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Abstract
Mitotic spindle orientation is a conserved, dynamic, and highly complex
process that plays a key role in dictating the cleavage plane, fate, and
positioning of cells within a tissue, therefore laying the blueprint for tissue
structure and function. While the spindle-positioning pathway has been
extensively studied in lower-model organisms, research over the past several
years has highlighted its relevance to mammalian epithelial tissues. Although
we continue to gain critical insights into the mechanisms underlying spindle
positioning, many uncertainties persist. In this commentary, we will review the
protein interactions that modulate spindle orientation and we will present
important recent findings that underscore epithelial tissue-specific requirements
and variations in this important pathway, as well as its potential relevance to
cancer.
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Introduction
Robust regulation of mitotic spindle positioning is required for the 
proper development and maintenance of many epithelial tissues 
among a diverse array of organisms. Spindle orientation dictates 
both tissue architecture (lung branching and epidermal layering)  
as well as cellular diversity (symmetric versus asymmetric  
divisions) and also is thought to function in tumor suppression1–3.

Recent work has demonstrated the importance of spindle orienta-
tion in multiple mammalian tissues, including brain, retina, and 
epidermal appendages4–7. Nevertheless, whether this process is 
a universal requirement for epithelial morphogenesis remains 
unclear. Although the proteins that dictate spindle orientation are 
relatively well conserved across phyla, recent findings suggest 
that the requirements and mechanism of this process can vary  
according to tissue type. Furthermore, although several studies  
correlate defective spindle orientation with tumorigenesis, no work 
to date demonstrates a direct causal link between these processes.

A more thorough understanding of the tissue-specific signaling 
and regulation involved in spindle orientation could provide criti-
cal insights into developmental, stem cell, and cancer biology as 
well as divulge novel disease targets. In this commentary, we will 
discuss important recent developments in the spindle orienta-
tion field as well as highlight persisting controversies and critical  
unanswered questions.

Spindle orientation mechanism
Although multiple factors are known to regulate epithelial  
structural and functional robustness, mitotic spindle orientation 
is particularly important because it dictates where each daughter 
cell is situated within a tissue. In simple epithelia, spindles  
normally orient parallel to the basement membrane, causing cells to 
divide in the plane of the epithelial sheet. Perpendicular divisions,  
on the other hand, are necessary to create stratified epithelia. 
Nevertheless, defective spindle orientation that causes oblique or 
perpendicular divisions to occur inappropriately could ultimately 
disrupt normal epithelial organization and generate daughter cells 
unconstrained by contact with neighbors, resulting in hyperplasia. 
Importantly, there appears to be no checkpoint for spindle orienta-
tion, so defects in this process have no direct effect on the cell cycle. 
Although our current understanding of the spindle-positioning 
mechanism was initially elucidated in lower-model organisms  
such as the Drosophila melanogaster fruit fly, the nematode 
Caenorhabditis elegans, and budding yeast Saccharomyces  
cerevisiae as well as in mammalian cell lines, extensive recent  
in vivo work in mouse models has suggested that the same protein 
machinery is also responsible for orchestrating spindle orientation 
in multiple complex tissues.

Mitotic spindle positioning in most epithelia is controlled by astral 
microtubules (MTs) that emanate from the metaphase mitotic spin-
dle toward the cell cortex. These MTs interact with a complex of 
cortical proteins at the plasma membrane, including Inscuteable 
(Insc), LGN (Partner of Insc/Pins in Drosophila), nuclear mitotic 
apparatus (NuMA, Mud in Drosophila), the G-protein subunit Gαi, 
and dynein, which together transduce pulling forces that guide 
the spindle into its appropriate position. LGN tethers to the cell  

membrane by interacting through its C-terminal GoLoco domains 
with Gαi and simultaneously links to the spindle machinery by 
binding to NuMA via its N-terminal tetratricopeptide repeat  
(TPR) motifs8. In addition, LGN can interact directly with the polar-
ity protein Discs Large (Dlg) and with the adherens junction pro-
tein E-cadherin, both of which will recruit it to the lateral cortex9. 
LGN competes with p120-catenin for binding to the intracellular 
domain of E-cadherin, which will likely decrease the stoichiom-
etry of LGN binding. NuMA binds to dynein via its N-terminus 
and to both LGN and MTs via its C-terminus, and each of these 
interactions is required for robust spindle orientation6,10,11. Notably, 
the LGN- and MT-binding domains of NuMA overlap and promote 
mutually exclusive interactions, so it remains unclear how these 
proteins cooperate at the cell cortex to direct spindle positioning12 
(Figure 1).

In most epithelia, LGN is excluded from the apical cortex by api-
cally localized factors such as the polarity protein atypical protein 
kinase C (aPKC), which phosphorylates LGN, and SAPCD2, which 
competes with NuMA for binding to LGN, thus orienting spindles 
parallel to the epithelial plane13,14. In some systems, however, LGN 
is recruited to the apical domain through binding to Insc, which 
interacts with the Par3 polarity protein15. In these specific cases, 
such as the mammalian epidermis, however, it remains unclear 
whether (1) an apical signal can override lateral cues to promote 
perpendicular over parallel spindle orientations, (2) parallel ori-
entation is a default in the absence of apical cues, or (3) entirely 
separable mechanisms drive perpendicular versus parallel orienta-
tions. Findings from recent in vivo knockdown studies of spindle 
orientation proteins in mice support the latter two possibilities, 
where depletion of LGN or NuMA compromises perpendicular ori-
entations and favors parallel ones, whereas depletion of upstream 
components mInsc or Par3 results in randomization due to LGN 
mislocalization2,16. Additional investigation is required to further 
dissect out whether instructive or permissive lateral cues underlie 
this behavior (Figure 1).

In addition to provoking these questions, these in vivo studies 
demonstrate that depletion of NuMA has no observable effects 
on cell division or chromosome segregation. This is further sup-
ported by both C. elegans LIN-5 and Drosophila Mud knockdown  
studies17,18. These results challenge earlier work suggesting that 
NuMA plays an important role in spindle assembly and spindle 
pole function19,20. Finding a rationale for these contradictory find-
ings, which could involve tissue-specific NuMA functions, will 
require further investigation.

Spindle orientation requires phosphoregulation
Several recent studies have revealed the importance of phosphoreg-
ulation in ensuring appropriate protein interactions and localization 
throughout the spindle orientation process during both metaphase 
and anaphase. It should be noted that other post-translational modi-
fications have been implicated in spindle orientation, such as deu-
biquitination of Disheveled by CYLD; however, here we will focus 
on phosphorylation21. In metaphase, LGN can be phosphorylated in 
the linker region between the N- and C-terminal domains by Aurora 
A and aPKC13,22. The phosphorylated form of the protein then is dis-
sociated from the apical cortex by binding 14-3-3 and specifically 
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associates with the guanylate kinase-like (GUK) domain of Dlg, a 
polarity protein on the lateral membrane of epithelial cells. This 
LGN/Dlg interaction relies on removal of lethal giant larvae (Lgl) 
from the plasma membrane via Aurora B phosphorylation23 (Figure 1 
and Figure 2).

Additionally, both ABL1 and Aurora A have been shown to phos-
phorylate the C-terminus of NuMA to promote its release from 
spindle poles and recruitment to the cortex in metaphase, where its 
interactions with the membrane-associated factor 4.1 help stabilize 
its residence at the cortex24–26. Cdk1, conversely, phosphorylates 
the C-terminus of NuMA to maintain its localization to spindle 
poles in metaphase, which can be counterbalanced by PPP2CA 
phosphatase activity, while anaphase-driven Cdk1 inactivation pro-
motes extensive NuMA and dynein cortical accumulation25,27. Nota-
bly, this anaphase cortical recruitment is mediated by interactions 
between NuMA and membrane lipids instead of LGN or 4.125,28,29. 

An additional level of regulation at the spindle pole involves phos-
phorylation by the pole-enriched Polo-like kinase 1 (Plk1) that can 
promote cortical dynein-dynactin dissociation from NuMA-LGN30. 
However, it remains unclear whether this is due to NuMA or dyn-
actin phosphorylation or both, since both are Plk1 targets (Figure 1 
and Figure 2).

These findings raise two important questions: (1) How do these 
multiple kinases coordinate with one another to maintain an appro-
priate balance of cortical and spindle pole NuMA pools? (2) Why 
do NuMA cortical accumulation and stability rely on two entirely 
separable mechanisms in metaphase and anaphase? One possibil-
ity is that metaphase NuMA must engage with dynamic cortical 
partners to promote continuous fine-tuning of spindle positioning, 
while cortical NuMA tethering to membrane phospholipids in ana-
phase is essential for driving efficient chromosome segregation and 
cell division. Future studies addressing these questions, as well how 

Figure 1. Mechanism of cortical force generation during spindle positioning in epithelia. (A) Schematic of a polarized epithelial cell at 
metaphase. Apical surface is to the right, metaphase plate is the central pink bar, and blue lines are microtubules. (B) Boxed area shows a 
zoomed-in view of the lateral cortex during mitotic spindle positioning. In most epithelia, the core spindle orientation machinery—consisting of 
Gαi, LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin—is recruited to the lateral cell cortex. Cortical NuMA and dynein/dynactin 
interact with depolymerizing astral microtubules to generate directional pulling forces on the mitotic spindle (a single astral microtubule is 
depicted for simplicity). (C) These proteins can be tethered to the cortex by interacting with several membrane-associated factors, including 
4.1, Gαi/LGN, Par3/Insc, E-cadherin, or Dlg (or a combination of these). LGN competes with p120-catenin for binding to the cytoplasmic tail of 
E-cadherin, while NuMA competes with E-cadherin for binding to the tetratricopeptide repeats (TPRs) of LGN. Notably, NuMA also competes 
with Insc for binding to the LGN TPRs. LGN phosphorylation by atypical protein kinase C (aPKC) and Aurora A promotes its apical exclusion 
and lateral localization. In addition, metaphase NuMA distribution between the spindle poles and cell cortex is modulated by several kinases. 
CDK1 phosphorylation maintains NuMA at the spindle poles, while Aurora A and ABL1 phosphorylation promotes its cortical localization.  
(D) Key to the components shown in other panels.
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other post-translationally modifying enzymes (for example, CYLD 
deubiquitinase) may collaborate, would fill important gaps in our 
understanding of the spindle orientation mechanism and how to 
potentially manipulate this process in a therapeutic context.

Is spindle orientation a universal requirement in 
epithelia?
Many studies, including those most recently on the hair follicle, 
tongue, and prostate, have demonstrated the key importance of 
oriented cell divisions for the proper morphogenesis, structure, 
and function of mammalian epithelial tissues6,7,31. Nevertheless, 
other findings contradict and challenge this paradigm. First, LGN  
knockout mice are viable32,33. Second, embryonic mouse kidney, 
zebrafish neuroepithelial cells, and many Drosophila tissues can 
tolerate non-planar divisions and maintain tissue integrity by  
reintegrating displaced cells back into the epithelium34–36. This 
raises the question of why spindle orientation is required in some 
tissues but dispensable in others.

The mechanism of spindle orientation also appears to diverge in a 
tissue-, cell type-, or temporal-specific context (or a combination of 
these). For example, recent work demonstrates that Pins/LGN is dis-
pensable in the Drosophila imaginal wing disc epithelium because 

of a Pins-independent recruitment of Mud/NuMA but that Pins is 
required for Mud recruitment in neuroblasts and follicle epithelial 
cells37. Furthermore, whereas aPKC promotes apical exclusion and 
lateral recruitment of Pins in both Madin-Darby canine kidney 
(MDCK) cells and Drosophila larval wing disc epithelium, Pins 
lateral localization is Dlg-dependent but aPKC-independent in both 
Drosophila follicle epithelium and chick neuroepithelium13,38–40.

Other recent studies further support these mechanistic variations. 
Work in the retina revealed that although LGN inactivation increases 
progenitor number outside the ventricular zone in the developing 
neocortex, it has no effect on the position or number of progeni-
tors in the retina5. Furthermore, randomizing spindle orientation 
in embryonic radial glial cells (RGCs) by overexpressing either 
Insc or a dominant-negative form of LGN reduces asymmetric and 
increases symmetric divisions, thus reducing adult neural stem cell 
(aNSC) numbers. Nevertheless, Insc overexpression in either post-
natal RGCs or aNSCs does not impact aNSC numbers4.

An additional study in mice revealed a differential requirement and 
function for LGN in tongue and hair follicle morphogenesis7. In 
most regions of the mouse tongue as well as in interfollicular epi-
dermis, stratification is dictated by apical LGN-driven orthogonal 

Figure 2. Phosphorylation of nuclear mitotic apparatus and LGN regulates their localization. Important protein interaction domains 
within the human nuclear mitotic apparatus (NuMA) and Drosophila Pins proteins are illustrated. (The most current phosphorylation mapping 
studies were performed on these particular protein species and this is why they are featured here.) The red pins indicate the CDK1, ABL1, 
Aurora A, and atypical protein kinase C (aPKC) phosphorylation sites that regulate NuMA and Pins localization during spindle orientation 
in metaphase. Also depicted are known Plk1 phosphorylation sites (purple pins), although it remains unclear which of these directly affects 
protein localization during spindle orientation. TPR, tetratricopeptide repeat.
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divisions2. In the dorsal tongue, however, LGN localization varies 
and instead promotes planar divisions. Additionally, whereas  
filiform papillae rely on LGN, embryonic hair follicle develop-
ment, which requires perpendicular divisions in the hair placode 
for proper Sox9-positive stem cell specification, is LGN- 
independent41. Nevertheless, depletion of LGN compromises  
perpendicular divisions in the lower region of peg stage follicles7. 
In addition, perpendicular divisions in the adult hair follicle  
matrix, which are important for driving proper differentiation  
programs, are NuMA-dependent6. It remains unclear whether  
distinct proliferative populations within the adult hair follicle vary 
in their reliance on canonical spindle orientation regulation.

Does inaccurate spindle orientation promote 
tumorigenesis?
A key feature of epithelial cancers is the loss of tissue organiza-
tion, even though individual cells might preserve epithelial charac-
teristics. The importance of spindle orientation for tissue integrity 
in certain contexts has led to speculation that it plays a role in 
cancer suppression. There are strong correlations between spin-
dle misorientation and tumorigenesis in Drosophila. Perturbation 
of spindle orientation in Drosophila neuroblasts causes invasive 
tumor-like overgrowths, caused by uncontrolled self-renewal stem 
cell divisions42. In the wing disc, epithelial cells with misaligned  
spindles primarily apoptose. However, inhibition of apoptosis in 
these cells enables them to escape the epithelium by undergoing an 
epithelial-to-mesenchymal transition (EMT), which ultimately pro-
motes the formation of tumor-like masses43. Therefore, spindle mis-
orientation in this system severely disrupts normal epithelial tissue 
architecture and can promote both EMT and hyperproliferation.

Although spindle misorientation has been observed in multiple 
mammalian cancer cell types, evidence for a causative role in 
tumorigenesis is at best correlative44–47. Differential expression of 
components of the core spindle orientation machinery has been  
correlated with specific cancers. For example, although LGN and 
NuMA are not mutated in breast cancer, patients with luminal  
breast cancers expressing high levels of LGN have significantly 
worse survival rates than those with low LGN (kmplot.com).  
Additionally, the Par3 polarity protein is essential for normal  
spindle orientation, and its loss promotes tumor growth and  
metastasis in the skin and mammary gland16,48–50.

Furthermore, many studies have drawn correlations between  
oncogenic activation (or tumor suppressor silencing), spindle 
orientation, and cancer, yet none has established a direct causal 
link. Mutations in the tumor suppressor adenomatous polyposis 
coli (APC), which are common in colorectal cancer, cause spin-
dle misorientation44. In addition to having a role as part of the  
β-catenin destruction complex in the WNT pathway, APC can bind 
to the plus ends of MTs through End-binding 1 (EB1), and there  
are several examples in C. elegans and Drosophila in which APC 
plays an important role in spindle orientation51–53. Nevertheless, 
there is no evidence that APC-driven tumorigenesis is due to an 
effect on spindles rather than a constitutive activation of Wnt  
signaling.

Phosphatidylinositol 3-kinase (PI3-K) is an example of an onco-
gene that is significantly upregulated in several cancers and has 
been associated with spindle misorientation phenotypes54. A recent 
study in HeLa cells revealed that integrin-mediated adhesion ori-
ents the spindle parallel to the substratum through accumulation 
of PtdIns(3,4,5)P3 to the mid-cortex and that the inhibition of  
PI3-K, which produces this phospholipid, can perturb spin-
dle orientation in the z-direction55. However, it remains unclear 
whether similar mechanisms operate in epithelial cells. In another 
study, overexpression of the tyrosine phosphatase-encoding Shp2  
oncogene disrupted both epithelial integrity and spindle orientation 
in cultured cells56.

These correlative data have incited discussion in several reviews 
regarding a potential link between spindle orientation and tumor-
igenesis. Important goals of future research will be to determine 
whether oncogenic activation can disrupt spindle orientation and 
to definitively test the role, if any, of spindle orientation defects in 
epithelial cancer initiation or progression.

Conclusions
Research over the past several years has revealed key insights into 
the mechanism and necessity of the conserved spindle orientation 
pathway across diverse mammalian epithelia. Many recent stud-
ies add further complexity to our understanding of the spindle  
orientation mechanism by revealing the involvement of additional 
factors (for example, SAPCD2, microRNAs, and peroxisomes); 
however, it remains unclear precisely how these components incor-
porate into and facilitate this process14,57,58. Additional studies have 
revealed interesting and unexpected context-dependent variations 
in pathway regulation. Nevertheless, many lingering questions 
and controversies persist, and extensive future work is required  
to fill the remaining black boxes that we have highlighted  
throughout this review. A particularly pressing question is whether 
(1) spindle-positioning defects are sufficient, (2) they synergize 
with other processes to drive tumorigenesis, or (3) both apply, 
as this information could provide significant mechanistic insight 
into cancer initiation. This would ultimately elucidate whether  
spindle orientation does in fact provide an important tumor- 
suppressive function in adult epithelial tissues. The findings  
yielded from these studies could inform the development of  
increasingly sophisticated and targeted treatments to impede early 
tumorigenic events.
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