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Abstract 

Background:  Cardiovascular diseases (CVDs) are difficult to diagnose early and have risk factors that are easy to over‑
look. Early prediction and personalization of treatment through the use of artificial intelligence (AI) may help clinicians 
and patients manage CVDs more effectively. However, to apply AI approaches to CVDs data, it is necessary to establish 
and curate a specialized database based on electronic health records (EHRs) and include pre-processed unstructured 
data.

Methods:  To build a suitable database (CardioNet) for CVDs that can utilize AI technology, contributing to the overall 
care of patients with CVDs. First, we collected the anonymized records of 748,474 patients who had visited the Asan 
Medical Center (AMC) or Ulsan University Hospital (UUH) because of CVDs. Second, we set clinically plausible criteria 
to remove errors and duplication. Third, we integrated unstructured data such as readings of medical examinations 
with structured data sourced from EHRs to create the CardioNet. We subsequently performed natural language 
processing to structuralize the significant variables associated with CVDs because most results of the principal CVD-
related medical examinations are free-text readings. Additionally, to ensure interoperability for convergent multi-
center research, we standardized the data using several codes that correspond to the common data model. Finally, 
we created the descriptive table (i.e., dictionary of the CardioNet) to simplify access and utilization of data for clini‑
cians and engineers and continuously validated the data to ensure reliability.

Results:  CardioNet is a comprehensive database that can serve as a training set for AI models and assist in all aspects 
of clinical management of CVDs. It comprises information extracted from EHRs and results of readings of CVD-related 
digital tests. It consists of 27 tables, a code-master table, and a descriptive table.

Conclusions:  CardioNet database specialized in CVDs was established, with continuing data collection. We are 
actively supporting multi-center research, which may require further data processing, depending on the subject of 
the study. CardioNet will serve as the fundamental database for future CVD-related research projects.
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Background
Cardiovascular diseases (CVDs) are disorders related to 
the heart and blood vessels responsible for the blood sup-
ply in the human body. According to the World Health 
Organization (WHO), every year, an estimated 17 million 
people globally die of CVDs, particularly heart attacks 
and strokes [1]. CVDs are often caused by environmental 
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factors, such as obesity, smoking, drinking, and stress, 
or genetic factors, such as underlying disease and fam-
ily history. CVDs require relatively intense management, 
and the morbidity of long-term complications is high. In 
particular, metabolic diseases such as hypertension, dia-
betes, and dyslipidemia are typical complications. Most 
of these diseases have no serious symptoms at their onset 
and are difficult to diagnose, making it easy to overlook 
the risk or severity of CVDs. Therefore, it is necessary to 
analyze the cardiovascular-related clinical data to iden-
tify risk factors and to develop a predictive model that 
can help clinicians accurately diagnose the diseases early 
through consideration of individual characteristics of 
patients.

Recent advances in artificial intelligence (AI) technol-
ogy have enabled early detection of several diseases and 
have already shown performance that approximates or 
exceeds that of a physician [2–4]. Deep learning tech-
nology, such as the Convolutional Neural Network and 
Recurrent Neural Network, has shown great results in the 
analysis of raw medical image and signal data [5–8]. Con-
versely, the performance of AI technology using struc-
tured medical data stored in electronic health records 
(EHRs) does not reach the effectiveness seen in image 
and signal analyses [9, 10]. AI approaches likely excel in 
medical imaging and signal examinations because of the 
specialized application of these modalities in the diagno-
ses of distinct diseases and their use for an explicit pur-
pose. When a disease is diagnosed or suspected, there are 
inherent representative signs or patterns. The advanced 
abilities of deep learning to analyze images and signal 
data rely on the ability to segment given data, identify 
and learn features directly from the data with minimal 
external manipulation, and accurately distinguish the 
essential and inherent features.

For the patient-specific evaluation of CVDs, a database 
optimized for CVDs based on EHR should be established. 
EHRs have no specific purpose; they collect and store 
basic medical information cumulatively such as records 
of encounters, physical measurements, diagnoses, and 
medications. Furthermore, unstructured data containing 
medical information that is relatively important for diag-
nosis of CVDs include image and signal examinations 
such as echocardiography, coronary artery computed 
tomography (CT), electrocardiography (ECG), and car-
diac stress test. Since unstructured readings are written 
in text, it is difficult to use them to train the AI models. 
Once these unstructured data have undergone proper 
pre-processing, they should also be integrated into the 
database to allow for intensive and multi-faceted CVD-
related AI research.

Constructing an advanced systematic database allows 
AI technology to be used efficiently to help clinicians 

and patients make decisions at each stage of clinical care. 
In particular, since CVDs require long-term and active 
management, it is essential for AI to utilize the patients’ 
characteristics, rather than existing diagnostic-based 
systems. The schema for the specialized cardiovascular 
database (CardioNet) is shown in Fig. 1.

The purpose of this study was to build CardioNet for 
CVDs that will allow AI technology to be applied to 
clinical “big data” based on EHRs. Through this work, we 
expect to contribute to the discovery of risk factors and 
detection of their interactions, with the ultimate goal of 
preventing disease progression and improving treatment 
planning by early prediction of the occurrence of CVD 
and better management of prognosis in overall care for 
CVDs.

The data used in this study are the records of patients 
who visited the Asan Medical Center (AMC) in Seoul, 
Korea, or Ulsan University Hospital (UUH) in Ulsan, 
Korea, between January 1, 2000, and December 31, 2016. 
Data were collected from patients diagnosed with heart 
disease or suspected of having heart disease at the emer-
gency room (ER) or the Departments of Cardiology or 
Thoracic Surgery or have undergone CVD-related exami-
nations such as echocardiograpy, ECG, coronary artery 
CT, and treadmill stress tests.

The main contribution of this work can be summarized 
in the steps used to establish and optimize CardioNet. 
First, we integrated unstructured data such as readings 
of medical examinations with structured data based on 
EHRs in this study. We built a large-scale and compre-
hensive clinical database that is suitable for use within 
diverse medical AI research. Currently, most clinical AI 
research is conducted as independent studies in specific 
areas of imaging and signals. However, patients’ clini-
cal outcomes and data should be analyzed with an inte-
grated approach. CardioNet is a database that contains 
key information about CVDs and can be used as a train-
ing data set for AI models on a number of CVD-related 
topics.

Second, we performed natural language processing 
(NLP) to structuralize the unstructured information, 
refining the data to allow for immediate application of AI. 
Specifically, since the results of CVD-related imaging or 
signal examinations are mostly written in free-text, NLP 
was needed to improve the performance of AI, which 
depends on the pre-processing of the data. In this pro-
cess, the clinical knowledge naturally included in the data 
can increase reliability.

Third, we standardized the data in the CardioNet for 
convergent multi-center research to ensure interoper-
ability. The structure and rules of the EHRs and the 
coding system are different at each hospital, making 
multi-institutional research difficult. Standardized code 
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systems have been proposed and utilized for a long time, 
and there is a trend to take advantage of the globally 
integrated code system standards that unify data struc-
tures, such as the common data model (CDM). However, 
because the standardization system for the results of var-
ious tests, such as imaging for CVDs, is not yet included 
in the CDM, we created our own variables for them. It 
will be possible to convert the system quickly when the 
relevant standardization is established.

Methods
The overall process for building CardioNet is depicted 
in Fig.  2. There are a total of five steps involved: data 
extraction, structuralization, cleansing, standardization, 
and validation. A detailed description of each step is as 
follows.

Description of patients
Anonymity of data
The collection of data and data preparation received 
AMC and UUH institutional review board approval 
(IRB) with waived informed consent. It is mandatory for 
all researchers to protect patients’ privacy and to make 
sure that the data cannot be traced back. AMC has a sys-
tem called “ABLE (Asan BiomedicaL Environment)”, in 
which only authorized researchers to review anonymous 

sample data and to extract data after IRB approval. Also, 
the de-identification and extraction process in this sys-
tem are conducted through the IT service management 
unit of AMC’s medical information office and the honest 
broker of the research information unit, not the research 
participants. UUH’s data was similarly anonymized. The 
list of de-identified information in line with the health 
insurance portability and accountability act (HIPAA) and 
hospital policy is shown in Table 1.

Details of data
Data related to all patients who had visited AMC or UUH 
for CVD or related complications were collected for this 
study. We obtained the anonymized records of 748,474 
patients who had visited AMC or UUH, from January 1, 
2000, to December 31, 2016. Data were obtained from 
572,811 patients seen at AMC and 175,663 patients seen 
at UUH within the same time period. Because the depth 
of information stored and retained by each hospital is dif-
ferent, the variables were based on the relatively detailed 
AMC records. In order to prepare to build the Cardio-
Net, we set the following specific criteria for inclusion of 
patient data:

•	 Patients who had visited the Departments of Cardiol-
ogy or Thoracic Surgery.

Fig. 1  Overview of CardioNet
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•	 Patients who had visited the ER and were assigned 
International Classification of Diseases, 10th version 
(ICD-10) codes related to CVDs.

•	 The codes I00-I99 were related to the diseases of the 
circulatory system, while R00-R03, R06, R068, R073, 
and R074 were related to symptoms and signs involv-
ing the circulatory and respiratory systems.

•	 Patients who had undergone coronary artery CT as 
part of their health screening procedures.

•	 Patients who had undergone one of the following 
clinical examinations: thallium single-photon emis-
sion computed tomography (SPECT), 2D-echocardi-
ography, treadmill test, and Holter monitoring test.

Data extracted
We obtained data from the EHRs, order communica-
tion system, and picture archiving and communication 
system (PACS). These medical record systems con-
tain information such as patient demographics, vital 
signs, encounters (e.g., inpatient/outpatient visits, ER 
visits, and health screening), physical measurements, 
diagnosis, surgery (order, schedule, and summary), 
digital medical tests (CT, magnetic resonance imaging 
[MRI], X-ray, coronary angiography, echocardiography, 
Holter monitoring, treadmill tests, etc.), laboratory 
tests (pathology order and result), medication (order, 
prescription, and history), procedures (order and 
materials), blood transfusion (order and result), 
human-derived materials, patient history question-
naire (personal and family medical history, lifestyle and 

habits), and billing and claim history. By using the ser-
vice of a pre-built clinical data warehouse, we extracted 
structured and unstructured data separately, with all 
data undergoing the process of de-identification.

Data extracted for the establishment of CardioNet 
included the following:

•	 Demographics: date of birth, sex, national code, 
address, blood type (ABO, RH), death date, and 
death date of a cancer patient (one row per patient).

•	 Vital signs: measurement time and date, reason for 
absence of measurement, body temperature, blood 
pressure, respiratory rate, pulse, oxygen saturation, 
and consciousness status (one row for each patient 
seen in the ER).

•	 Physical information: age, height, weight, blood 
pressure, pulse, respiratory rate, body mass index 
(BMI), body surface area, and measurement date 
(one row per encounter).

•	 Visits: date of visit, date of admission and discharge, 
type of visit, medical department, hospitalization, 
duration of stay in the intensive care unit, type of 
discharge, and the result of treatment (one row per 
encounter).

•	 Diagnosis: date of diagnosis, type of visit, medi-
cal department, and ICD-10th code (one row per 
encounter).

•	 Surgery: date of admission and discharge, date of 
surgery or treatment, sequential number of surgery, 
surgery type (before/after the surgery), diagnosis 
(before/after the surgery), surgery category, surgi-

Fig. 2  The overall process of building the CardioNet
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cal department, and method and time of anesthesia 
(one row per encounter).

•	 Digital tests: date of visit, age, department of exam-
ination, code of examination, date of order, and 
reports or readings of the result. (one row per test).

•	 Laboratory test result: code of pathology examina-
tion, number of work, test result, and unit of result 
(one row per test).

•	 Medication: medical department, type of visit, date 
of prescription, code of prescription, active ingre-
dient in medication, indication, category of medici-
nal effect, and duration of treatment (one row per 
encounter).

•	 Procedure: medical department, date of order, code 
of order, time of order, material code, capacity of 
materials, and place of patient and materials (one 
row per procedure).

•	 Blood transfusion: date of order, code of order, 
ordering department, sequential number of blood, 
quantity of prescribed/released blood, and time 
released (one row per order).

•	 Human-derived material: date of extraction, code of 
diagnosis, name of diagnosis, tissue sample descrip-
tion (status and amount of cancer/normal, plasma/
buffy coat, type of organ), and information on bone 
marrow (status and amount of cerebrospinal fluid/
bone marrow/blood stored) (one row per patient).

•	 Patient history: marital status, religion, education, 
exercise habits over the last three months, lifestyle 
and habits information (e.g., alcohol, smoking), and 
personal and family medical history (one row per 
encounter).

Data processing
Before pre-processing, a Primary Key was generated to 
connect the data. All data, except demographics and 
information on human-derived materials, include the 
patient ID (PAID) and the patient’s encounter number 
(INNO) columns. KEY column was created by concat-
enating the PAID and INNO to each table to connect 
all data. Demographics and information on human-
derived materials are unique contents that are modified 
only when the information changes. For this reason, 
they do not have INNOs, but are linked to other data 
with PAID. As an example, a patient with the PAID of 
100 who visits the hospital for the first time would have 
the KEY of ‘100_1’.). In the existing in-hospital medical 
record system, it was inconvenient to extract all data 
satisfying specific conditions. We were able to extract 
data easily and quickly by connecting all data through 
the KEY.

Structured data
Most of the extracted structured data were quantitative 
in nature with simple and formal structures, making the 
pre-processing relatively simple. However, some data 
required further processing through the removal of data 
errors and outliers based on clinical knowledge, such as 
clarifying the meaning of each result and comparing the 
value to the normal range. Selected aspects of this pro-
cessing are described below.

Physical information and vital signs Physical informa-
tion including body measurements, vital signs such as 
height, weight, blood pressure, pulse, and respiratory 
rate, are continuous variables, so we identified the distri-
bution of each and removed the implausible data judged 
to be errors and outliers from a clinical point of view. The 
following criteria were used:

•	 Systolic blood pressure, diastolic blood pressure 
between 0 and 300 mmHg

•	 The respiratory rate is between 0 and 100 breaths per 
minute.

•	 The pulse rate is between 0 and 300 beats per minute.
•	 The body temperature is between 0 and 50 ◦C.
•	 To determine the range of the plausible body weight 

and height, we divided the data into three groups: 
patients younger than 12 months, younger than 20 
years, and older than 20 years. We manually calcu-
lated the mean of values and ± 3 standard deviations 
for each group.

Laboratory test results Laboratory test results have vari-
ables such as the date of examination, code of order and 
examination, and results. In total, there are 8,088 exami-
nation codes, which are related to clinical pathology and 
nuclear medicine, with approximately 1.1 billion records 
associated with 748,474 patients. However, there are 
many overlapping records, because different prescrip-
tion codes can be used for the same test and result. Since 
the examination result is more important than the path 
of the prescription, duplicate data were removed based 
on examination results. Moreover, each examination has 
a process in which a person enters the result directly, 
potentially introducing human errors, so secondary data 
cleansing was performed considering the types of value 
(integer, float, categorical, etc.) that should be the result 
of each examination. As a result, a total of 480 million 
records with 1,335 examination codes are included in the 
laboratory test results.

Patient history questionnaire At the time of admission, 
the health-related history is obtained, including informa-
tion such as details of hospitalization, vital signs, personal 
and family medical history, past diagnoses, clinical symp-
toms, and lifestyle. Information on smoking, including 
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status, period, amount per day, quit-smoking period, and 
quit-smoking education training status, was extracted 
from the questionnaire data. Based on a review of pack-
year distribution in the patient population, the range was 
found to be generally between 0 and 500, which suggests 
that the data can be considered relatively reliable. With 
regard to the disease history, we identified some diseases 
that could be considered as complications of CVDs, such 
as diabetes, hypertension, tuberculosis, and hepatitis. 
We obtained patient history data, including marital sta-
tus, exercise, religion, and education, along with smoking 
history.

Unstructured data
The major CVD-related examinations are echocardiog-
raphy, Holter monitoring, ECG, thallium SPECT, and 
coronary artery CT. The majority of results from these 
tests are readings formatted as free-text, recorded as a 
mixture of Korean, English, numerical values, and special 
characters. Despite the presence of numerous errors and 
nulls introduced by the fact that most of the entries were 
handwritten, there are significant variables associated 
with CVDs. Therefore, the process of data formalization 
through NLP is essential.

We performed NLP on the readings of major digital 
examinations related to CVDs, deriving variables with 
high clinical importance that can be directly applied to 
AI models. The basic method of NLP applied to unstruc-
tured data can be described in three steps: First, we cre-
ated a meta-table consisting of the main variables and 
conditions of extraction by the clinician. Second, we 
divided the readings into three frames: text, tabular, and 
others, and defined the extraction rules for each frame. 
We took into consideration the structure of the original 
data and the location of variables set in the meta-table 
and defined rules using a variety of operators and regular 
expressions. Third, the new tables were built by extract-
ing the keywords and features from the original data. 
The values of keywords were based on rules defined in 
the previous step. This approach was used to process the 
six-minute walk test, pulmonary function test, cardiac 
rehabilitation, pediatric echocardiography, and treadmill 
tests. A simplified NLP flow chart is depicted in Figure 3

Additionally, information extracted from PACS con-
tains records of CVD-related tests performed in over 96% 
of patients, including outcomes of cardiac examinations, 
imaging, interventional procedures, and arrhythmia 
assessments. We performed NLP to extract the examina-
tion codes to help classify and layer data in other tables. 
The specific methods used for echocardiography, Holter 
monitoring, thallium SPECT, and coronary CT are as 
follows:

Echocardiography Compared with other digital tests, 
echocardiography is the most common test performed in 
patients with CVDs, with a total of 538,630 patients (71% 
of the entire CardioNet population) undergoing this test. 
Since the results of echocardiography are sentences in 
free-text form without a frame, this information was pro-
cessed with specific rules for extracting values.

First, the “Conclusion” part of the reading, which 
includes a summary of important values of test results 
and the clinicians’ interpretation, is set to the extraction 
range. As primary verification, we investigated all words 
in the “Conclusion” section and corrected typographical 
and grammatical errors. Second, we tokenized the words 
and created the bag-of-words (BOW) that contain the 
keywords and their frequencies [11].

Approximately 9,000 keywords were identified, appear-
ing a total of 3.4 million times. We subsequently created 
a rule-dictionary to consistently replace errors with the 
correct words, since it is not always possible to scruti-
nize all the data. Third, as the secondary verification, 
the lemmatization, which is a type of normalization, 
was conducted. English words differ in terms of mor-
phology depending on parts of speech or tense, so we 
extracted the stem of the word (the core part contain-
ing the meaning) and unified the expression, allowing it 
to be recognized as the same keyword. Since the mean-
ing of the word may vary depending on context and/or 
affix, we modified the keywords once more following a 
full investigation. About 9,000 keywords were reduced 
to about 2,500. Additionally, because of bias and range of 
pre-knowledge, cross-checking between the engineer and 
clinician was repeated twice to improve the completeness 
and accuracy of the rule dictionary. Based on the clini-
cian’s opinion and review of CVD-related research, we 
selected approximately 100 meaningful features among 
the extracted keywords and created an echocardiogra-
phy table by defining patterns and extracting them into 
binary or continuous values.

Holter monitoring Holter monitoring is the exami-
nation performed using electrodes and a recording 
device to track the heart’s rhythm for a period of 24 
to 72 hours. Although a total of 61,771 patients had 
undergone Holter monitoring (less than the number 
of patients subjected to other tests), Holter monitor-
ing test is essential for patients with irregular cardiac 
rhythm. Holter monitoring tends to be more regular 
than other examinations because the readings are auto-
matically generated by the test equipment. Since AMC 
is using the General Electric equipment, we were able 
to obtain a list of variables that appear in the records 
from the equipment manual. Meaningful keywords 
were subsequently selected through interpretation 
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by the clinicians, with appearance and frequency 
expressed using an approach similar to that used with 
echocardiography data.

Thallium SPECT Thallium SPECT is the examina-
tion used to diagnose coronary diseases and to verify 
the survival of the myocardium. A total of 156,615 
patients underwent thallium SPECT at AMC. In previ-
ous research, the values of summed stress score, summed 
rest score, and summed difference score derived from the 
thallium SPECT equipment were used. However, these 
values often do not match those in the patient records. 
We, therefore, conducted NLP by considering the per-
spectives of the clinical field. As with other modalities 
described above, rules were defined to find the required 
information, including the output from the device, 
and variables and values were extracted to create the 
table. Specifically, the position and degree at the time of 
stress were extracted from the readings, allowing us to 
deduce the position and extent of the cardiac problem. 

According to the patient’s condition, up to eight disor-
ders were identified.

Coronary artery CT Coronary artery CT is another 
examination performed to diagnose CVDs and evalu-
ate the presence of various cardiac conditions. A total 
of 79,046 patients at AMC underwent coronary CT. We 
modified the NLP pipeline to further increase the cover-
age of data. The key concept underlying the NLP method 
is the analysis of the text based on linguistic rules, focus-
ing on keywords that are to be extracted. This method 
does not need to divide the structure of the readings into 
individual forms and can be performed for all sentences. 
We identified words on the same line by assigning a cer-
tain distance condition to the “carriage return,” as well as 
by using a “match word.” The keywords corresponding 
to stenosis degree and plague for each segment existing 
in the reading text were extracted. We completed the 
extraction of additional information, such as the type and 
patency status of vascular treatments in patients who had 

Fig. 3  The flow chart of natural language processing. *Bag-of-words (BOW); **Regular expression (Regex)
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undergone stent graft surgery and details about the native 
coronary artery. After processing, we validated the data 
that had been structured and processed with input from 
clinicians and evaluated the reliability of the CardioNet 
data. We constructed multiple scenarios based on clini-
cians’ practical experiences, sampled the data, and visual-
ized the frequency, data types, and other parameters.

Standardization
Securing interoperability is essential for collaborative 
research with other institutions and hospitals in CVDs, 
as well as other diseases. We carried out the standardiza-
tion process on terms and codes used in the hospitals to 
build the CardioNet that corresponds to the CDM form. 
However, term mapping is not possible without practi-
cal familiarity with the usage of the code and terms in the 
actual clinical field, as well as with insight into the unique 
information used in the institution. It is necessary to seek 
input from highly experienced specialists in fields such as 
diagnosis, surgery, laboratory tests, pathology, imaging, 
medication, blood transfusions, and materials. Conse-
quently, we received counsel from the AMC medical data 
team and modified the codes and terms into standard 
terms with the same meaning.

Because there are currently no common codes for digi-
tal examination in CVDs, we created independent varia-
bles based on meaningful clinician comments, which will 
be converted once digital test codes are defined in the 
CDM (e.g., in case of echocardiography, there are 97 vari-
ables and explanation), Specifically, OMOP-CDM-based 
local code mapping was performed because of the differ-
ences in the code systems used in each hospital [12]. The 
codes of diagnosis, operation, image pathology, blood 
transfusion, and procedure and materials were mapped 
based on SNOMED-CT, laboratory test results were 
based on LOINC, medication was based on RxNorm. 
The bacterial code did not proceed in accordance with 
the OMOP-CDM standards [13–15].

The mapping ratio of AMC’s codes based on CDM is 
shown in Table 2. The ratio is almost 90% or more, so it 
can be used immediately when expanding to other topics 
of study.

Using the processed and standardized data of 748,474 
patients, we constructed the CardioNet schema based 
on the hospital EHR structure. We created a descriptive 
table for 27 tables sorted by category, which is intended 
to facilitate database usage for clinicians and engineers, 
allowing them to easily access and understand the data. A 
descriptive table is a dictionary of data variables, comple-
menting the dictionary of word definitions and variables 
in the CardioNet and explaining the anatomy, physiology, 
and pathology of the heart. Additionally, it displays CVD-
related variables, their meaning, and clinical utility. Since 

most variables in the table have abbreviated values (code 
of orders, diagnosis, examination, etc.), we created a code 
master table and linked these values. This makes it easy 
to find the meaning of words and abbreviations.

We continuously validated the data during pre-process-
ing to further ensure the reliability of the CardioNet and 
verify the processed data. Furthermore, we constructed 
scenarios based on the clinicians’ practical experiences, 
sampled the data, and visualized their frequency and 
types.

CardioNet built
All data tables (except demographics and human-derived 
materials) have a KEY column concatenating PAID and 
INNO. The demographics table is the central table, con-
sisting of 748,474 patients. The second central table is 
the visitation table with 743,332 patients. Demographic 
and human-derived material table without INNO is con-
nected to the visit table by PAID, while all other tables 
are linked by KEY. Figure 4 describes the entity-relation-
ship diagram (ERD) of CardioNet, with the full form of 
abbreviations in the ERD listed below.

Results
A total of 74.8 million patients visited AMC or UUH for 
CVDs between January 2000 and December 2016. Car-
dioNet is a comprehensive database intended to sup-
port the development of predictive models of CVDs and 
future multi-center convergent research. It comprises 
information that can be extracted from EHRs and has 
undergone structuralization and standardization by the 
processing of the readings of CVD-related digital tests 
by NLP. CardioNet contains a total of 27 tables, a code-
master table, and a descriptive table.

Summary of CardioNet
Table 3 summarizes the tables of CardioNet, providing a 
description of individual tables, number of features, and 
the number of records and patients included from each 
hospital.

Demographics
A total of 572,811 patients visited AMC and 175,663 
patients visited UUH. Table  4 depicts the demograph-
ics of the two hospitals, including the physical measure-
ments and the number of patients who have undergone 
CVD-related digital examinations. Approximately 45% of 
patients were women, with an average age of 55.78 years 
at the time of the initial encounter. Body measurements, 
such as weight and height, and vital signs, such as blood 
pressure, are not consistently performed at each visit. 
As shown in Table 4, the average valid value was calcu-
lated for each patient (i.e., 563,131 patients and 543,792 
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patients have valid blood pressure and BMI values cal-
culated). Blood pressure data are available for 75.23% of 
patients, with the average systolic blood pressure deter-
mined to be higher than 120 mmHg and therefore above 
the normal range, while average diastolic blood pressure 
was below 80 mmHg.

The WHO Asia-Pacific region and the Korean Obesity 
Association standards deem individuals as overweight 
when their BMI is 23 kg/m2 or higher and obese when 
BMI is 25 kg/m2 or higher. According to these criteria, 
the average BMI values show the majority of the patients 
to be overweight [16]. Additionally, 63.89% of patients 
visited the department of cardiology or thoracic surgery 
more than once, with 39.17% patients registering more 
than three visits. Patients with CVD-related diseases 
continued to visit the hospital. In processing the digital 
medical tests, duplicates were removed for each patient, 
and the number of cases examined more than once was 
determined. This analysis demonstrated that 71.96% of 
the patients underwent echocardiography.

Visits
The total number of visits to the Departments of Car-
diology or Thoracic Surgery is presented in Table  5, 
which shows the number of rows related to visits to 

each department. A total of 428,247 patients visited the 
departments more than once, accounting for 57.21% of 
the total. The total number of visits by these patients to 
both hospitals is approximately 4.69 million, accounting 
for 16.82% of the total number of visits (27.9 million). As 
shown in Table  5, the average age of these patients was 
58.8 years, which is 3.01 years higher than the average 
age of the entire patient population. Outpatient visits 
comprised 92% of all visits, inpatient visits accounted for 
4.86%, and approximately 3% corresponded to ER visits 
(with only AMC ER data considered).

Diagnosis
Table  6 describes the number of patients diagnosed 
with nine major CVDs and complications. Because a 
single patient can be diagnosed with multiple diseases 
and diagnosis records are taken at each visit (Table 6), 
duplicates were removed and each patient’s unique 
diagnostic names were counted. A total of 445,787 
patients (59.55%) were identified with major CVDs. 
Hypertension was diagnosed most frequently (31.79% 
of the entire CardioNet population), followed by throat 
and chest pain, diabetes mellitus (including types 1 
and 2, malnutrition-related, unspecified, etc.), angina 
pectoris, chronic ischemic heart diseases, cerebral 

Fig. 4  ERD of CardioNet
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infarction, heart failure, acute myocardial infarction, 
and cardiac arrest. Considering that the average of the 
number of diseases for each patient diagnosed with the 
major CVDs was 1.82 (standard deviation 1.2) and that 
there are patients with up to nine CVDs, a number 
of patients were found to exhibit comorbidities and 
complications.

Laboratory results
The laboratory test table contains the results of 1,335 
diagnostic tests, with a total of 480 million rows of data 
from 664,941 patients (89% of the total population). In 
some cases, a single patient may undergo multiple tests 
during the day or the same tests several times a day. 
Table  7 presents the percentage of patients who have 

Table 1  The list of De-identified data

*Including medical personnel

**“Date of birth” is not personally identifiable information, IRB approval is required if information up to “date” is required

No. De-identified information

1 Unique identification information (resident/alien registration number, passport number)

2 Names (including Chinese characters, English name, pen name, etc.)*

3 Detailed address (detailed address below eup/myeon/dong)

4 All phone numbers (including mobile phone/home/company/fax number)

5 E-mail addresses

6 Medical record number

7 Patient registration number

8 Health insurance card number, Welfare recipient number

9 Accounts number, Credit card number

10 Certificate/License number, Student number

11 Vehicle number, registration number & serial number of various devices

12 Full-face photographs or equivalent (still photo, video, CCTV, video)

13 Identification code (member ID, employee number)

14 IP (Internet Protocol) address, Mac (Media Access Control) address

15 URLs (Universal Resource Locators)

16 Biometric identifiers: fingerprint, iris, vein, voice, handwriting, personally identifiable genetic information

17 Any other personally identifiable information (pathological number)

18 Date of birth**

19 Any other unique identifying information (military number, registration number of the individual business operator)

20 The indirect identification information contained in the information collection is also deleted in principle if it is not 
related to the purpose of data use.

Table 2  The mapping ratio of AMC’s code

 SNOMED-CT: systematized nomenclature of medicine-clinical terms

LOINC: logical observation identifiers names and codes

RxNorm: a standardized nomenclature for clinical drugs produced by the U.S. National Library of Medicine(NLM)

*Except for bacterial code

Class Total codes (N) Mapped code (N) Mapping ratio (%) Remark

Diagnosis 10728 10708 99.81 SNOMED-CT

Surgery 1554 1544 99.36 SNOMED-CT

Laboratory test 705 599 84.96 LOINC*

Image pathology 247 245 99.19 SNOMED-CT

Medication 4631 4600 99.33 RxNorm

Blood transfusion 23 23 100 SNOMED-CT

Procedures and materials 386 382 98.96 SNOMED-CT
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undergone each laboratory test sorted by the number 
of patients seen at AMC. Excluding duplicate entries, 
results of the following laboratory tests were found for at 
least half of all patients: creatinine, cholesterol, alanine 
transaminase, aspartate transaminase, bilirubin (total), 
albumin, protein, glucose, alkaline phosphatase, hemo-
globin, platelets, calcium, uric acid, potassium, sodium, 
blood urea nitrogen, chloride, CO2 (total), and phospho-
rus. Results of other tests were available for at least 15% 
of the patients, including triglycerides, high density lipo-
protein-cholesterol, low density lipoprotein-cholesterol, 
C-reactive protein (quantity), erythrocyte sedimentation 
rate, hemoglobin A1c, creatine kinase, troponin-1, and 
high-sensitivity C-reactive protein.

Echocardiography
Echocardiography accounted for the largest number 
of medical digital examinations undergone by patients 
(71.96%). Echocardiography readings were converted 
into 112 variables, with the basic statistics of 19 major 

variables reflecting clinicians’ opinion shown in Table 8. 
The descriptive table includes the meaning and clinical 
interpretation of each variable. As an example, the left 
ventricle (LV) dimension in systole refers to the inner 
diameter of the LV measured during systole, with the 
expansion of the LV indicated when the value in a male 
patient exceeds 42 mm.

Discussions
The EHRs are easily accessible in hospitals and contain 
important clinical information. EHR data were found to 
be less useful in AI studies, compared to data from imag-
ing modalities such as CT or MRI. We summarized the 
insights and expectations of building CardioNet along 
with its limitations.

First, in the AMC, there is cloud environment, which 
is an infrastructure for research with researchers inside 
and outside the hospital. This cloud system aims to 
implement a shared database and collaboration for multi-
center medical AI research. Also, it is a hybrid cloud that 

Table 3  Summary of CardioNet

Description Features (N) Number of records Number of patients

AMC UUH AMC UUH

Demographics 9 572811 175663 572811 175663

Demographics of those visiting ER 20 502055 171489 214393 72423

Vital signs of those visiting ER 13 1865348 – 185447 –

Physical measurement 14 46768559 5485196 511061 130361

Visits 23 18967703 8935764 571163 172169

Diagnosis 13 28328713 8089345 553031 174403

Schedule of operation 12 434085 – 245159 –

Summary of operation 14 3404439 88760 348939 52852

Six-minute walk test 74 32158 1210 8871 665

Coronary artery CT 97 97585 – 79046 –

Thallium SPECT 26 198711 – 156615 –

Echocardiography 112 726187 178386 428004 110626

Holter monitoring test 75 66366 21035 46636 15135

Pulmonary function test 135 4634091 63593 265817 38933

PACS 12 12410683 4490786 551280 169801

Pediatric echocardiography 63 4017 – 1720 –

Cardiac rehabilitation 80 2912 – 1990 –

Treadmill test 29 110094 31741 68203 25979

Laboratory test 7 344908032 143847546 489278 175663

Medication 26 129804022 57639868 500444 162750

Procedures and materials 21 105739326 13201735 417407 136128

Order of blood transfusion 10 1090115 219804 192169 43814

Result of blood transfusion 11 2764232 625574 100215 28621

Human-derived materials 13 46760 – 43412 –

Human-derived bonemarrow 13 5757 – 2983 –

Patient history 10 673143 – 307681 –

Smoking information 12 608441 – 280492 –
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can use a public cloud (e.g., AWS, MS Azure) based on a 
private cloud. Therefore, those who want to do research 
with CardioNet, need to register as a joint research team 
to the IRB according to hospital policy. Currently using 
CardioNet, researchers outside the AMC who have 
access to cloud are conducting various studies.

Second, it is difficult to directly use EHR data 
extracted from a hospital system to generate mean-
ingful results with AI research. This reflects the fact 

Table 4  Demographics

 *N of Blood Pressure: AMC = 461693, UUH = 101438

**N of BMI : AMC = 457621, UUH = 77171

***N of Visits total : AMC = 571163, UUH = 172169

AMC (N = 572811) UUH (N = 175663) Total (N = 748474)

Gender ([F,M]) [257160, 315651] [79988, 95675] [337148, 411315]

Age (Year) 56.32 ± 14.72 52.11 ± 18.09 55.78 ± 15.20

Systolic blood pressure (mmHg)* 123.06 ± 12.61 129.05 ± 13.38 124.14 ± 12.95

Diastolic blood pressure (mmHg)* 74.29 ± 7.94 75.96 ± 9.07 74.59 ± 8.18

BMI (kg/m2)** 24.11 ± 3.50 24.04 ± 3.55 24.100 ± 3.513

CV/CS Encounter(N) ***

0 250160 14925 265085

1 68037 19489 87526

2 78406 19101 97507

≥ 3 174560 118654 293214

Test (N(%))

Echocardiography 428004 (74.71%) 110626 (62.97%) 538630 (71.96%)

Pulmonary function 265817 (46.40%) 38933 (22.16%) 304750 (40.71%)

Thallium SPECT 156615 (27.34%) – 156615 (20.92%)

Treadmill 68203 (11.90%) 25979 (14.78%) 94182 (12.58%)

CT 79064 (13.80%) – 79064 (10.56%)

Holter monitoring 46636 (8.14%) 15135 (8.61%) 61771 (8.25%)

Six-minute walk test 8871 (1.54%) 665 (0.37%) 9536 (1.27%)

Cardiac rehabilitation 1990 (0.34%) – 1990 (0.26%)

Pediatric echocardiography 1720 (0.30%) – 1720 (0.22%)

Table 5  Number of visits to the departments of Cardiology 
or Thoracic surgery

AMC (N = 321003) UUH (N = 157244) Total (N = 
478247)

Age (Year) 59.85 ± 13.21 57.28± 15.00 58.80 ±14.03

Outpatients 2548245 1854432 4402677

Inpatients 134846 71012 205858

ER 86429 – 86429

Table 6  The number of patients with major diseases

Diagnosis AMC UUH Total
(N = 357910) (N = 87877) (N = 445787)

Hypertension 200109 (55.91%) 37886 (43.11%) 237995 (53.38%)

Pain in throat and chest 142567 (39.83%) 38690 (44.02%) 181257 (40.66%)

Diabetes mellitus 112381 (31.39%) 30236 (34.40%) 142617 (31.99%)

Angina pectoris 61789 (17.26%) 9694 (11.03%) 71483 (16.03%)

Ischaemic heart disease 47836 (13.36%) 5847 (6.65%) 53683 (12.04%)

Cerebral infarction 24752 (6.91%) 8958 (10.19%) 33710 (7.56%)

Heart failure 15345 (4.28%) 4825 (5.49%) 20170 (4.52%)

Acute myocardial infarction 10543 (2.94%) 3853 (4.38%) 14396 (3.22%)

Cardiac arrest 1213 (0.003%) 1196 (0.013%) 2409 (0.005%)
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that EHRs include numerous unstructured free-text 
entries. These free-text readings contain important 
clinical insights made by clinicians as part of patients’ 
treatment. In setting up AI research, it is necessary to 
decide how to handle free-text readings. The simplest 
way is to process the free-text notes as sentences and 
infer the meaning between words, as in the NLP field 
study [17–19]. This approach is in line with a number of 
existing studies that derive useful meaning by analyzing 
the medical articles themselves by NLP [20]. However, 
the biggest problem with this method is that English 
in free-text readings differs between clinicians, hospi-
tals, and countries, unlike the English used in scientific 
communication within research articles. In different 
countries, these readings can be mixtures of the offi-
cial national language and English. Therefore, the use 
of free-text readings in AI research requires significant 
support from clinicians. Clinicians alone can under-
stand free-text readings, with specialized expertise in 
relevant topic needed for accurate interpretation.

We worked with clinicians to find valid patterns of 
readings, and performed rule-based NLP to convert 
results into variables and values. We considered vari-
ous ways to apply NLP to free-text readings, but in most 
cases required a lot of human labor. Therefore, we are 
working on more efficient automatic NLP research that 
can be applied regardless of locality.

Also, in the process of performing NLP, we created 
a descriptive table (i.e., dictionary of CardioNet) that 
describes clinically valid variables. Although several car-
diologists at AMC and UUH participated and reviewed 
this study, some extracted variables can be subjective 
compared to the numerical values. Therefore, we plan 
to strengthen the descriptive table by sharing it with the 
Korean Cardiology Association to collect the opinions of 
other cardiologists.

Third, in building CardioNet, we were assisted by 
numerous cardiologists, with most input involving stand-
ardization of the free-text readings. This is a common 
issue in building an EHR-based database for AI research 
in all types of diseases, including CVD. The current CDM 
for multi-center clinical research is not suitable for AI 
research. CDM is a good example of the standardization 
of deidentified patient data, with a number of hospitals 
building CDM-based datasets for clinical research. How-
ever, unlike clinical studies that focus on patient events, 
the important feature of EHR in AI research is the time-
series data. The performance of AI-based predictive 
research based on EHRs is determined by how well the 
changes in the patient’s state over time are embedded in 

Table 7  Percentage of patients with laboratory results

Laboratory test AMC(%) UUH(%) Total(%)

Creatinine 83.64 91.24 85.42

Cholesterol 83.60 93.25 85.86

ALT 83.53 92.21 85.57

AST 83.53 92.26 85.58

Bilirubin (total) 83.03 91.29 84.97

Albumin 83.02 91.34 84.97

Protein 83.01 91.30 84.96

Glucose 83.00 90.47 84.75

ALP 82.97 91.25 84.91

Hb 82.88 92.51 85.14

Platelet 82.88 92.48 85.13

Calcium 82.77 87.37 83.84

Uric acid 82.68 89.44 84.27

Potassium 80.54 87.91 82.27

Sodium 80.51 87.95 82.25

BUN 75.36 91.08 79.05

Chloride 65.94 87.42 70.98

CO2 (total) 65.89 83.48 70.02

Phosphorus 62.40 87.40 68.27

Triglyceride 53.61 37.55 49.84

HDL-Cholesterol 52.96 37.17 49.26

LDL-Cholesterol 44.09 31.45 41.12

CRP (quantity) 42.94 67.49 48.71

ESR 42.79 42.70 42.77

Hb A1c 38.66 32.00 37.09

CK 27.76 43.13 31.37

Troponin-I 25.48 11.62 22.23

hsCRP 17.64 14.67 16.94

Table 8  Prime features in echocardiography

LV: Left Ventricular, LVESD: LV dimension in end-systole, LVEDD: LV dimension 
in end-diastole, TR: Tricuspid regurgitation, LVPWES: LV posterior wall thickness 
in end-systole, LVPWED: LV posterior wall thickness in end-diastole, LVIVSES: LV 
interventricular septum thickness in end-systole, LVIVSED: LV interventricular 
septum thickness in end-diastole, LAd: Left atrial diameter, LVESV: LV volume in 
end-systole, LVEDV: LV volume in end-diastole, LVEF: LV ejection fraction

Description AMC (N = 428,004) UUH (N=110,626)

LVESD 30.25 ± 6.43 30.30 ± 5.76

LVEDD 47.77 ± 8.74 47.20 ± 5.57

LVPWES 13.93 ± 2.90 14.32 ± 2.25

LVPWED 9.02 ± 1.87 9.25 ± 1.55

LVIVSES 13.14 ± 2.88 13.42 ± 2.26

LVIVSED 9.09 ± 2.01 9.52 ± 1.74

LAd 37.39 ± 8.72 36.04 ± 6.23

LVESV 35.99 ± 18.94 36.83 ± 23.61

LVEDV 88.97 ± 32.39 80.82 ± 33.07

E/A ratio 0.93 ± 0.52 0.44 ± 0.54

E/E ratio 8.52 ± 7.18 9.64 ± 3.63

LVEF 58.83 ± 11.93 62.18 ± 8.47

LV mass 163.78 ± 57.80 149.31 ± 45.74
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the training data. Therefore, it is necessary to develop a 
CDM for clinical AI research that standardizes patient 
events over time.

Finally, we are preparing a number of AI-based stud-
ies including automatic NLP as future work using Car-
dioNet. Recently, deep learning technology in medical 
images is developing with results that exceed experts, but 
it is also necessary to apply AI to data linking raw images 
and EHR. Since the honest broker in the de-identification 
process has a key, the CardioNet and image and signal 
raw data in PACS and hospital local databases can be 
connected. This connection is essential for the realiza-
tion of patient-specific medical care, and we are carrying 
out related research. As a result, we are in the process of 
developing and characterizing an AI model that can per-
form CVD risk prediction according to the characteris-
tics of CVD, where prevention is more important than 
diagnosis.

Conclusions
We built a large-scale and integrated CardioNet data-
base to apply AI technology in CVDs for the detection of 
risk factors, development of predictive models for early 
diagnosis, and improving the care of patients. First, we 
obtained the EHR data with approval from the IRB of 
AMC and UUH. Second, we processed structured and 
unstructured data appropriately using medical expertise 
to generate data that can be directly applied to the AI 
model. Finally, we standardized and validated the data in 
CardioNet to allow multi-centered research. CardioNet 
can contribute to the early prediction of cardiac prob-
lems and promote further CVD-related research.
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