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Abstract: Cardiac hypertrophy is an important and independent risk factor for the development of
cardiac myopathy that may lead to heart failure. The mechanisms underlying the development of
cardiac hypertrophy are yet not well understood. To increase the knowledge about mechanisms
and regulatory pathways involved in the progression of cardiac hypertrophy, we have developed
a human induced pluripotent stem cell (hiPSC)-based in vitro model of cardiac hypertrophy and
performed extensive characterization using a multi-omics approach. In a series of experiments,
hiPSC-derived cardiomyocytes were stimulated with Endothelin-1 for 8, 24, 48, and 72 h, and their
transcriptome and secreted proteome were analyzed. The transcriptomic data show many enriched
canonical pathways related to cardiac hypertrophy already at the earliest time point, e.g., cardiac
hypertrophy signaling. An integrated transcriptome–secretome analysis enabled the identification of
multimodal biomarkers that may prove highly relevant for monitoring early cardiac hypertrophy
progression. Taken together, the results from this study demonstrate that our in vitro model displays
a hypertrophic response on both transcriptomic- and secreted-proteomic levels. The results also shed
novel insights into the underlying mechanisms of cardiac hypertrophy, and novel putative early
cardiac hypertrophy biomarkers have been identified that warrant further investigation to assess
their potential clinical relevance.

Keywords: cardiac hypertrophy; cardiomyocytes; disease model; endothelin-1; stem cells; transcriptomics;
proteomics

1. Introduction

Cardiovascular diseases (CVD) are estimated to be responsible for 31% of all deaths
worldwide [1]. Cardiac hypertrophy is, in its pathological form, irreversible and is initially
a process where the heart is compensating for an increased workload, commonly due
to extrinsic pathological stimuli, such as myocardial infarction, aortic stenosis, chronic
hypertension, or other conditions, that alter the homeostasis of the heart [2]. In order to
increase the quality of life and outcomes for affected patients, new and improved treatment
options are needed.

To investigate the changes that occur during the development of cardiac hypertrophy,
in vitro models based on human pluripotent stem cells offer an attractive alternative. In

Life 2022, 12, 293. https://doi.org/10.3390/life12020293 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life12020293
https://doi.org/10.3390/life12020293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-5134-4749
https://orcid.org/0000-0001-9242-4852
https://doi.org/10.3390/life12020293
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12020293?type=check_update&version=3


Life 2022, 12, 293 2 of 23

the past decade, the availability of human-induced pluripotent stem cell-derived cardiomy-
ocytes (hiPSC-CMs) with high similarity to bona fide CMs has increased rapidly [3–6].
Several strategies to induce hypertrophy in hiPSC-CMs have also been developed using
neurohormonal stimulation- or stretch-induced methods [7–9]. Endothelin-1 (ET-1) is fre-
quently used in neurohormonal models and has been shown to induce hypertrophy within
24 h [10–12]. ET-1 binds to G-protein coupled receptors, which downstream leads to the
activation and production of inositol-1.4.5-triphosphate (IP3), resulting in the release of
intracellular calcium (Ca2+). The release of intracellular Ca2+ has been shown to mediate
hypertrophic signaling via the calcineurin-NFAT pathway and potentially through other
signaling pathways [13,14]. ET-1 stimulation is also an inducer of MAPK signaling, which is
involved in CM cell growth [15]. Although these in vitro models have provided important
knowledge about mechanistic aspects of cardiac hypertrophy, additional characterization
is needed to support their further use as relevant disease models [16].

Two well-known protein markers altered in cardiac hypertrophy are ANP and BNP.
These proteins are natriuretic peptides that are secreted from CMs in response to the stretch-
ing of the myocardium [17]. They both lower vascular tone and cardiac output as well as
regulate blood volume through inhibition of aldosterone synthesis and renin secretion [18].
There are also specific signaling pathways that are involved in cell growth, cytoskeleton
remodeling, fibrosis, and metabolism that are altered during the development of cardiac
hypertrophy [19–23]. With translatable in vitro models, we can expand our knowledge of
the molecular regulation of cardiac hypertrophy and identify novel multimodal biomarkers
that can aid in the early detection of the disease.

RNA sequencing (RNA-seq) analysis has become less expensive and more standard-
ized over the past decade and is ideal for studying the whole transcriptome and for the
investigation of individual genes as well as groups of genes. It provides a snapshot of
all transcribed genes in a sample and can reveal underlying mechanisms associated with
cellular phenotype or function.

Recent advances in proteomic technologies have facilitated the identification of biomark-
ers in the secretome using high-throughput affinity proteomics, which can be used for the
detection of proteins in serum, plasma, and conditioned cell culture media [24]. Using this
method, it is possible to quantify the proteins that are secreted by the CMs and subsequently
identify their possible associations with cardiac hypertrophy. Moreover, the identification of
novel multimodal biomarkers that can detect early signs of cardiac hypertrophy would also
be more approachable. A major advantage of this technique over mass spectrometry is that
it requires very low sample volume, and it can be applied using fluids with a high content
of albumin, such as cell culture media, which has been a limitation for other methods [25].

In this study, we used hiPSC-CMs stimulated with ET-1 as a model system to explore
changes in gene- and secreted protein expression. We used RNA-seq and high-throughput
affinity proteomics together with ELISA to characterize the hypertrophic response of ET-1
stimulation in the cells. Moreover, Ingenuity Pathway Analysis (IPA) was applied to
analyze altered canonical pathways, cardiac effects, and predicted upstream regulators
based on the differentially expressed genes (DEGs).

2. Materials and Methods
2.1. Cardiomyocytes

Human CMs derived from the hiPSC line Cellartis® ChiPSC22 were obtained from
Takara Bio (Takara Bio Europe AB, Gothenburg, Sweden). The CMs were cryopreserved at
day 19 following the onset of differentiation using the STEM-CELLBANKER® (cat 11890,
Amsbio, Cambridge, MA, USA). CMs were aliquoted into vials (6 million/vial) in the
freezing procedure and then stored in a −150 ◦C freezer. Before freezing the CMs, they
showed regular beating characteristics with more than 95 percent of cardiac troponin
T-positive cells.
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2.2. Flow Cytometry

Flow cytometry was performed according to the protocol previously described in
Johansson et al. [10].

2.3. Hypertrophy Induction

There are several strategies to induce hypertrophy in CMs with ET-1. In this study,
we have used the method previously described in [10]. Cryopreserved CMs differen-
tiated by Takara Bio (Takara Bio Europe AB, Gothenburg, Sweden) were thawed and
plated into 8 wells in a 24-well plate. The thawing media consisted of Advanced RPMI
(cat 12633012, ThermoFisher Scientific, Waltham, MA, USA), GlutamMAX™ (cat 35050061,
ThermoFisher Scientific), B-27™ (cat 17504044, ThermoFisher Scientific), and Y27632
(cat Y0503, Sigma–Aldrich, St. Louis, MO, USA). Twenty-four hours after thawing and
plating the cells, media was changed (0.8 mL/well). The culture media used was the same
as the thawing media except that Y27632 was excluded. To let the CMs recover from the
thawing procedure, they were cultured for 6 days, with the medium change every other day,
before starting the hypertrophy stimulation with ET-1 (10 nM). At the start of stimulation,
the CM showed normal beating characteristics and morphology. For the hypertrophy
stimulation, the media was changed to the standard CM culture media with the addition of
ET-1 (10 nM). After 8 h, CMs from one well were collected. At 24 h, CMs from a second well
were collected. In the remaining two wells (the 48- and 72-h timepoint wells), the media
was changed to new CM culture media with ET-1. At 48 h, CMs from the 48 h timepoint
well were collected, and the media was changed in the 72-h timepoint well. The exact same
procedure was performed for the control cells but with ET-1 excluded from the media. The
whole procedure was repeated at five separate timepoints (n = 5).

2.4. RNA-Seq Analysis

Library construction was performed using Illumina Truseq stranded total RNA with
the Illumina Ribozero method. Clustering was done by ‘cBot’, and samples were sequenced
on a NovaSeq6000 (NovaSeq Control Software 1.6.0/RTA v3.4.4) with a 2 × 51 setup
using ‘NovaSeqXp’ workflow in the ‘S1′ mode flowcell. The Bcl to FastQ conversion
was performed using bcl2fastq_v2.19.1.403 from the CASAVA software suite. The quality
scale used was Sanger/phred33/Illumina 1.8+. Processing of FASTQ files was carried
out by the SciLifeLab National Genomics Infrastructure at the Uppsala Multidisciplinary
Center for Advanced Computational Science, Sweden. Sequenced reads were quality
controlled with the FastQC software and pre-processed with Trim Galore. Processed reads
were then aligned to the reference genome of Homo sapiens (build GRCh37) with the
STAR aligner. Read counts for genes were generated using the featureCounts library and
normalized FPKM values calculated with StringTie. Technical documentation on the RNA-
seq pipeline can be accessed here: https://github.com/SciLifeLab/NGI-RNAseq (accessed
at 13 January 2022). Raw and processed data are available for download at ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/, accessed at 13 January 2022) accession number:
E-MTAB-11030

2.5. Differential Expression Analysis

The raw gene count data, including 63,677 transcripts from 40 samples, were imported
into R [26] for further analysis, and statistical testing for differential expression was carried
out with the quasi-likelihood F-test in the edgeR package [27]. Only genes with >1.5-fold
change (FC) were included in the results. A false discovery rate (FDR) of ≤0.05 was
considered statistically significant.

To explore the overlap of DEGs between the different time points, Venn diagrams of
up- and downregulated genes, respectively, were generated using InteractivVenn [28].

Cluster analysis was performed using the kmeans R package. Only genes annotated
with the ‘cardiac muscle hypertrophy’ gene ontology term (GO:0003300) were selected
and included in the clustering analysis. The input data for the clustering was mean FPKM

https://github.com/SciLifeLab/NGI-RNAseq
https://www.ebi.ac.uk/arrayexpress/
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values for ET-1 stimulated samples. To determine the number of clusters to be used in
k-means, the gap statistic method, which considers the within-cluster dispersion, was
applied. In total, 11 clusters were suggested as the optimal for the number of clusters
(Figure S1).

2.6. Upstream Regulators

For in-depth analysis of DEGs, we used the QIAGEN’s Ingenuity® Pathway Analysis
(IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity, accessed at 13 January 2022)
software for upstream regulatory analysis of the identified DEGs.

All DEGs with an absolute FC > 1.5 were used as input in the analysis. The Z-score is a
measurement to predict the activation or inhibition of regulators based on the relationships
with the dataset genes and direction of change in dataset genes (positive values: activated;
negative values: inhibited). A Z-score > 2 is considered statistically significant [29]. The
overlap p-value measures whether there is a statistically significant overlap between the
DEGs and the genes that are regulated by an upstream regulator. It was calculated using
Fisher’s exact test, and significance attributed to p-values < 0.01. We limited the upstream
regulator analysis to only include upstream regulators that were genes, RNAs, or proteins.

2.7. Transcription Regulators

In IPA, filtering was applied to only include DEGs that are TRs. Of this subset of DEGs,
genes with evidence of a direct association with hypertrophy of the heart were selected for
the analysis.

2.8. Canonical Pathway and Cardiac Clinical Outcome Analysis

For the canonical pathway analysis, all DEGs with FC above 1.5 or below −1.5 were
selected as input in the analysis. A canonical pathway had to be significantly activated or
inactivated at least in one of the 4 time points to be included in the resulting output. For the
cardiac clinical outcome analysis, the IPA tox function was used. Clinical outcomes with
p < 0.05 were considered as enriched. The activation Z-score was used to predict the activa-
tion state of the clinical outcome, and Z-score > 2 was considered statistically significant.

2.9. Affinity Proteomics and ELISA

Conditioned media from all the samples was sent to Olink (Uppsala, Sweden) for PEA
analysis. In short, the PEA involves binding distinct polyclonal oligonucleotide-labeled
antibodies to the target protein, followed by quantification by real-time quantitative PCR.
A total of 40 undiluted samples were analyzed on 3 different Olink panels (Cardiovascular
II, Cardiovascular III, and the Inflammation panel).

The protein measurement results from the PEA analysis are reported as normalized
protein expression, NPX, an arbitrary unit in the log2 scale. NPX data were imported and
analyzed in R. Missing values were imputed by the mean of remaining replicates for the
sample group. Protein measurements were background corrected by first de-logging the
NPX values and subtracting the negative control sample for all samples. The data were
then log2-transformed again. Values below 0 after background-correct were replaced by the
protein-specific limit of detection (LOD) value minus one (when all values were below 0), or
the lowest NPX value for the protein minus one (when log2 values were present). The data
were then filtered to remove proteins where the expression was below LOD in all biological
samples, after which 115 proteins remained. Proteins were retained if all replicates were
in at least one sample group which had NPX values above LOD. Statistical analysis of
differential expression was performed with limma, and p-values were corrected for multiple
testing with the Benjamin–Hochberg method. Proteins with an adjusted p-value < 0.05 and
absolute fold change > 1.5 were considered significant.

Due to high concentration, a few proteins could not be analyzed with the affinity
proteomics method, and these were analyzed separately with ELISA kits, according to the
manufacturer’s instructions (Table 1).

www.qiagen.com/ingenuity
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Table 1. ELISA kits used in the study.

ELISA Kit

Protein Manufacture Cat Number

ANP ThermoFisher Scientific EIAANP
COL1A1 Abcam ab210966
HSPG Abcam ab274393
IGFBP-7 ThermoFisher Scientific EH252RB
PAI1 ThermoFisher Scientific BMS2033
proBNP ThermoFisher Scientific EHPRONPPB

2.10. Correlation Analysis

All the gene–protein pairs that had the protein significantly differentially expressed at
one time point or more were included in the correlation analysis. Two different correlation
analyses were performed. One correlation was calculated between mRNA levels and
protein levels from ET-stimulated cultures at the same time point. The second correlation
analysis was performed comparing mRNA levels, and proteins levels from ET-stimulated
cultures with the protein levels shifted one time point. The time-shifted analysis resulted
in the following comparisons: mRNA 8 h vs. protein 24 h, mRNA 24 h vs. protein 48 h,
and mRNA 48 h vs. protein 72 h. Analyses were performed using Pearson’s correlation
coefficients (GraphPad Prism 9.2.0. GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Cardiomyocyte Homogeneity

The differentiated hiPSC-CMs at day 19 showed a high percentage (97%) of cTnT+
cells when analyzed with flow cytometry (Figure S2).

3.2. Transcriptomic Perturbations in Response to ET-1 Stimulation

Control and ET-1 stimulated culture samples were collected at 8, 24, 48, and 72 h.
The experiment was repeated 5 times, resulting in 40 samples in total. All samples were
analyzed with RNA-seq, and differential expression analysis was performed. The largest
number of differentially expressed genes (DEGs) was identified at the 8-h time point. The
number of significantly upregulated DEGs (FC > 1.5) were 1239, 536, 663, and 467 at time
points 8, 24, 48, 72 h (h), respectively (Figure 1A). For significantly downregulated DEGs
(FC > 1.5), the corresponding numbers were 1543, 845, 787, and 261 at 8, 24, 48, and 72 h,
respectively (Figure 1A). The same trend with the highest number of DEGs at the beginning
of the ET-1 stimulation was observed when setting the cutoff to FC > 2.0 (Figure 1A).
The Venn diagrams visualize the number of overlapping DEGs between the time points
(Figure 1B). For upregulated DEGs, 32 genes were overlapping between all time points,
and for downregulated genes, the corresponding number was 27. The overlapping up- and
downregulated genes are presented in Tables 2 and 3.

All the overlapping genes from the Venn diagrams were analyzed using IPA to investi-
gate if they have a known connection to hypertrophy. Of the 59 genes that were overlapping
between all time points, four were included in the ’Enlargement of heart’ classification
from IPA. These were SLC6A4, ADRB3, CTSV, and PPP1R13L (Figure 1D).
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Figure 1. Differential expression analysis. (A) Graphs showing the number of DEGs at the different
time points. Top row shows the number of DEGs with fold change >1.5. The two diagrams below show
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the number of DEGs with fold change >2.0. The y-axis shows the number of genes, and the x-axis,
the time point. (B) Venn diagram illustrating the overlap of DEGs between the time points. (C) Bar
plot showing the top 20 most up-and downregulated genes at 8, 24, 48, and 72 h. (D) Differentially
expressed genes that were overlapping between all four time points. The orange highlights represent
terms associated with the annotation ‘Enlargement of heart’ in the IPA’s knowledge database.

Table 2. Overlapping upregulated DEGs between 8, 24, 48, and 72 h time points with assigned
gene symbol.

Gene Symbol Entrez Gene Name

A2M alpha-2-macroglobulin
ABRA actin-binding Rho activating protein
AHNAK2 AHNAK nucleoprotein 2
ANKRD9 ankyrin repeat domain 9
AQP3 aquaporin 3 (Gill blood group)
ARL4C ADP ribosylation factor-like GTPase 4C
CALB2 calbindin 2
CDCP1 CUB domain-containing protein 1
CSDC2 cold shock domain-containing C2
CX3CL1 C-X3-C motif chemokine ligand 1
FAM83G family with sequence similarity 83 member G
HK2 hexokinase 2
IRS2 insulin receptor substrate 2
NEAT1 nuclear paraspeckle assembly transcript 1
NEB nebulin
PACSIN1 protein kinase C and casein kinase substrate in neurons 1
PDLIM4 PDZ and LIM domain 4
PDYN prodynorphin
PNOC prepronociceptin
PPP1R13L protein phosphatase 1 regulatory subunit 13 like
PPP2R2C protein phosphatase 2 regulatory subunit β-gamma
RAB11FIP4 RAB11 family interacting protein 4
RHOF ras homolog family member F, filopodia associated
SLC12A8 solute carrier family 12 member 8
SLC6A17 solute carrier family 6 member 17
SPOCK2 SPARC (osteonectin)-, cwcv-, and kazal-like domains proteoglycan 2
STC1 stanniocalcin 1
TGFA transforming growth factor-alpha
VTN vitronectin
WIPF3 WAS/WASL interacting protein family member 3

Table 3. Overlapping downregulated DEGs between 8, 24, 48, and 72 h time points with assigned
gene symbol.

Gene Symbol Entrez Gene Name

ADRB3 adrenoceptor beta 3
BLM BLM RecQ-like helicase
CALN1 calneuron 1
CCL21 C-C motif chemokine ligand 21
CCNE2 cyclin E2
CNRIP1 cannabinoid receptor-interacting protein 1
CTSV cathepsin V
DRD1 dopamine receptor D1
E2F2 E2F transcription factor 2
FAM111B family with sequence similarity 111 member B
GFRA1 GDNF family receptor alpha 1
HERC5 HECT and RLD domain containing E3 ubiquitin-protein ligase 5
HRK harakiri, BCL2 interacting protein
LRRN1 leucine-rich repeat neuronal 1
LRRN3 leucine-rich repeat neuronal 3
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Table 3. Cont.

Gene Symbol Entrez Gene Name

MCM10 minichromosomal maintenance 10 replication initiation factor
METTL7A Methyltransferase-like 7A
MTERF2 mitochondrial transcription termination factor 2
PDE11A phosphodiesterase 11A
PRIMA1 proline-rich membrane anchor 1
SFRP5 secreted frizzled-related protein 5
SLC6A4 solute carrier family 6 member 4
SNCAIP synuclein alpha interacting protein
STOX1 storkhead box 1
UNC5D unc-5 netrin receptor D
XIRP2 xin actin-binding repeat containing 2
XRCC2 X-ray repair cross-complementing 2

In Figure 1C, the top 20 up- and downregulated DEGs at each time point are presented,
and a full list of DEGs is shown in Supplementary Table S1. Non-protein coding genes
were excluded from these gene lists. Many genes of particular interest from a cardiac
hypertrophy perspective are represented in these lists. At the 8 h time point, APELA,
ADRB3, MAP2K6 were among the most downregulated genes. APELA, a gene that codes
for a peptide hormone that binds to the apelin receptor, showed the largest downregulation
after ET-1 stimulation with a log2 FC-values above six (p < 9.3 × 10−6). Other genes
associated with hypertrophy and that were among the top 10 most upregulated genes were
PDYN, PNOC, and TGFA. At 24 h, the log2 FC for PDYN was 4.8 (p = 4.27 × 10−192), which
is the highest of all genes at that time point. PNOC was significantly upregulated at all
time and was among the top 10 most upregulated at 24, 48, and 72 h, with the largest log2
FC of 3.6 at 24 h (p = 7.2 × 10−79). TGFA was also significantly upregulated at all time
points and among the top 10 most upregulated at 24 and 48 h. The log2 FC at 48 h was 2.0
(p = 3.7 × 10−63).

3.3. Pathway Analysis

To explore enriched canonical pathways among the DEGs and assess changes over
time, all DEGs (FC > 1.5) were analyzed using IPA. After filtering out pathways with
an absolute Z-score > 2, 78 pathways were significantly activated or inhibited at one or
more of the four time points (Figure 2A). At the 8-h time point, the highest number of
activated pathways (27 pathways with Z-score > 2) was observed, and at the 24-h time
point, the highest number of inhibited pathways (15 pathways with Z-score < −2) was
identified. One pathway of high relevance for our study was the ‘Cardiac hypertrophy
pathway’ (enhanced). This pathway, like many other pathways, was activated after 8 h
and subsequently downregulated at the later time points (Figure 2A,B). At 8 h, a total of
92 genes were differentially expressed in this pathway, and at the following time points
(24, 48, and 72 h), these numbers were 28, 34, and 20, respectively.

Cytoskeletal changes are integral parts of cardiac remodeling, a hallmark of cardiac
hypertrophy, and ‘Actin cytoskeletal signaling’ was the most enriched canonical pathway
at 8 h (Z-score = 4.6, p = 1.4 × 10−4). Similar to ‘Cardiac hypertrophy signaling’, ‘Actin
cytoskeleton signaling’ showed the highest number of DEGs after 8 h (in total 46), and
16, 17, and 9 DEGs at 24, 48, and 72 h, respectively (Figure 2A,C). Pathways that showed
strong activation at later time points were the ‘Superpathway of Inositol Phosphate Com-
pounds’ (highest Z-score at 72 h), ‘PPARα/RXRα Activation’, and ‘Apelin Cardiomyocyte
Signaling Pathway’. ‘PPARα/RXRα’ was the canonical pathway with the largest difference
in Z-score when comparing 8 to 72 h, ranging from −1.671 to 4.12 (Figure 2A).
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Figure 2. Canonical pathway analysis. (A) Table showing all the pathways that were significantly
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enrichment. (B) Diagram of the ‘Cardiac hypertrophy signaling pathway’. Red and green represent
up- and downregulated gene/gene groups, respectively. (C) Diagram of the ‘Actin cytoskeleton
signaling pathway’.
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3.4. Upstream Regulators

An upstream regulator analysis was performed using IPA and the DEGs as input to
identify transcription factors, genes, or proteins that could explain the observed changes
in gene expression. In Figure 3A, the top 10 upstream regulators, both activating and
inhibiting, are presented. In total, IPA identified 275 upstream regulators (238 activated and
37 inhibited) at 8 h (Supplementary Table S2). Of these, 40 were differentially expressed in
our dataset. Not surprisingly, ET-1 was one of the upstream regulators with the highest
absolute prediction scores (Z-score = 4.9), which demonstrates that our cell-based in vitro
model mimics the in vivo response to ET-1, based on IPA’s current knowledge base. At 24 h,
in total, 89 upstream regulators were identified (65 activating and 24 as inhibiting). Two of
the inhibiting regulators were also differentially expressed in our dataset, E2F2 and LMNB1.
At 48 h, 160 upstream regulators were identified (62 activating and 98 inhibiting) (Table S2).
Nine of these were also differentially expressed in our dataset. At 72 h, 10 upstream
regulators were identified (6 activating and 4 inhibiting). S100A8, one of the inhibiting
regulators, was also identified as differentially expressed (downregulated) in our dataset.
There was no overlap of any upstream regulator between all the time points. However, some
upstream regulators overlapped between two or more time points (Figure 3B and Table S3).

3.5. Transcription Regulators

From the upstream regulator analysis, all differentially expressed transcription regula-
tors (TRs) were selected for their association with the progression of the cardiac hypertrophy
response. At 8 h, 15 TRs were differentially expressed, and of those, five were directly
associated with ‘Hypertrophy of the heart’ (Figure 3C). Notably, in total, 180 of its target
genes, MYC, were overlapping with the DEGs in our dataset (Figure 3C). A GO enrichment
analysis of target genes of MYC showed ‘Regulation of apoptotic process’ as the most
enriched GO term (p = 3.25 × 10−13). For SRF, the most enriched term was ‘Muscle contrac-
tion’ (p = 6.25 × 10−8). TBX5 showed the most heart-specific enriched GO terms. Among
the top enriched GO terms were ‘Cardiac muscle tissue development’ (p = 5.98 × 10−6),
‘Heart morphogenesis’ (p = 1.63 × 10−5) and ‘Response to muscle stretch’ (p = 3.41 × 10−5).
At 24 h, two TRs were identified as differentially expressed, and one of them (TBX5) was
associated with ‘Hypertrophy of cardiac-like myocytes’ (Figure 3D). At 48 h, 4 TRs were
differentially expressed. One of them, FOXM1, is associated with ‘Hypertrophy of left
ventricle’ (Figure 3E). Many of the enriched GO terms among the target genes of FOXM1
were involved in the regulation of the cell cycle. At the last time point, 72 h, no TRs were
identified as differentially expressed.

3.6. Cardiac Clinical Outcomes

To link our experimental data to clinical pathology endpoints, IPA’s tox function tool
was applied, and the overlap between DEGs in our data and sets of genes associated
with various clinical pathology endpoints was investigated. At 8 h, 71 endpoints had a
significant overlap with DEGs in our data (Figure 4A). The endpoint with the highest gene
overlap was ‘Enlargement of heart’ (p = 1.69 × 10−13). Four of the significant endpoints
were also identified as activated (Z-score > 2). These were ‘Congenital heart disease’, ‘Atrial
or ventricular septal defect’, ‘Ventricular septal defect’, and ‘Atrial septal defect’. At 24 h,
81 cardiac endpoints had a significant gene overlap with our set of DEGs, and the most
significant gene overlap was also associated with ‘Enlargement of heart’ (p = 3.87 × 10−9)
(Figure 4B). At 48 h, there were fewer significant cardiac endpoints identified, and, in total,
18 were shown as significant, and among these, ‘Hypertrophy of heart’ showed a notably
low overlap p-value (p = 0.0005) (Figure 4C). At the last time point (72 h), only the endpoint
named ‘Damage of cardiac muscle’ was significant (p = 0.036) (Figure 4D).
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Figure 3. Upstream and transcription regulator analysis. (A) Graphs show the predicted top 10 most
activated or inhibited upstream regulators at 8, 24, 48, and 72 h. The y-axis shows the −logP value of
the overlap between the genes in the dataset and genes regulated by an upstream regulator. Red and
green bars represent activated and inhibited regulators, respectively. (B) Venn diagram showing the
overlap of upstream regulators between the different time points. (C) Transcription regulators that
were differentially expressed at 8 h. Dotted line shows transcription regulators that have an association
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with IPAs hypertrophy of heart classification. (D) Transcription regulators that were differentially
expressed at 24 h. Dotted line shows which transcription regulator that have an association with
IPA’s ‘Hypertrophy of cardiac-like myocytes’ classification. (E) Transcription regulators that were
differentially expressed at 48 h. Dotted line shows which transcription regulator that has an associa-
tion with IPA’s ‘Hypertrophy of left ventricle’ classification. Tables to the right of the (C–E) show the
GO biological processes terms that were enriched when analyzing the TRs target genes that were
differentially expressed at the indicated time point.
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Figure 4. Cardiac clinical outcome analysis. Panels (A–D) show the significant (p < 0.05) cardiac
clinical endpoints from IPAs cardiotoxic analysis at 8, 24, 48, and 72 h, respectively. The x-axis shows
the −logP value of the overlap, and the red line represents the significance threshold.

3.7. Cluster Analysis

Cluster analysis using k-means was performed using a set of hypertrophy-associated
genes (GO term 0003300, ‘Cardiac muscle hypertrophy’) to identify genes with correlated
expression profiles during ET-1 stimulation. Using the k-means clustering algorithm, 11 dis-
tinct clusters were identified (Figure S3. The genes in cluster 2 showed a downregulation
between time point 8 h compared with the later time points (Figure 5A). The majority of
the genes in this cluster are involved in the positive regulation of cardiac hypertrophy.
The two genes in cluster 4, AKAP1 and FBX032, which are negative regulators of cardiac
hypertrophy, had their peak expression at 24 h and were decreased at the later time points
(Figure 5B). Cluster 5 was of particular interest for this analysis, and the genes in this
cluster showed relatively stable expression levels when comparing the different time points
(Figure 5C). These genes are involved in both positive and negative regulation of cardiac
hypertrophy. Genes in cluster 7 showed increased expression over time, and the child
GO terms associated with these genes show conflicting regulation of cardiac hypertrophy;
some are positive regulators, whereas others are negative regulators (Figure 5D). The genes
in cluster 9 showed the highest expression values at the 24 h time point, and except for



Life 2022, 12, 293 13 of 23

EDN1, they sustained a higher expression compared to the 8 h time point (Figure 5E).
The cluster analysis showed that hypertrophy-associated genes have various expression
patterns, which also change over time.
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Figure 5. Cluster analysis of genes annotated with the GO term 0003300 ‘Cardiac muscle hypertrophy’.
Panels (A–E) show the genes included in a particular cluster generated with the k-means cluster
algorithm. The y-axis shows normalized FPKM values, and the x-axis shows the different time
points. The tables to the right of the graphs show a description of the child GO term associated with
each gene.

3.8. Protein Expression

The proteomics analysis of the conditioned cell media revealed several differentially
expressed secreted proteins. In total, 23 proteins were differentially expressed (FC > 1.5,
p < 0.05) in the ET-1 stimulated cells at some time point. Eighteen were identified from the
affinity proteomics analysis and five from the ELISA analysis (Figure 6A,C). The number
of differentially expressed proteins at 8, 24, 48, and 72 h were 5, 12, 11, and 9, respectively
(Table 4). The lowest number of differentially expressed proteins were observed at 8 h,
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which is an opposite pattern versus the gene expression results that showed the highest
number of DEGs at 8 h. Interestingly, only 2 of the 23 differentially expressed proteins were
downregulated. These proteins were Interstitial collagenase (MMP1) and Collagen type 1
alpha (COL1A1) (Figure 6A).
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Figure 6. Proteomics. (A) All differentially expressed proteins (FC > 1.5 p < 0.05) from the affinity
proteomics analysis. NPX values (normalized) are represented on the y-axis and the time point on
the x-axis. (B) Venn diagram showing the overlap of differentially expressed proteins between all
time points. Tables show the proteins that overlap. (C) Differentially expressed proteins analyzed
with ELISA. (D) All the differentially expressed proteins from the affinity proteomics and the ELISA
analysis. Lines show which proteins that have an association with hypertrophy according to the IPA’s
knowledge database. Red and green colors represent up- and downregulation, respectively. Standard
error of mean (SEM) is shown as error bars (n = 5). * = p < 0.05, ** = p < 0.01 *** = p < 0.001.

At 8 h, ‘CCL-4’ was the most upregulated protein with a FC of 4.8 (p = 0.006). This
chemokine was among the highest upregulated proteins at 24 h as well (FC = 7.4, p = 0.003),
together with ‘CCL-3’ (FC = 7.7, p = 0.002) (Figure 6A). Another protein that was signifi-
cantly upregulated at both 8 and 24 h was ‘Proheparin-binding EGF-like growth factor’,
which showed a more than 2-fold upregulation at both time points (p < 0.001) (Figure 6A).
At 48 h, ‘Chitinase-3-like protein 1’ was the most upregulated protein with a FC of 3.2
(p = 0.0009), and it was also upregulated at 24 h (FC = 2.1, p = 0.02). At 72 h, several
additional proteins were detected in the analysis. The top 2 most upregulated proteins at
72 h were ‘Heme oxygenase 1’ and ‘Thrombomodulin’, which had a FC of 2.8 (p = 0.03) and
2.6 (p = 0.04), respectively. (Figure 6A).

Using ELISA, we identified additional proteins that due to high concentrations could
not be quantified by the affinity proteomics method. These were ANP, ProBNP, HSPG2,
PAI1, and COL1A1. The concentration of ANP was significantly increased in the stimulated
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groups at 24 (FC = 1.5, p < 0.01) and 48 h (FC = 1.7, p < 0.01). ProBNP concentration was
significantly increased at 8 (FC = 4.0, p = 0.02), 24 (FC = 2.6, p < 0.01), and 48 h (FC = 2.4,
p < 0.01). HSPG concentration was significantly increased at 72 h (FC = 1.8, p = 0.05). PAI1
was significantly increased with a FC > 1.5 at 8, 24, and 48 h; the highest FC was observed
at 24 h (FC = 9.3, p < 0.01). COL1A1 concentration was significantly decreased at 48 h
(FC = −1.6, p = 0.02) (Figure 6C).

Table 4. Differentially expressed secreted proteins that were detected in the culture media. Up- and
down arrows describe that the protein was significantly up- or downregulated at the given time point
(FC > 1.5, p < 0.05).

Differentially Expressed Secreted Proteins

Gene Symbol 8 h 24 h 48 h 72 h

CCL4 ↑ ↑
HBEGF ↑ ↑
CXCL8 ↑ ↑
NPPB ↑ ↑ ↑

SERPINE1 ↑ ↑ ↑
MMP1 ↓
CCL3 ↑

CXCL1 ↑
TNFRSF11B ↑

CHI3L1 ↑ ↑
NPPA ↑ ↑
CCL20 ↑ ↑

RARRES2 ↑ ↑
CCL2 ↑
LDLR ↑
PRSS8 ↑ ↑
VEGFA ↑ ↑

PGF ↑ ↑
COL1A1 ↓

TNFRSF10B ↑
HMOX1 ↑
HSPG2 ↑
THBD ↑

Out of the 23 proteins that were identified as differentially expressed, 10 were anno-
tated with ’Enlargement of heart’, according to the IPA knowledge database. These proteins
were COL1A1, HBEGF, HMOX1, HSPG2, MMP1, NPPA, PGF, SERPINE1, TNFRSF11B, and
VEGFA (Figure 6D).

A correlation analysis was performed comparing the gene expression and secreted
protein expression in ET-1 stimulated cultures. To explore if there was a time delay from an
mRNA molecule to a produced and secreted protein that can be measured, we performed
two different correlation analyses—one with mRNA expression and protein expression
from the same time point and one with the protein expression shifted one time point (e.g.,
mRNA at 8 h vs. protein at 24 h). Interestingly, the time-shifted analysis showed a strong
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correlation (r > 0.8) for 12 of the 23 analyzed gene–protein pairs. For the “no time-shift”
analysis, the corresponding number was five (Table 5).

Table 5. Correlation (r-values) between mRNA and protein of ET-1 stimulated CMs. Bold text
indicates a higher correlation.

Correlation between mRNA and Protein Expression after ET-1 Stimulation

Gene Symbol No Time-Shift Time-Shifted

CCL2 0.31 0.95

Increased
correlation

CCL20 0.31 1
CCL3 0.42 0.99
CCL4 0.62 1

CHI3L1 0.34 0.77
COL1A1 0.17 0.88
CXCL8 0.11 0.99

HMOX1 0.03 0.56
HSPG2 0.26 0.88
LDLR −0.35 0.75
MMP1 0.43 0.7
NPPB 0.90 0.99
PRSS8 0.92 0.99

RARRES2 0.72 0.93
SERPINE1 0.83 0.93

THBD 0.46 0.54
TNFRSF10B 0.48 0.87
TNFRSF11B −0.38 0.59

CXCL1 0.77 0.42

Decreased
correlation

HBEGF 0.95 0.61
NPPA 0.94 0.29
PGF −0.13 −0.99

VEGFA 0.75 −0.96

4. Discussion

In this study, we have used a cell-based model of cardiac hypertrophy by stimulat-
ing hiPSC-derived CMs with ET-1 and characterized the response on transcriptome and
secretome levels. The results were in line with previous studies and provided further
insights into the molecular machinery underlying the initiation and development of cardiac
hypertrophy [10,11,30]. Our results illustrated that known cardiac hypertrophy genes
were differentially expressed in our model and signaling pathways that are important in
a hypertrophic response were enriched in the ET-1 stimulated cultures. Our analysis of
secreted proteins also showed that there were several key proteins associated with cardiac
hypertrophy that were differentially expressed in our model, and potential new candidate
biomarkers or putative drug targets were identified.

hiPSC-derived CMs have been used for the development of several in vitro disease
models [31–33]. They have shown to be promising for studies of cardiac hypertrophy,
with characteristics resembling the in vivo situation. For example, we and others have
previously reported that the hiPSC-derived CMs increase in size, have altered metabolism,
and a transcriptional pattern indicative of hypertrophy when exposed to substances such as
ET-1 and phenylephrine [10–12]. Although information is still lacking regarding the optimal
maturation stage of the CMs for use in a hypertrophy model, our results demonstrated that
cells cultured for at least 20 days produce a robust hypertrophic response [10].

Our analysis identified an increased expression of many genes that are related to
cardiac hypertrophy already at 8 h of ET-1 stimulation. In fact, the largest numbers of DEGs
were observed at the earliest time point (8 h) and then decreased over the 24, 48, and 72 h
time points. This change was observed when analyzing both DEGs with a FC of 2 and
1.5. The trend in the data with a lower number of DEGs over time was in contrast to the
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stretch model of cardiac hypertrophy, where an increase in DEGs is observed with extended
treatment [34]. Notably, our gene expression data at the 8 h time point were most similar
to the latest time point (48 h) in the stretch model. It is possible that the neurohormonal
approach that we used resulted in a more rapid hypertrophic response compared to the
stretch model. It should be noted, however, that there is also a difference between the
cellular source and species used in the studies (neonatal rat CM vs. human hiPSC-derived
CMs), adding further complexity when interpreting data across the studies.

Some of the genes with the highest fold change that were picked up from the differen-
tial expression analysis were PDYN, PNOC, and TGF. The PDYN gene was upregulated
at all time points and was also the most upregulated gene at 24 h and the second most
upregulated at 48 h and 72 h. The PDYN gene encodes the protein Proenkephalin-B, which
is a preproprotein that is processed into several opioid peptides. They bind primarily to the
K-opioid receptors that have been found to be widely expressed in the human heart [35,36].
Information about endogenous opioid peptides and their role in the cardiac hypertrophy
development is sparse. However, there are data that support the hypothesis that the opioid
system initially has a cardioprotective role. For example, in rat CMs, it has been shown
that the use of a K-opioid receptor agonist protects against hypertrophy and fibrosis when
stimulating the cells with the prohypertrophic agent isoprenaline [37]. Taken together with
the data from the present study, PDYN appears to be a key candidate for further research in
order to understand its potential involvement in the development of cardiac hypertrophy.

The gene PNOC, which was also among the top DEGs at all time points, codes for the
protein prepronociceptin. Studies using other in vitro models of cardiac hypertrophy have
reported upregulation of PNOC when neonatal rat CMs were stimulated with isoprenaline
and phenylephrine. However, stimulation with ET-1 did not upregulate PNOC [38]. In
contrast, in our model, using hiPSC-derived CMs, we saw a significant upregulation of
this gene after ET-1 stimulation. The effect of the upregulation of PNOC in humans is
not well studied, and in pre-clinical models, the data are inconsistent. For example, in
rodents, PNOC has been shown to have inhibitory effects on cardiovascular parameters,
while in sheep, it increases blood pressure [39,40]. More research is needed to elucidate if
the distinct upregulation of PNOC forms part of any cardioprotective mechanisms or if it
may play a role in the long-term progression of cardiac hypertrophy.

The most downregulated gene at all time points was APELA, encoding for an apelin
receptor ligand. The apelin signaling in cardiac hypertrophy has been studied but whether
apelin is beneficial or aggravating in this setting remains unclear [41–44]. In rats, adminis-
tration of angiotensin II downregulates the expression of apelin within 24 h [45]. In humans,
there are data suggesting a strong negative correlation between serum apelin levels and
left ventricular hypertrophy [46].

The pathway analysis using IPA identified the largest number of significantly enriched
pathways at the 8 h time point; the number then decreased over time. This could be a
consequence of the number of DEGs since fewer DEGs make the analysis less sensitive.
These observations are in line with our previous study [10]. ‘The Cardiac hypertrophy’
(enhanced) pathway was significantly enriched at 8 h, which was expected. However,
already at 24 h, this pathway became inhibited, indicating that many of the genes in
the pathway that were upregulated at 8 h were downregulated at 24 h. This switch in
gene expression suggests a fast adaption or feedback response on a transcriptional level.
Inhibition of hypertrophy pathways has been shown before when using in vitro models
and hypertrophic stimulation for more than 24 h [7]. While many pathways were only
enriched at the first time point in our data, we know from our previous study that the
hypertrophy phenotype is persistent over time [10].

Our results showed similarities with previous studies. Signaling pathways that were
enriched in our data have been previously reported by others, including actin cytoskeleton,
angiopoietin, IL-6, IL-8, HMGB1, and metabolic pathways [7,34]. Interestingly, adrenergic
signaling in CMs was downregulated in both our neurohormonal model as well as the
stretch model described by Ovchinnikova et al. [7]. In heart failure, β-adrenergic signaling



Life 2022, 12, 293 18 of 23

is downregulated, possibly as a compensatory mechanism. Today, inhibiting β-adrenergic
signaling using β-antagonists is a cornerstone in the pharmacological treatment of heart
failure [47]. We also found that IL-6, Oncostatin M, and JAK/STAT signaling were enriched
at 8 h. An increase in the signaling of these pathways suggests that the STAT3 pathway
is enriched, something that we also found in our analysis. Enrichment of the STAT3
pathway has been shown to promote cardiac hypertrophy by inducing the growth of CMs.
Overexpression studies have also found that it increases the expression of hypertrophy
genes, such as NPPA, MYH7, and CTF1 [48].

From the upstream regulator analysis using IPA, several TRs that play a role in cardiac
hypertrophy were identified as differentially expressed in our data set. These regulators
affect, in the majority of cases, many genes that were differentially expressed in our data
and may therefore represent interesting targets in drug discovery. MYC was one of the most
active TRs that was differentially expressed in our study and is known to be important
in early development, where it controls the proliferation of CMs [49]. In addition, it
is upregulated when CMs are exposed to hypertrophic stimuli, and it can also induce
hypertrophy by itself [50–52]. Neonatal rat CMs cultured in vitro and stimulated with ET-1
showed a significant hypertrophic response with the upregulation of MYC, a response
attenuated when MYC was inhibited [53]. Another TR associated with cardiac hypertrophy
that was upregulated in our stimulated CMs is SRF. SRF is known to be required for the
induction of the “fetal gene program”, which is a set of genes that is characteristic of
cardiac hypertrophy [54]. Overexpression studies in animals show that it regulates the fetal
genes long before an increase in heart weight is observed [55]. We observed differential
expression of some, but not all, of the genes in the fetal gene program (e.g., NPPA, NPPB,
and ACTA1). We also analyzed some upstream regulators that are transcription factors.
TBX5, which was differentially expressed at 8 and 24 h, regulates the expression of several
genes that are specific to the heart [56]. Although TBX5 was downregulated at 8 and 24 h,
it is possible that this gene was upregulated at an even earlier time point. Importantly, GO
enrichment analysis of the DEGs that TBX5 regulates in our data set identified many GO
terms associated with the heart. This suggests that TBX5 may be a target for drugs against
cardiac hypertrophy since it will be more specific to the heart.

As described in the differential expression analysis, we identified many genes that
are of importance in cardiac hypertrophy, showing that our model resembles the in vivo
situation in many aspects. Therefore, we went on to use the model for the identification of
differentially expressed proteins that are secreted from the CMs, and that can be measured
in the conditioned media.

We performed a focused proteomics analysis using Olinks CVD II, III, and Inflamma-
tion panels to identify differentially expressed secreted proteins. To our knowledge, this is
the first time where secretome analysis has been performed on conditioned media from
a human stem cell-based model of cardiac hypertrophy. The secretome studies of CMs
reported to date have been performed using animal models or during differentiation of
stem cells to CMs [57–59]. Twenty-three proteins were significantly differentially expressed
at least at one of the time points in our study. Notably, 10 of them had the correspond-
ing gene significantly differentially expressed also at some time point in the experiment.
These genes/proteins were CXCL8, HBEGF, LDLR, NPPA, NPPB RARRES2, SERPINE1, TN-
FRS11B, PGF, and PRSS8 (Figure 5). However, the potential time difference from mRNA to
secreted protein should not be neglected and when the correlation analysis was performed
with one time point shifted for the proteins (e.g., mRNA at 8 h vs. protein at 24 h), the
observed correlation was substantially higher. In fact, when using the time shift approach,
the majority of gene–protein pairs had a correlation value > 0.8. The rate of mRNA to
protein is in part affected by the translation rate, the binding of regulatory elements, such as
micro-RNAs, protein half-life modulation through the ubiquitin–proteasome pathway, and
protein synthesis delay [60]. These are all factors that may explain the observed difference
in the correlation between the different proteins in the study.
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Seven secreted proteins were identified as differentially expressed at 72 h, and many
of them showed a strong correlation between protein expression and gene expression.
Chemerin, which is encoded by the gene RARRES2, was significantly upregulated at both
gene and protein levels at 48 and 72 h and had an overall correlation between gene and
protein expression for the ET-1 stimulated cells of r = 0.72. Chemerin has a well-known role
in metabolic syndrome and may contribute to hypertension by acting on chemokine-like
receptor 1 [61,62].

Two growth factors that are in the same family, vascular endothelial growth factor
A and placental growth factor, were also significantly upregulated at 72 h. Both these
proteins are associated with angiogenesis and vasculogenesis and may indicate that the
heart compensates for the increase in work and size by trying to increase its vascular
network [63,64]. This mechanism is observed in physiological cardiac hypertrophy, where
the blood flow to the heart grows in proportion to the size of the heart. Our relatively
pure CM population made it difficult to assess if the increase in these growth factors could
stimulate the formation of new blood vessels. However, an increase could very well be an
indicator of stress of the heart and possibly an early sign of hypoxia in the CMs [65].

In summary, we have shown that our model of cardiac hypertrophy based on hiPSC-
CM and neurohormonal stimulation recapitulates important characteristics of cardiac
hypertrophy on a transcriptional level. Pathway and cluster analyses also shed novel
insight into the underlying mechanisms potentially regulating cardiac hypertrophy on a
cellular level. Additionally, several secreted proteins were differentially expressed, and
further investigations are warranted to determine their exact role in the hypertrophy
response and how they can be used clinically in the future.

5. Conclusions

The extensive characterization of our in vitro model of cardiac hypertrophy showed a
robust response on both transcriptome and secretome levels. The largest transcriptional
response was identified already at the earliest assessed time point (8 h), while the number
of identified DEGs decreased at later time points. The signaling pathway analysis showed
enrichment of several pathways that play important roles in cardiac hypertrophy, e.g., actin
cytoskeleton signaling and cardiac hypertrophy signaling. Interestingly, cardiac hypertro-
phy signaling was inhibited at the later time points, suggesting a fast adaptive response.
Analysis of the secretome identified several differentially expressed proteins of high rel-
evance for cardiac hypertrophy and, interestingly, for many of these proteins, a strong
correlation was observed between the protein expression and the gene expression levels.
The known hypertrophy markers ANP and proBNP were both significantly increased in the
ET-1 stimulated cultures. The secretome analysis identified several proteins with potential
as biomarker candidates for cardiac hypertrophy. However, more research is needed to
conclude their specific role in the disease progression and how close the in vitro condition
reflects the in-vivo counterpart.
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