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Throughout embryonic development and into postnatal life, regionally distinct
populations of neural progenitor cells (NPCs) collectively generate the many different
types of neurons that underlie the complex structure and function of the adult
mammalian brain. At very early stages of telencephalic development, NPCs become
organized into regional domains that each produce different subsets of neurons. This
positional identity of NPCs relates to the regional expression of specific, fate-determining
homeodomain transcription factors. As development progresses, the brain undergoes
vast changes in both size and shape, yet important aspects of NPC positional identity
persist even into the postnatal brain. How can NPC positional identity, which is
established so early in brain development, endure the many dynamic, large-scale and
complex changes that occur over a relatively long period of time? In this Perspective
article, we review data and concepts derived from studies in Drosophila regarding
the function of homeobox (Hox) genes, Polycomb group (PcG) and trithorax group
(trxG) chromatin regulators. We then discuss how this knowledge may contribute to
our understanding of the maintenance of positional identity of NPCs in the mammalian
telencephalon. Similar to the axial body plan of Drosophila larvae, there is a segmental
nature to NPC positional identity, with loss of specific homeodomain transcription factors
causing homeotic-like shifts in brain development. Finally, we speculate about the role
of mammalian PcG and trxG factors in the long-term maintenance of NPC positional
identity and certain neurodevelopmental disorders.
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POSITIONAL IDENTITY AS A DETERMINANT OF CELL FATE

Cell fate determination is a fundamental aspect of metazoan development. At very early stages
of mammalian embryogenesis, differences in cell position begin to correspond to distinct
developmental fates. For instance, after totipotent blastomeres undergo a process known as
compaction (Johnson and McConnell, 2004), cells that are located more superficially give rise to
the placenta, while those positioned deeper in the embryo generate the pluripotent progenitors of
the inner cell mass (Tarkowski andWróblewska, 1967; Balakier and Pedersen, 1982; Pedersen et al.,
1986; Dyce et al., 1987). As the major axes of the body plan are elaborated, progenitor cells attain
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more refined positional identities that further correspond to their
cell fate decisions (Gilbert, 2010).

In the fruit fly, Drosophila melanogaster, the establishment of
body plan positional identity can be conceptually divided into
two major processes—segmentation and specification. Shortly
after gastrulation, the expression of segmentation genes patterns
the embryonic ectoderm along the anterior-posterior (AP) axis
(Figure 1A; Martinez-Arias and Lawrence, 1985; Akam, 1987).
Early segmentation genes (known as gap genes) are responsible
for large-scale aspects of the AP axis, while those that are
expressed later (pair-rule genes) refine the pattern (Scott and
Carroll, 1987). Mutations in segmentation genes result in the loss
of segments. For instance, mutations in the gap gene kruppel
result in a larva missing all thoracic segments and the first
five abdominal segments. Pair-rule gene even-skipped functions
later in segmentation, and its mutation results in the absence of
even-numbered segments throughout the length of the AP axis.

Segmentation genes induce the expression of Drosophila
homeobox (Hox) transcription factors, which in turn specify the
identity of each segment (White and Lehmann, 1986; McGinnis
and Krumlauf, 1992; Lawrence and Morata, 1994). Mutations
in Hox genes do not result in the loss of segment number
but rather cause a change in segment identity. For example,
the Hox gene Ubx is expressed in the third thoracic segment
where it is required to generate an appendage called a haltere
(Ouweneel and van der Meer, 1973; Lawrence and Morata,
1983). In the absence of Ubx, the third thoracic segment fails
to generate halters and instead makes an additional wing, an
appendage that normally develops from an adjacent segment.
This change in segment identity is known as a ‘‘homeotic shift’’
and results from the ectopic expression of Antp, a Hox gene
responsible for wing development. Such ectopic expression of
Hox genes that are normally expressed in neighboring regions
is a common transcriptional phenotype of Hox gene mutations.
Similar findings have been made in studies of mammalian
Hox genes (Pearson et al., 2005) as well as the larger set of
homeodomain-containing transcription factors, including those
that regulate telencephalic development (Hebert and Fishell,
2008), as we later discuss.

POLYCOMB AND TRITHORAX GROUP
CHROMATIN REGULATORS AND THE
MAINTENANCE OF POSITIONAL IDENTITY

The local structure of chromatin—the dynamic polymer of DNA
and histone proteins—can influence whether a locus is expressed
or silenced. Thus, changes to chromatin structure can engage
and maintain particular genetic programs, helping determine
cellular identity. The Polycomb group (PcG) and trithorax
group (trxG) gene products—which were initially discovered
in Drosophila—comprise an evolutionarily conserved set of
chromatin regulators that appear to serve as a transcriptional
‘‘memory’’ system (Geisler and Paro, 2015; Schuettengruber
et al., 2017). By assembling into large multiprotein complexes
that modify chromatin structure, PcG and trxG factors help
organize the genome regionally into transcriptionally silent or

active states, respectively (for a review of PcG and trxG protein
molecular mechanisms, please see Steffen and Ringrose, 2014;
Geisler and Paro, 2015; Schuettengruber et al., 2017).

In Drosophila, shortly after the establishment of Hox gene
expression, gap and pair-rule genes are downregulated, and PcG
and trxG genes are required to maintain normal patterns of
Hox gene expression. For instance, trxG genes are required to
maintain the appropriate regional expression of Ubx (Kassis
et al., 2017). Reminiscent of the homeotic shift observed in Ubx
mutants, the loss of trxG function results in the development
of a second set of wing tissue in place or the normal halters
(Breen, 1999). Conversely, PcG genes are required to repressUbx
expression in the tissue anterior to the Ubx expression domain
(Kassis et al., 2017). Of note, Hox gene expression is properly
induced in both PcG and trxG mutants but is lost over time
(Lewis, 1978; Struhl and Akam, 1985; Yu et al., 1998; Ernst et al.,
2004). Thus, in the absence of proper PcG and trxG function, the
expression of certain Hox genes is not maintained, resulting in
homeotic shifts (Lewis, 1978).

PcG and trxG proteins are also required for the maintenance
of Hox gene expression in mice (Schuettengruber et al., 2017).
The prototypical trxG gene trithorax (trx) and its mammalian
homolog Mixed-lineage leukemia 1 (Mll1) are both required to
positively maintain Hox gene expression (Ingham and Whittle,
1980; Yu et al., 1998). Similar to phenotypes observed in
Drosophila, Hox gene expression is established normally inMll1-
null mice but is not properly maintained, resulting in homeotic
transformations of their axial skeleton (Yu et al., 1995, 1998).
Homeotic skeletal transformations are also observed in mice
null for Bmi1, a PcG gene (van der Lugt et al., 1994). Thus,
PcG and trxG genes are key components of a ‘‘cellular memory
system’’ that maintains the positional identity of progenitor cells
in mammalian development.

POSITIONAL IDENTITY IN THE
EMBRYONIC TELENCEPHALON

Similar to regional patterning that occurs in the early embryo,
progenitors throughout the developing mammalian central
nervous system are organized into distinct domains with
different positional identities that are in part defined by the
expression of homeodomain transcription factors (Shimamura
et al., 1995; Flames et al., 2007; Dasen and Jessell, 2009; Narita and
Rijli, 2009; Tümpel et al., 2009). In the embryonic telencephalon,
excitatory neurons are born dorsally in the pallium while
most inhibitory neurons are born ventrally in the subpallium
(Anderson et al., 1997; Puelles et al., 2000; Molyneaux et al., 2007;
Kepecs and Fishell, 2014). Pallial progenitors express PAX6 and
generate cortical projection neurons which migrate radially and
give rise to the six-layered neocortex (Custo Greig et al., 2013).
The juxtaposition of PAX6+ progenitors and GSH2+ progenitors
of the subpallium forms the pallial-subpallial boundary (PSB;
Toresson et al., 2000; Corbin et al., 2003). The subpallium
is further subdivided into several subdomains including the
lateral and medial ganglionic eminences (LGE and MGE), which
generate different subtypes of inhibitory neurons. The LGE is
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FIGURE 1 | Homeotic transcription factors pattern the developing telencephalon. (A) Drosophila embryo with different body segments. Different colors of each
segment signify different combinatorial expression of homeotic transcription factors. (B) Germinal domains and transcription factor patterning in embryonic mouse
telencephalon. Medial ganglionic eminence (MGE), lateral ganglionic eminence (LGE). Arrow denotes pallial-subpallial boundary (PSB). (C) Schematic depicting
molecular changes in various transcription factor mutants and table listing corresponding neuronal fate changes.

located immediately ventral to the pallium and is dorsal to the
MGE. LGE progenitors give rise to a large number of olfactory
bulb (OB) interneurons and striatal projection neurons while
the MGE generates cortical interneurons and the globus pallidus
as well as a small number of OB interneurons (Butt et al.,
2008; Xu et al., 2008; Flandin et al., 2010). Nkx2.1 is expressed
throughout the MGE and not detected in the LGE. Together, the
pallium, LGE and MGE form three molecularly distinct domains
along the dorsoventral axis of the embryonic telencephalon
(Figure 1B). In addition to their expression defining the location
and regional boundaries of these domains, Pax6, Gsh2 and
Nkx2.1 are also required to specify the developmental potential
of neural progenitor cells (NPCs) in their respective domains, as
we discuss below.

HOMEOTIC-LIKE SHIFTS IN THE
DEVELOPING BRAIN

Small eye (Sey) is a naturally occurring Pax6 allele that
is a loss-of-function nonsense mutation (Hill et al., 1991).
While the developing neocortex of Pax6Sey/Sey mice maintains
the expression of certain pallial genes such as Tbr1 and
Math2, some NPCs gradually become mis-specified, adopting
a subpallial-like identity (Figure 1C; Manuel et al., 2015), with

Gsh2 and subpallial genes Ascl1 and Dlx2 becoming expressed
dorsally across the PSB (Toresson et al., 2000). Furthermore,
by E15.5, pallial NPCs in Pax6Sey/Sey mice begin generating
GABAergic interneurons with an LGE-like identity (Kroll and
O’Leary, 2005). These data suggest that as the neocortex
develops, sustained Pax6 expression is required to repress ventral
telencephalic gene expression and associated neuronal fates.

In the subpallium, Gsh2 is critical to the specification of
LGE positional identity. In the LGE of E12.5 Gsh2−/− mice, the
expression ofAscl1 andDlx2 is nearly undetectable (Szucsik et al.,
1997; Corbin et al., 2000; Toresson et al., 2000; Yun et al., 2001).
Furthermore, expression of Pax6 as well other pallial genes (e.g.,
Tbr2 and Ngn2) extends ventrally past the PSB into the dorsal
LGE. This early absence of LGE identity and ectopic expression
of pallial genes correlates with the development of a smaller
striatum, and embryonic OB neurogenesis is also impaired. Thus,
without Gsh2, the dorsal LGE initially takes on a pallial-like NPC
identity, and the genesis of LGE-lineage neuronal subpopulations
is defective (Figure 1C; Corbin et al., 2000; Yun et al., 2001).

Nkx2.1 plays key roles in the positional identity of the
MGE. In the absence of Nkx2.1 expression, the MGE adopts
an LGE-like identity and fails to generate MGE-specific neuron
populations (Figure 1C; Sussel et al., 1999; Butt et al., 2008;
Nóbrega-Pereira et al., 2008). For instance, conditional deletion
of Nkx2.1 at E10.5 from the subpallium decreases the production
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of MGE-derived cortical interneurons (Butt et al., 2008), and in
Nkx2.1−/− mice, development of the globus pallidus is severely
impaired (Sussel et al., 1999). Without Nkx2.1, the mutant MGE
appears to become partially dorsalized, having ectopic expression
of the normally LGE-specific transcription factors Isl1, SCIP and
GOLF. Consistent with this LGE-like transcriptional character,
the Nkx2.1-null MGE generates striatal neurons. Furthermore,
conditional deletion of Nkx2.1 at E16 results in the loss of
chandelier cells (Taniguchi et al., 2013), a later-born population
of cortical interneurons (Inan et al., 2012). Taken together, these
data indicate thatNkx2.1 is required for themaintenance ofMGE
identity and proper developmental potential of this population of
ventral NPCs in both the early and late embryonic brain.

NPCs IN THE POSTNATAL BRAIN:
MAINTENANCE OF EMBRYONIC
POSITIONAL IDENTITY

The postnatal mammalian brain harbors NPCs in the
ventricular-subventricular zone (V-SVZ), a layer of cells found
along the walls of the cerebral ventricles (Lim and Alvarez-
Buylla, 2016). In the adult mouse brain, V-SVZ NPCs—known
as B1 cells—give rise to neuroblasts that migrate to the OB where
they differentiate into several types of interneurons. The two
main categories of OB interneurons are granule cells (GCs)
and periglomerular cells (PGCs), both of which can be further
divided into additional subtypes (Price and Powell, 1970; Kosaka
et al., 1997). GC interneurons can be categorized as superficial
or deep depending on their location within the GC layer. PGCs
can be divided into three mutually exclusive groups by their
expression of Calbinden (CalB), Calretinin (CalR), or tyrosine
hydroxylase (TH).

Similar to embryonic NPCs, B1 cells have distinct positional
identities that give rise to different subtypes of PGCs and
GCs. For instance, while B1 cells in the dorsal V-SVZ produce
superficial GCs and TH+ PGCs, ventral B1 cells generate deep
GCs and CalB+ PGCs (Figure 2A; Merkle et al., 2007; Alvarez-
Buylla et al., 2008; Rushing and Ihrie, 2016). Interestingly, such
regional differences in the developmental potential of V-SVZ
NPCs are retained even when serially passaged in vitro and
transplanted into different locations of this postnatal germinal
zone. For example, ventrally derived NPCs transplanted to
the dorsal V-SVZ still produce deep granule neurons but
not TH-positive PGCs (Merkle et al., 2007). Thus, regional
differences in V-SVZ NPCs appear to be in large part
cell-intrinsic and stable through serial cell divisions.

Postnatal B1 cells arise from embryonic NPCs (Merkle et al.,
2004; Young et al., 2007; Delgado and Lim, 2015). Clonal analysis
with a ‘‘barcoded’’ retroviral library demonstrates that B1 cells
share a common embryonic NPC with those that generate
neurons for the cortex, striatum and septum (Fuentealba et al.,
2015). When NPCs are transduced with retroviral vectors at
E12.5 and brains analyzed after ∼5 weeks, approximately 35%
of the clones contain postnatally-born OB neurons as well as
embryonically-born forebrain cells. Further analysis of such
clones suggests that B1 cells retain positional information of the

FIGURE 2 | Positional identity in the postnatal ventricular-subventricular zone
(V-SVZ). (A) Schematic of postnatal V-SVZ and corresponding olfactory bulb
(OB) section depicting positional identity of V-SVZ neural stem cells. Deep
(blue) and superficial (red) granule cells (GCs) depicted in OB. (B) Regional
transcription factor patterning in embryonic and postnatal V-SVZ germinal
zones. Boundaries of protein expression depicted in both embryonic and
postnatal germinal zones.

shared embryonic NPC. For example, clones containing cortical
projection neurons (indicating their birth from pallial NPCs)
include superficial OB GCs (which arise from B1 cells close to the
pallium). Thus, the positional identity of V-SVZ NPCs appears
to be established during embryogenesis and persists throughout
development and into postnatal life.

Like the embryonic germinal zones, the postnatal V-SVZ
exhibits regional patterns of transcription factor expression
that correspond to the developmental potential of local NPCs
(Figure 2B and reviewed in Alvarez-Buylla et al., 2008). For
instance, the dorsal V-SVZ expresses Emx1, and consistent with
the developmental potential of B1 cells in this region (Merkle
et al., 2007), Emx1-lineage cells predominantly generate TH+
and CalR+ PGCs in adulthood (Fuentealba et al., 2015). In
the most ventral aspect of the V-SVZ, B1 cells express Nkx2.1.
Administering tamoxifen to adult Cre-reporter mice carrying
the Nkx2.1-CreER ‘‘knock-in’’ allele labels ventral B1 cells that
produce deep OB GCs, which is coherent with results from
stereotactic methods of labeling ventral B1 cells (Merkle et al.,
2007). Several other regional V-SVZ subdomains defined by the
expression of specific transcription factors have been similarly
defined and found to generate region-appropriate OB subtypes
(Merkle et al., 2014).
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The pattern of regional transcription factor expression in the
V-SVZ is similar to that observed in embryonic development
(Alvarez-Buylla et al., 2008). Interestingly, for some of these
genes, it appears that such regional expression is maintained in
NPCs throughout embryonic development and into adulthood.
For example, pallial NPCs labeled with Emx1-CreER at E10.5 give
rise to cells that populate the dorsal V-SVZ (Young et al., 2007)
where Emx1 continues to be expressed postnatally. Similarly,
MGE NPCs labeled at E12.5 with Nkx2.1-CreER give rise to
ventral V-SVZ cells including local B1 cells (Delgado and
Lim, 2015). Of note, virtually all V-SVZ cells expressing the
Cre-reporter are also immunopositive for NKX2.1 protein in
adult mice. Even when serially passaged in culture, ventral
V-SVZ NPCs retain the expression of Nkx2.1 (Delgado et al.,
2016). These data suggest that key transcriptional differences that
define the positional identity of B1 cells relate to the ‘‘retention’’
of region-specific gene expression that was established very early
in brain development.

POTENTIAL MECHANISMS UNDERLYING
THE MAINTENANCE OF NPC POSITIONAL
IDENTITY

The persistence of regionally discrete gene expression along
the developmental continuum of NPCs from the early embryo
to the adult is remarkable not only in terms of duration,
but also because of the tremendous increase in size and
anatomic complexity of the brain over this period of time.
How is NPC positional identity maintained in the face of
these challenges? Below, we touch upon the potential roles of
morphogens, transcriptional feedback mechanisms, non-coding
RNAs (ncRNAs) and the mammalian PcG/trxG chromatin
regulators. To simplify the context of this brief discussion, we
focus on the population of Nkx2.1+ NPCs.

The establishment of regional transcription factor expression
in the embryonic telencephalon requires the actions of
morphogens such as Sonic hedgehog (Shh; Wilson and
Rubenstein, 2000; Monuki and Walsh, 2001; Hebert and
Fishell, 2008). Shh is required for the early induction of Nkx2.1
in the ventral neural tube, and at E12.5, Shh appears to maintain
Nkx2.1 expression in the MGE (Xu et al., 2005; Gulacsi and
Anderson, 2006). Given that genes downstream of Shh signaling
are expressed in the postnatal V-SVZ (Ihrie et al., 2011), it is
possible that Shh is also required to maintain Nkx2.1 in ventral
B1 cells. Deletion of Shh in adulthood reduces the production of
ventrally derived OB interneurons (Ihrie et al., 2011), suggestive
of a loss of ventral NPC identity. However, Shh is also a mitogen
for NPCs (Palma et al., 2005), and it remains to be determined
if changes in the proliferation of V-SVZ cells contribute to
these findings. Can morphogens alone be expected to maintain
regionally discrete gene expression as the brain grows in size
and anatomic complexity? Though certainly conjecture, we
suggest that biological mechanisms other than Shh signaling
are required to maintain Nkx2.1 expression at some point
along the developmental continuum of early embryonic to
postnatal NPCs.

Transcriptional autoregulation is an important mechanism
underlying the maintenance of homeotic gene expression during
embryogenesis (Lou et al., 1995; Packer et al., 1998). The Nkx2.1
promoter region contains conserved NKX2.1-binding sites to
which NKX2.1 can bind and positively regulate transcription
(Oguchi and Kimura, 1998; Das et al., 2011). Thus, it is possible
that NKX2.1 uses a positive feedback loop for transcriptional
maintenance, which could also contribute to the ‘‘discreteness’’
of Nkx2.1 expression. While transcription of the Nkx2.1 locus
does not require functional NKX2.1 protein (mutant transcripts
are detected in Nkx2.1−/− NPCs; Sussel et al., 1999; Toresson
et al., 2000), whether expression of the mutant alleles diminishes
over time has not been reported. In any case, transcriptional
autoregulation (as well as additional regulatory mechanisms such
as the activation or repression of other genes) likely requires the
function of chromatin regulatory factors.

The mammalian genome transcribes a large number and
diversity of ncRNAs, and specific ncRNAs can regulate the
expression of Hox transcription factors. Long noncoding RNAs
(lncRNAs) are transcripts longer than 200 nucleotides that
do not code for protein, and it is now clear that certain
lncRNAs have important cellular function and interact with
PcG/trxG factors (Davidovich and Cech, 2015; Engreitz et al.,
2016). In the developing brain, many lncRNAs are highly
cell-type specific (Liu et al., 2016), and some lncRNAs play
key roles in neurodevelopment (Andersen and Lim, 2017). In
the mouse genome, the lncRNA NANCI is located adjacent to
Nkx2.1 and is co-expressed with Nkx2.1 in the lungs where
it positively regulate Nkx2.1 transcription (Herriges et al.,
2014, 2017). In the forebrain including the MGE, NANCI
is also co-expressed with Nkx2.1 (Herriges et al., 2014), but
whether NANCI helps maintain Nkx2.1 expression in a stable
and heritable manner throughout development has not been
reported.

microRNAs (miRNAs) are an important class of ncRNAs
that downregulate gene expression post-transcriptionally via
base-paring with complementary sequences within the target
mRNA transcript (Bartel, 2009). Some miRNAs target the
mRNAs of Hox transcription factors and may thus play roles in
NPC positional identity. For instance, miR-7a is expressed in a
ventral-to-dorsal gradient in the mouse V-SVZ, and this miR-7a
gradient contributes to the regional expression of PAX6 protein
(de Chevigny et al., 2012). While miR-365 has been shown
to negatively regulate NKX2.1 in lung cancer cell lines (Kang
et al., 2013) its potential role in regulating Nkx2.1 expression
in the forebrain has not been reported. Importantly, given that
miRNAs can regulate the expression of PcG genes such as EZH2
(Szulwach et al., 2010; Neo et al., 2014), and that some miRNAs
are embedded within the Hox gene clusters (Mansfield et al.,
2004; Tehler et al., 2011), it will be important to consider the role
of miRNAs in NPC positional identity.

Most studies investigating the role of mammalian PcG
and trxG chromatin regulators in neural development have
focused on the general processes of NPC self-renewal, neuronal
differentiation and gliogenesis (reviewed in Hirabayashi and
Gotoh, 2010; Lim and Alvarez-Buylla, 2014). However, given
that PcG/trxG proteins play key roles in the maintenance of
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Hox gene expression and positional identity during development
of the axial body plan, it seems reasonable to consider the
possibility that these factors also maintain the positional identity
of NPCs during brain development. For instance, similar to
the requirement for Mll1 in the maintenance of Hox gene
expression of the early mouse embryo (Yu et al., 1995), does the
continuous expression of Nkx2.1 and related ventral identity of
NPCs also depend on the action of mammalian trxG proteins?
More generally, would deficiencies of trxG or PcG activity lead
to homeotic-like shifts in telencephalic NPCs, changing the
proportions of neuronal subtypes that are produced from each
region?

THE IMPORTANCE OF UNDERSTANDING
HOW NPCs MAINTAIN POSITIONAL
IDENTITY

Current concepts regarding NPC positional identity in the
mammal primarily involve morphogens (or other inductive
signals) and transcription factors. Based on data and concepts
described in sections above, we suggest that certain chromatin
regulators are integral to the maintenance of NPC positional
identity. That is, while morphogen gradients indeed establish
regional patterns of NPCs in the early telencephalon, and
transcription factor regulatory networks are likely critical to
such positional identity, certain chromatin regulators may be
required for NPCs to ‘‘remember’’ key region-specific aspects of
their transcriptome as they continue to proliferate throughout
development. The notion that chromatin regulators are critical to
NPC positional identity (and thus their developmental potential)
may have important implications for our understanding of
human disease as well as the culture of NPCs for human
therapeutics and drug development.

The maintenance of NPC positional identity is likely crucial
to proper brain development, as loss of such developmental
information might be expected to cause homeotic-like shifts
that result in abnormal neuroanatomy. Recent studies have
implicated mutations in many chromatin regulators as causes
of human neurodevelopmental and psychiatric disorders (Ronan
et al., 2013; De Rubeis et al., 2014). For instance, EZH2 and
MLL1 are mutated in Weaver syndrome (Tatton-Brown et al.,
2011) and Weidemann-Steiner syndrome (Jones et al., 2012;
Strom et al., 2014), respectively, both of which are associated
with intellectual disability. Understanding the potential role that
these PcG and trxG factors play in NPC positional identity
may provide important insights into the pathology of certain
neurodevelopmental disorders.

The ability to produce specific neural cell types from cultured
NPCs is broadly useful for research into human neurological
disease and therapeutic development. The types of neurons
generated from NPCs relates to their positional identity, which is
generally induced by the application of morphogens. Discovering
the mechanisms by which proliferating NPCs retain specific
transcriptional programs for long periods of time may thus
enhance our ability to durably propagate specific types of NPCs
in vitro for such translational purposes. Furthermore, such
research may inform methods by which we can ‘‘erase’’ and
re-establish NPC identity.

CONCLUDING REMARKS

It is now clear that the positional identity of neural progenitors
is an important contributor to neuronal diversity. As discussed
above, the processes regulating NPC positional identity
are reminiscent of those that regulate segment identity in
the developing Drosophila larvae. As for progenitor cells
of Drosophila larval segments, the positional identity of
telencephalic NPCs requires the sustained expression of
homeodomain transcription factors. Loss of such region-
specific fate regulators causes embryonic NPCs to become
misspecified and adopt the identity of the adjacent region,
which results in abnormal anatomy. The mechanisms required
for the maintenance of NPC positional identity are poorly
understood at this time, but our understanding of chromatin
regulators such as PcG and trxG factors can be incorporated
into current concepts related to morphogen signaling and
transcription factor networks. Given the particularly long
duration of NPC proliferation in human brain development,
the maintenance of NPC positional identity will likely have
important implications to our understanding of certain
neurodevelopmental disorders.
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