
number of detectable positive individual specimens multiplied
by the test’s sensitivity; and the probability of a sample
without a single detectable positive specimen multiplied by the
false-positive rate Pfp ¼ 1� Sp (equation (2.2)):

Ppool(þ ) ¼ 1�
Y
i

[1� g � Pi(D)]

( )
� Seþ (1� Sp)

�
Y
i

[1� g � Pi(D)], ð2:2Þ

where i is a dummy index that runs over all samples belonging to
the pool.

Here, we consider Ns specimens arranged in a d-dimensional
hypercube of size {m1, m2, …, md}. Pools are constructed for all
samples that form a line along a particular axis. Using the test out-
come for each pooled sample, the posterior probabilities of all
specimens belonging to it are calculated with a Bayesian inference
step (equations (2.1a,b) and (2.2)). The posterior probability result-
ing from the application of equations (2.1a,b) and (2.2) to the test
outcomes in each hypercube surface (i.e. from each pooling
dimension) is used as a prior for the next round of posterior prob-
ability calculations along the next pooling dimension. Because of
imperfect test characteristics and the possibility of multiple posi-
tive specimens belonging to the same pool at increased disease
prevalence rates, not every surface of the hypercube contains the
same number of positive test results. Therefore, the order in
which we use the information contained in each of these surfaces
can affect the posterior probability assigned to individual samples
and thus their screening outcome. To account for this situation, we
consider all d! permutations of the hypercube surfaces and include
only those in which the number of positive tests follows an
increasing (or flat) trend. For each one of such permutations, the
posterior probability of all samples is calculated. The reported dis-
ease probability for each specimen is the largest value obtained
among all the considered permutations (example distributions
of posterior probabilities in electronic supplementary material,
figures S2 and S3). A posterior probability threshold is used to
assign a positive or negative screening result—lowering its value
increases the algorithm sensitivity and reduces its specificity
(electronic supplementary material, figures S4 and S5).

A three-dimensional (3D) example with equal pool size
m ¼ 4 for all dimensions is shown in figure 1c. Importantly,
this pooling method has minimal pool overlap (pools share at
most one common specimen). In the case of equal-sized pools
for all dimensions, the number of specimens is Ns ¼ md and
the number of tests is Nt ¼ d �md�1. Thus, pool size must be
larger than the algorithm dimensionality to yield efficiency
gains, as the number of tests required per specimen is x ¼ d=m.

We implemented this protocol with Monte Carlo simulations
as a function of disease prevalence (PD ¼ 0:5�10%), pool size
(m ¼ 2�16) and dimensionality (d ¼ 3�4). For each set of simu-
lation conditions, 103–104 hypercubes are generated and analysed.
Each individual sample is randomly assigned a +/− state according
to the average prevalence rate. To incorporate sensitivity loss due to
pooling, a pool size-dependent fraction g of the positive samples is
designated as ‘undetectable’ and will not yield a true-positive test
result upon pooling. Sensitivity loss is estimated using a large
observational dataset of reverse transcription polymerase chain
reaction (RT-PCR) cycle threshold numbers from positive clinical
results (electronic supplementary material, figure S1). Pools that
contain at least one detectable positive specimen yield a true-
positive result with probability Se ¼ 95%; pools without a
detectable positive specimen yield a false-positive result with prob-
ability 1� Sp ¼ 1%. For each hypercube, simulated test outcomes
are used to compute the posterior probabilities for individual
samples. The threshold for a positive screening outcome is set to a
posterior probability of 40% or higher, selected on the basis of the
ratio of known-positive andknown-negative specimensat eachpos-
terior probability outcome in large-scale Monte Carlo simulations
using the test characteristics detailed above (for details, see elec-
tronic supplementary material, figure S4 and accompanying text).
3. Results
3.1. Trade-off between efficiency, performance and

complexity
At low-to-moderate prevalence rates, it is possible to increase
throughput without reducing the sensitivity or specificity of
the pooled screening compared with the individual test
(figure 2a,b). In fact, at low prevalence, this pooled testing
protocol yields higher sensitivity than the individual test
because the small number of positives leads to a low prob-
ability of overlap and each sample is included in d tests
(d is the algorithm dimensionality). As long as the sample
is not diluted below the detection limit, these multiple tests
effectively reduce the chances of a false negative.

First, let us consider the prevalence range in which the
pooled testing algorithmyields improved or equivalent test per-
formance metrics. For a 3D implementation of the algorithm, a
33% increase in the sample throughput can be achieved for
prevalence rates of up to 5% without any loss in sensitivity or
specificity. For prevalence rates below 2%, the efficiency gains
can be greater than a 2× factor without any reduction in
performance. In a four-dimensional (4D) implementation, the
higher algorithm dimensionality leads to an increase in the
amount of information gathered via pooled testing at the cost
of smaller efficiency gains: a 25% increase in efficiency, without
performance losses, can be sustained up to an approximately 7%
prevalence rate. An improvement in specificity is also observed,
as expected for both adaptive and non-adaptive pooling
(electronic supplementary material, figure S6).

As a comparison, we contrast the optimal screening effi-
ciency achieved in our proposed method with that in a two-
stage 1D adaptive pooling with overall sensitivity of 90%
(figure 2c). This sensitivity reduction reflects the 95% agree-
ment criteria between new and established protocols set
forth by the US Food and Drug Administration for the Emer-
gency Use Authorization of new molecular diagnostics [37], a
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Figure 2. The detection sensitivity of a non-adaptive multi-dimensional
pooled-sample screening as a function of disease prevalence in the screened
population, for various pool sizes m and efficiency gains x. (a) 3D pooling;
(b) 4D pooling. The sensitivity of individual tests is Se ¼ 95%. (c) Screening
efficiency (number of patients screened divided by the number of tests used)
for 1D adaptive Dorfman pooling (grey dashed line) and non-adaptive multi-
dimensional Bayesian screening in three and four dimensions is presented. For
non-adaptive pooling, two sensitivity cut-off values were used: no sensitivity
loss (circles) and 5% sensitivity loss (squares).
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stricter criterion than the 85% positive agreement for pooled
testing [38]. For 3D and 4D pooling protocols that retain an
overall sensitivity of Sepool � 90%, the throughput gains are
smaller than those obtained with the adaptive 1D algorithm
(e.g. at 2% prevalence the number of patients screened per
test is 3.55, 2.33 and 2.75 for 1D, 3D and 4D, respectively).
However, we note that it is possible for 3D and 4D pooled
screening to retain the full sensitivity of an individual test
and yield efficiency gains—at 2% prevalence, 1.67 and 2
patients are screened per test in 3D and 4D algorithms with
Sepool � 95%, respectively. Supplementary Monte Carlo simu-
lations focused on low prevalence and low viral load
populations can be found in electronic supplementary
material, figure S7.

3.2. Protocol validation for screening SARS-CoV-2
specimens

We implemented this protocol with 64 specimens initially
screened as clinical samples at ARUP Laboratories. All samples
were collected as nasopharyngeal swabs in phosphate-buffered
saline (PBS) solution. Specimens were selected from the post--
screening sample bank (frozen at −20°C) and were stripped of
all protected health information. Three known positives were
included in the pools, one of which (specimen 1) was flagged
for serial dilutions (1×, 5× or 25× dilution in PBS) to explore
the effects of dilution on test sensitivity. Besides specimen 1,
all other specimens were randomly ordered (specimens 2–64).
All specimens were individually retested in a control run,
and 48 pools were prepared according to the previously
described pooling arrangement with dimensionality d ¼ 3
and pool size m ¼ 4 (electronic supplementary material,
tables S1–S2). Three repeat instances of the pooling arrange-
ment were prepared, each one identical except for the serial
dilution of specimen 1. Individual and pooled samples were
tested using the Hologic Panther Fusion SARS-CoV-2 platform
at ARUP Laboratories (outcomes in electronic supplementary
material, tables S3–S6) [39]. Pooled test results were analysed
with an automated Bayesian inference process whose output
consists of the posterior probabilities for each individual speci-
men, and its only inputs are the estimated sensitivity loss due
to pooling, the sensitivity and specificity of the individual test,
and a list of pooled test results.

In the control run, two out of the three known-positive,
undiluted specimens were correctly identified, while a known-
positive sample yielded an invalid test result (test could not be
repeated because of limited residual specimen volume). After a
5× dilution, specimen 1 was still detectable, and its cycle
threshold number increased from Ct ¼ 33:9 to Ct ¼ 36:5 (for
ideal-efficiency PCR, DCt ¼ log2 (5) ¼ 2:3). After 25× dilution,
specimen 1 yielded a negative result in its control test. In
addition, there were two samples whose initial clinical result
was negative but yielded a positive result when tested as part
of the control set (repeat tests were negative, although it is
possible they are positives close to the limit of detection). We
thus estimate the overall sensitivity in this control run as
Se ¼ 3=5 ¼ 60% (twoundiluted + onedilutedpositivesdetected
out of three undiluted + two diluted known positives), and the
specificity as Sp ¼ 59=61 ¼ 96:7% (two false positives out of
61 known negatives).

Posterior probabilities for all samples in the pooled screening
trials are shown in figure 3. In the pooled screening run whose
inputs are undiluted specimens (figure 3a), all three known
positives are correctly identified and one false positive is
reported (100% sensitivity and 98.4% specificity). The
pooled screening run which included a 5× dilution of
specimen 1 yielded results with 100% sensitivity and specificity
(figure 3b). Upon further dilution (25×) of specimen 1, the sensi-
tivity of the pooled screening algorithm was reduced
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(Se ¼ 2=3 ¼ 67%); no false positives were reported (figure 3c).
These metrics are estimates based on a small number of tests
and should be considered in the context of comparing the control
run with the 3D pooling screening results.
4. Discussion
We present a pooled-sample testing methodology whose per-
formance is explored with Monte Carlo simulations and
validated experimentally, and show that it can retain high sensi-
tivity even at moderate prevalence rates while also improving
specificity and throughput. The increases in sensitivity and speci-
ficity gained by this multi-dimensional pooling strategy are the
result of the inclusion of each sample in multiple tests and the
minimal overlap between pooled samples. A Bayesian inference
framework in which the assessed probability of positivity for
each sample is updated several times allows the algorithm to
effectively distinguish between positive and negative samples
(electronic supplementary material, figures S2 and S3), which
in turn enables a non-adaptive methodology—i.e. reporting of
outcomes for both positive and negative specimens in one testing
round without the need for retesting.

The experimental validation was performed manually, and
thus the sample preparation burden was significant— setting
up the individual tests was achieved in approximately
60 min versus approximately 210 min for their 48 pooled
tests. While the actual sample preparation time is highly
dependent on the user, it is clear that the additional effort pre-
cludes large-scale manual implementation. With regard to time
to results, detailed accounting of the net efficiency gains will
vary greatly not just because of sample preparation time, but
will also depend on the test runtime and equipment modality
(e.g. continuous sample loading versus batch processing).
Importantly, because samples are pooled in predictable patterns
and no post-screening sample retrieval is necessary, this proto-
col is compatible with automated sample processing (either
bench- or laboratory-scale robotic liquid handlers). In fact,
automation is critical for the long-term and high-volume
implementation of this approach since it enables more complex
versions (higher dimensionality and larger pool sizes) with
larger efficiency gains and improved test performance, while
eliminating human sources of error (e.g. cross-contamination)
and reducing the additional burden of sample preparation.

Finally, it is important to consider the analysis of results
and output generation. Upon implementation, the routine
analysis of results requires no user input and can be auto-
mated; however, appropriate steps must be taken to
interface its output into a format compatible with clinical lab-
oratory information systems. Importantly, individual sample
reports could be enhanced with a continuous variable—the
posterior probability—and its interpretation.

To date, screening approaches based on pooling have
found applications where efficiency in material resources is
prioritized, but time is seldom a variable of interest, e.g.
screening at blood banks. When applied at the population
level (e.g. periodic prevalence monitoring), they are rarely
expected to be deployed for an extended period of time or
beyond a local scale. Thus, algorithms that are computation-
ally complex or that require multiple rounds of testing have
been favoured because they yield substantial gains in metrics
such as samples screened per test used. However, as a result
of the current SARS-CoV-2 pandemic, RT-PCR diagnostic
testing has been carried out on large numbers of patients
with sustained high demand—a situation that will likely
intensify as communities worldwide move towards a
reopening of economic activity and restrictions are lifted.
Importantly, these testing efforts have a strong emphasis on
quickly identifying positive cases in order to reduce commu-
nity transmission—i.e. increasing the turnaround time for test
results is not desirable. Additionally, the sensitivity and
specificity characteristics of diagnostic tests are not perfect,
and their availability may be limited. Under these novel con-
straints, pooled-sample screening protocols not only must
increase sample throughput, but they should also minimize
loss in sensitivity and maximize gains in specificity, while
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avoiding increases in the sample processing time resulting
from repeated storage, retrieval and testing steps.

To address these limitations to scaling diagnostic testing
for effective and sustained epidemiological surveillance at
the population level in low-to-moderate prevalence groups,
we propose a non-adaptive multi-dimensional pooling
approach. Bayesian inference yields reportable outcomes at
the individual specimen level in a single testing step with
remarkable performance in a manner compatible with fully
automated sample preparation and result interpretation. Con-
siderable increases in sample throughput (greater than 2×) are
achievable even at moderate prevalence rates (approx. 2%)
without losses in test performance and without the need for
multiple rounds of testing to reach individual-level outcomes
for both positive and negative specimens. Accepting a moder-
ate loss in screening sensitivity, in line with that of 1D pooling
approaches, efficiency gains are larger and can be sustained at
larger prevalence. With a combination of Monte Carlo simu-
lations and a manual implementation with SARS-CoV-2
clinical samples, we demonstrate the viability of using this
screening protocol in a real-world setting and contribute to
solving the unprecedented challenges posed by the current
SARS-CoV-2 pandemic.
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