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Currently, the etiology of Alzheimer’s disease (AD) is still elusive. Central insulin resistance
has been determined to play an important role in the progress of AD. However, the
mechanism underlying the development of disrupted insulin signaling pathways in AD is
unclear. Suppressor of cytokine signaling 3 (SOCS3) is a member of the SOCS protein
family that acts as a negative modulator of insulin signaling in sensitive tissues, such
as hepatocytes and adipocytes. However, little is known about its role in neurological
diseases. Recent evidence indicates that the level of SOCS3 is increased in the brains
of individuals with AD, especially in areas with amyloid beta deposition, suggesting that
SOCS3 may regulate the central insulin signaling pathways in AD. Here, we discuss
the potential role of SOCS3 in AD and speculate that SOCS3 may be a promising
therapeutic target for the treatment of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that leads to dementia. It
is clinically characterized by the progressive loss of learning and memory and by abnormal
mental states and behaviors; pathologically, it is characterized by extracellular amyloid beta (Aβ)
deposition and intracellular hyperphosphorylation of tau protein in the brain (Wan et al., 2015,
2016). Extensive efforts have been made to understand the underlying mechanisms of this disease.
However, the etiology of AD is still elusive, and we still have no truly effective therapeutic agents to
prevent the progression of the disease.

Insulin signaling is activated by circulating insulin and promotes a variety of metabolic
pathways, including glucose storage and uptake, protein and lipid synthesis, and mitogenic
responses (Chang et al., 2004). Insulin signaling is also critical for cell survival and for the
maintenance of physiological functions in multiple tissues (Chang et al., 2004). Thus, disrupted
insulin signaling—the most common of which is insulin resistance—can give rise to dysfunctions
in both peripheral organs and the central nervous system (CNS). Insulin resistance is a pathological
condition involving a failed response to normal levels of insulin. It is a precursor to diabetes
mellitus as well as a noteworthy determinant in other metabolic disorders (Soumaya, 2012;
Gustafson et al., 2015; Mayans, 2015). Insulin signaling in the CNS is important because of
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the conspicuous relationship between dysfunctional
insulin signaling and disturbed learning and memory in
neurodegenerative diseases, such as AD (van der Heide et al.,
2006; Chen et al., 2014; Cai et al., 2015). Growing evidence
suggests that insulin signaling may be a promising therapeutic
target for the treatment of AD. Insulin treatment by intranasal
administration has consistently been shown to decrease the
production of Aβ and to ameliorate learning and memory
deficits in individuals with AD (Reger et al., 2008a,b; Craft et al.,
2012; Claxton et al., 2015). However, the molecular mechanisms
responsible for the generation of insulin resistance in AD are still
unclear.

Suppressor of cytokine signaling 3 (SOCS3) is a member of
the SOCS protein family, which was initially characterized by
its members’ negative regulatory effects on cytokine signaling,
including insulin signaling, in adipocytes (Emanuelli et al., 2000).
However, the role of SOCS proteins in the CNS remains unclear.
Recently, investigators have reported increased levels of SOCS3
in the brain tissues of individuals with AD (Walker et al., 2015;
Cianciulli et al., 2017). Notably, the levels of SOCS3 are correlated
with the deposition of Aβ (Walker et al., 2015; Cianciulli et al.,
2017; Iwahara et al., 2017), suggesting that SOCS3 might be a
novel target that regulates insulin signaling in the brains of AD
patients.

In the present review, we first discuss evidence from published
studies that have examined the potential role of SOCS3 in AD,
suggesting that SOCS3 is a potential target in the treatment
of AD.

INSULIN RESISTANCE IN AD

Insulin recognizes the α-subunit of the insulin receptor,
subsequently leading to autophosphorylation of tyrosine residues
and activation of the intracellular β-subunit (IRβ) (Lee and
Pilch, 1994). Insulin receptor substrates (IRS) are then tyrosine-
phosphorylated, and the downstream insulin signaling pathway
is activated (Lee and Pilch, 1994). During a state of insulin
resistance, cells exhibit decreased sensitivity to stimulation
by insulin, which presents as a reduction in the tyrosine
phosphorylation levels of IRβ and IRS and results in insufficient
uptake of glucose and amino acids (Boucher et al., 2014). Insulin
resistance in neurons also results in many other disturbances,
such as synapse dysfunction, disruption of dendritic spines, and
disorders of neurotransmitter metabolism (Kleinridders et al.,
2014).

Accumulating evidence indicates that insulin resistance plays
a critical role in the development of AD (Frame and Zheleva,
2006; Liu et al., 2011; Morris and Burns, 2012; Son et al., 2012;
Talbot et al., 2012; Chen and Zhong, 2013; Cai et al., 2015; Mullins
et al., 2017). Insulin signaling regulates amyloid precursor protein
(APP) metabolism through α-, β-, and γ-secretases. During
insulin resistance, the enzyme activities of β- and γ-secretase
increase, which subsequently leads to the overproduction of Aβ

in neurons (Son et al., 2012). Furthermore, accumulation of Aβ

may also enhance the degree of insulin resistance and amplify the
damage to the brain (Cai et al., 2015). Aberrant phosphorylation

of the tau protein in neurons is another important hallmark of
AD. Interestingly, the tau phosphorylation levels are also greatly
modulated by insulin signaling (Mullins et al., 2017). In rodent
models of insulin resistance, abundant phosphorylation of tau
has been identified. More importantly, insulin treatment is able
to ameliorate the tau pathology; the activity of glycogen synthase
kinase-3 (GSK-3) is considered essential for this effect (Frame
and Zheleva, 2006; Chen and Zhong, 2013).

In AD individuals, brain insulin signaling is disturbed, as
has been determined from postmortem tissues (Liu et al., 2011;
Morris and Burns, 2012). Specifically, the protein levels of
the insulin receptor and its substrates are decreased compared
to the levels in the brains of individuals without AD (Liu
et al., 2011; Morris and Burns, 2012). Talbot and co-workers
demonstrated that cultured brain slices from AD patients were
insensitive to insulin treatment, revealing the presence of insulin
resistance in AD brains (Talbot et al., 2012). Thus, targeting
insulin signaling pathways in the brain is a promising therapy
for AD. In previous studies, insulin has been employed to treat
individuals with AD. These studies found that intranasal insulin
treatment delayed memory loss, improved patients’ cognition,
and ameliorated the accumulation of plaques in the brain (Reger
et al., 2008b; Dhamoon et al., 2009; Stein et al., 2011; Craft
et al., 2012). An insulin-signaling sensitizing agent, metformin,
has been highlighted as a potential therapeutic agent for AD
because of its protective effects against memory impairment
and Aβ deposition (Ou et al., 2017). In that study, researchers
also found that metformin triggered neurogenesis and presented
anti-inflammatory activity in the brains of AD mice (Ou et al.,
2017). Although these findings indicate that administration of
insulin may be helpful in treating AD, the effectiveness and safety
of this treatment require further investigation. Furthermore,
contrary evidence still exists, as metformin has also been found
to facilitate the generation of Aβ via upregulation of β- and
γ-secretases (Chen et al., 2009; Son et al., 2016); however, in these
studies, a familial disease model of AD was employed, although
sporadic AD is the most common type of the disease. Thus,
overall, the details regarding the development of dysfunctional
insulin signaling in the brain are presently unclear, and the
underlying mechanisms of insulin resistance in AD require
further elaboration.

SOCS3 AS A NEGATIVE REGULATOR IN
INSULIN SIGNALING

The protein members of the SOCS family were first identified in
1997 and have been determined to act as negative modulators
of cytokine signaling in various tissues, such as adipocytes,
hepatocytes, and tissues of the immune system and CNS (Endo
et al., 1997; Naka et al., 1997; Starr et al., 1997). Thus far,
eight structurally similar members, including SOCS1-7 and the
cytokine-inducible Src homology 2-containing (SH2) protein
(CIS), have been characterized in this family (Howard and Flier,
2006). The SOCS proteins comprise three distinct domains:
an N-terminal domain with a variable length but without a
recognizable motif, a well conserved central SH2 domain that
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binds tyrosine phosphorylation, and a more highly conserved
C-terminal domain of ∼40 amino acids known as the “SOCS
box” (Bullock et al., 2007). Expression of SOCS proteins is
mainly increased by the activation of the signal transducer
and activator of transcription (STAT) signaling pathway and
partially by the NF-κB pathway, both of which are induced by
stimuli that interact with their receptors (Rui et al., 2002; Lebrun
and Van Obberghen, 2008). By contacting target elements,
such as Janus activated kinase (JAK) or tyrosine-phosphorylated
cytokine receptors, SOCS proteins inhibit the progress of
phosphorylation and subsequently prevent the activation of
STAT-induced transcription factors, thus resulting in negative
feedback (Lebrun and Van Obberghen, 2008). Expression of
SOCS genes is normally extremely low but increases after
exposure to cytokines and hormones, such as lipopolysaccharide
(LPS) and insulin (Kazi et al., 2014).

The specificity of each member of the SOCS family is not clear.
Previously reviews have concisely reported the characteristic
of each one in SCOS (Kile and Alexander, 2001; Larsen and
Ropke, 2002; Linossi et al., 2013; Kazi et al., 2014). However,
SOCS3 is instrumental, as its kinase inhibitory region (KIR)
in the N-terminal domain is next to the SH2 domain (Lebrun
and Van Obberghen, 2008). The KIR is a functional region
that inhibits the kinase activity of JAK and insulin receptors
(Lebrun and Van Obberghen, 2008). Very recently, two other
recognizable regions, the extended SH2 subdomain (ESS; located
between the KIR and SH2 domains) and proline (P)-glutamic
acid (E)-serine (S)-threonine (T) (PEST) motif (within the SH2
region), have been identified in SOCS3 (Babon et al., 2006;
Lebrun and Van Obberghen, 2008). The ESS is a crucial domain
that interacts directly with the nearby tyrosine phosphorylation
binding site (Babon et al., 2006). The PEST motif has an
important intracellular role in promoting SOCS3 turnover and
affecting its degradation pathway (Babon et al., 2006). The
functions of these domains suggest that the expression of SOCS3
is finely regulated.

Accumulating evidence has identified SOCS3 as an important
negative regulator of the insulin signaling pathway in major
insulin-sensitive tissues, such as hepatocytes and adipocytes
(Rui et al., 2002; Howard and Flier, 2006; Yang et al., 2010).
Insulin stimulation results in the upregulation of SOCS3, which
subsequently blocks the insulin signaling pathway (Rui et al.,
2002; Howard and Flier, 2006; Yang et al., 2010), suggesting that
SOCS3 plays an essential role in regulating insulin sensitivity.
Recently, clinical investigations have revealed that individuals
with insulin resistance, or with a high risk of insulin resistance,
have increased SOCS3 levels (Ghanim et al., 2007, 2009).
In genetic analyses, SOCS3 polymorphisms and epigenetic
methylation have also been associated with insulin resistance
(Ali et al., 2016; Boyraz et al., 2016). Based on these findings,
it is reasonable to speculate that SOCS3 is involved in the
development of insulin resistance in the human body and that
increased levels of SOCS3 could lead to pathological conditions
that disrupt the insulin signaling pathway.

In rodent models of insulin resistance, SOCS3 mRNA
expression is robustly upregulated in almost all insulin-sensitive
tissues, including hepatic, skeletal, and adipose tissues (Emanuelli

et al., 2001; Ueki et al., 2004a,b), revealing a strong and direct
relationship between SOCS and insulin resistance. Interestingly,
no change in SOCS3 expression is observed in rodent models
with a deficiency in TNFα receptors (Uysal et al., 1997),
indicating that the expression of SOCS3 is dependent on an
inflammatory TNFα signal. Several studies have examined the
genetic regulation of SOCS3 in different peripheral organs
to determine its role in the generation of insulin resistance;
these studies have shown that SOCS3 deletion results in the
loss of insulin resistance and in enhanced effects of insulin
signaling, as evidenced by increased tyrosine phosphorylation
of IRS1 (Torisu et al., 2007; Sachithanandan et al., 2010;
Jorgensen et al., 2013). Consistent with such findings, SOCS3
overexpression decreases the tyrosine phosphorylation levels
of IRS1 and inhibits the activity of phosphatidylinositol-3
kinase (PI3K), a downstream signaling element of IRS1 (Ueki
et al., 2004a; Yang et al., 2012), revealing a pivotal role
of SOCS3 in insulin resistance. Furthermore, SOCS3-induced
ubiquitin-mediated degradation of IRS1 has been demonstrated
to participate in the inhibition of insulin in multiple cell types
(Rui et al., 2002). Specifically, SOCS3 binds with IRS1 and
promotes its ubiquitination (Rui et al., 2002). An elongin BC-
containing ubiquitin ligase is subsequently incorporated, which
finally results in the degradation of the IRS1 protein (Rui et al.,
2002).

Thus, SOCS3 is critical for the inhibition of the insulin
signaling pathway. The aforementioned investigations indicate
that suppression of SOCS3 is beneficial for the activation of
insulin signaling and suggest that SOCS3 could be a new
therapeutic target for diseases in which insulin resistance is
involved.

SOCS3 IN THE BRAIN

The expression of SOCS3 in the brain was first discovered in the
year 2000; detection of mRNA revealed that SOCS3 is apparently
widespread in the brain, including in the hippocampus, the
granular layer of the cerebellum, the thalamus and the basal
ganglia (Polizzotto et al., 2000; Wang and Campbell, 2002).
Under physiological conditions, the SOCS3 transcript achieves
its maximal levels in the brain from E14 to postnatal day eight,
but it drops to quite a low level in adults (Polizzotto et al., 2000).
Furthermore, Mishra et al. reported that upregulation of SOCS3
promoted the differentiation of cultured neural stem cells even
if no NGF was added to the medium, indicating that SOCS3 is
involved in the development of the CNS.

As in peripheral tissues, expression of SOCS3 in the
CNS increases rapidly in response to various stress-related
stimuli, such as LPS, IFN, IL1, and IL6 (Wang and Campbell,
2002; Steffensen et al., 2014). Qin and coworkers found that
IFNβ-induced expression of SOCS3 in astrocytes was dependent
on the activation of STAT3. Disruption of SOCS3 by the
administration of IFNβ resulted in a large mass of inflammatory
cytokines and enhanced the migration of microglial and T cells
(Qin et al., 2008). These results indicate that SOCS3 could act as
an immune modulator in the CNS.
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The precise roles of SOCS3 in the mature neurons of the
CNS are still unclear. Nevertheless, it has been found that
SOCS3 acts as a negative regulator of neuronal survival and axon
regeneration after neural injury (Smith et al., 2009; Liu et al.,
2015). Deletion of SOCS3 facilitates cellular survival and axon
regeneration in retinal ganglion cells after optic nerve injury
(Smith et al., 2009; Liu et al., 2015). Thus, SOCS3 could be a
promising modulator of neural repair in the adult CNS, perhaps
guarding against long-distance axon regeneration.

SOCS3 IN AD

Expression of SOCS3 has been well defined in human brains,
but changes in SOCS3 expression in AD brains had not been
examined until a study by Walker and co-workers (Walker et al.,
2015). In this work, the researchers found that expression of
SOCS3 in the brains of AD patients was significantly greater
than expression in the brains of individuals with mild cognitive
impairment (MCI) or the brains of non-demented individuals
(Walker et al., 2015). They also observed significant correlations
between the SOCS3 mRNA levels and scores for Aβ plaques and
neurofibrillary tangles (Walker et al., 2015). In alignment with
SOCS3’s aforementioned involvement in CNS inflammation,
the level of SOCS3 is consistently increased in Aβ-stimulated
human microglia (Walker et al., 2015). Furthermore, expression
of SOCS3 is regulated by the JAK/STAT signaling pathway
(Lebrun and Van Obberghen, 2008). In fact, the JAK/STAT
signal transduction pathway can be activated by exposure to
Aβ (Capiralla et al., 2012), indicating a potential role for
Aβ in regulating the expression of SOCS3. Recently, Iwahara
and colleagues demonstrated that both Aβ-stimulated primary
cultured microglia and microglia in a APPswe/PS1dE9 transgenic
mouse model of AD expressed SOCS3; they further revealed
that SOCS3 was involved in the switch to an activated microglia
phenotype (Iwahara et al., 2017), suggesting a potential role for
SOCS3 in AD, especially in AD-related neuroinflammation.

However, the effect of SOCS3 on insulin resistance in AD
has not been defined. Studies have shown that in addition to
glucose metabolism and neural activation, impaired neuronal
insulin signaling is also involved in proinflammatory signaling
associated with AD (Ferreira et al., 2014). In postmortem
human brains and in rodent models of AD, Aβ accumulation
has been shown to cause deficiencies in insulin signaling,
whereby serine phosphorylation of IRS1 is increased and tyrosine
phosphorylation of IRS1 is decreased (Bomfim et al., 2012).
Indeed, tyrosine phosphorylation of IRS1 acts as an important
proinflammatory signal (Bomfim et al., 2012; Ferreira et al.,
2014). Subsequent research has revealed that the neurotoxicity
resulting from Aβ inhibits tyrosine phosphorylation-mediated
signaling by IRS1 and leads to serine phosphorylation-induced
activation of IRS1 via TNFα (Ma et al., 2009; Bomfim et al.,
2012; Craft, 2012; Ferreira et al., 2014), a modulator of SOCS3,
as described above (Uysal et al., 1997).

Taken together, these studies suggest that SOCS3 is involved
in dysfunctional insulin signaling in the brains of patients with
AD (Figure 1). As SOCS3 has also been identified in peripheral

tissues, we speculate that SOCS3 plays an essential role in
the establishment of insulin resistance in AD. Further study is
warranted to determine the specific relationship between SOCS3
and insulin resistance.

SOCS3-MODULATED INFLAMMATORY
CYTOKINES IN AD

As it has been proposed that insulin resistance in diabetes is
a consequent result of chronic inflammation leading to the
overloaded proinflammatory cytokines (Vieira et al., 2017). The
inflammatory mediators are able to cross the blood-brain barrier
(BBB) and activate the microglia. Growing evidence has revealed
the existence of inflammation in AD brain and peripheral
blood (Czirr and Wyss-Coray, 2012; Clarke et al., 2015). It also
shows neuroinflammation regulates the impairment of cognition
(Heneka and O’Banion, 2007), suggesting that inflammation acts
as a linkage between insulin resistance in diabetic and in AD.

In peripheral, activation of inflammatory signal promotes
the expression of SOCS3 (Uysal et al., 1997; Yin et al., 2015).
In CNS, accumulating evidence revealed the regulatory role of
SOCS3 in neuroinflammation. Microglia is the resident immune
cells in the brain. Microglia-associated central inflammation
plays a deleterious role in neural degeneration resulting in
the pathogenesis of AD. Recently, Iwahara and co-workers
observed that microglia expressed SOCS3 and exhibited an
M1-like phenotype, expression cytokine TNFα but not IL6 in
Aβ-stimulated primary culture and APP/PS1 mice (Iwahara
et al., 2017). While, elimination of SOCS3 expression resulted in
upregulation of IL6 in Aβ-challenged primary microglia (Iwahara
et al., 2017), suggesting the role of SOCS3 in suppressing the
excessive inflammation induced by M1 microglia. However, the
effect of SOCS3 in the rodent AD mice has not been evaluated in
this work.

Yet in neuron, the role of SOCS3 presents very different
from that in microglia. SOCS3-overexpression inhibited
the JAK/STAT3-regulated protective effects of IGF1 against
TNFα-induced lesions and led to neuroblastoma cell death,
indicating the involvement of SOCS3 in cell survival (Yadav et al.,
2005). In primary-cultured sensory neurons, SOCS3 suppressed
neurite growth via the inhibition of STAT3 signal, suggesting the
detrimental effect of SOCS3 on axonal growth (Miao et al., 2006).

THE ROLE OF SOCS3 IN AD

Although many studies have been conducted to explore
therapeutic candidates for the prevention and treatment of AD,
an effective target has yet to be determined. Previous work
has revealed that the Aβ and tau proteins are the two core
pathologies in AD brains (Cowan and Mudher, 2013; Wan et al.,
2014; Villemagne et al., 2015; Xu et al., 2015). However, in past
few decades, multiple treatments, including Aβ immunization
(Holmes et al., 2008; Doody et al., 2013) and administration
of β-secretase inhibitors (Mikulca et al., 2014), γ-secretase
inhibitors (Mikulca et al., 2014; Doody et al., 2016), and tau
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FIGURE 1 | SOCS3 regulates insulin signaling in neuron. After receiving the stimulation of cytokines, the expression of SOCS3 is increased and then insulin signaling
is disturbed by inhibiting the tyrosine phosphorylation process of IRS1. Furthermore, serine phosphorylation IRS1 is increased, which then results in the inflammatory
effects and neuronal lesions.

FIGURE 2 | The pattern of SOCS3 in the development of Alzheimer’s disease.

aggregation inhibitors (Gauthier et al., 2016), have proven to be
insufficient to cure AD. Therefore, it is imperative to find more
promising targets for disease prevention.

Dysfunctional cerebral glucose metabolism is an early and
invariant characteristic of AD (Chen and Zhong, 2013). Some
research suggests that dysfunctional neuron metabolism is a
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critical contributor to AD (Chen and Zhong, 2013). FDG-
PET/CT imaging shows consistent and progressive reductions
in brain glucose metabolism in individuals with AD, and these
reductions are closely correlated with cognitive impairment and
clinical severity (Mosconi, 2005). Since insulin signaling is the
key factor regulating glycometabolism, it is important to analyse
disrupted insulin signaling pathways in AD and to determine the
underlying pathogenesis.

As a negative modulator, SOCS3 is a vital switch for the
unhindered transduction of insulin signals, which subsequently
affects cellular glycometabolism. In peripheral tissues, inhibition
of SOCS3 has been proven to activate insulin signaling (Torisu
et al., 2007; Sachithanandan et al., 2010; Jorgensen et al.,
2013), and expression of SOCS3 is increased in the brains
of individuals with AD (Walker et al., 2015; Iwahara et al.,
2017). Thus, SOCS3 may also be a promising candidate for
ameliorating insulin insensitivity, leading to the improvement of
brain glycometabolism and the prevention of disease progression.

Although direct evidence is still insufficient, relevant studies
have revealed that SOCS3 may be a promising target for the
treatment of AD (Czirr and Wyss-Coray, 2012; Clarke et al.,
2015). SOCS3 is also involved in neroninflammation and is
essential for inflammation-regulated insulin resistance in the
central (Figure 2). Therefore, the accurate role of SOCS3 in AD
is still unclear, but its detrimental effects on cell survival and
axonal growth indicate SOCS3 as a potential target in neuroral
protection (Yadav et al., 2005; Miao et al., 2006).

CONCLUSION AND PERSPECTIVE

The regulatory mechanisms of SOCS3 expression in AD are
elusive. Aβ deposition and inflammatory factors in the brain are
the most important causes of neural lesions (Zhang and Jiang,

2015) and may also initiate upregulation of SOCS3 expression
in AD. Cerebral glucose hypometabolism and insulin resistance
are the invariant feature of AD and have been revealed to be
critical for the development of the disease (Steen et al., 2005;
Mosconi et al., 2008; Takeda et al., 2010). Insulin signaling is
the most critical modulator of glucose metabolism in various
tissues and organs. However, the mechanisms underlying the
development of insulin resistance in brains of AD are still
unclear. Current evidence as described above does not only
indicate that SOCS3-mediated inhibition of insulin signaling is
important for the peripheral pathologies in metabolic syndromes,
but also suggest the essential role of SOCS3 in the disturbed
insulin signaling in the CNS of AD. We speculate that the
increased level of SOCS3 resulting from the stimulations of
pathological products in brains of AD might lead to the
disruption of insulin signaling, which then facilitates the
development of AD. Despite all these, further studies are
needed to test our hypothesis and to inspect that targeting
SOCS3 in the brain would be a promising therapeutic strategy
for AD.
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