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Abstract

Various methods have been used to identify cultivares of olive trees; herein we used different bioinformatics algorithms to
propose new tools to classify 10 cultivares of olive based on RAPD and ISSR genetic markers datasets generated from PCR
reactions. Five RAPD markers (OPA0a21, OPD16a, OP01a1, OPD16a1 and OPA0a8) and five ISSR markers (UBC841a4,
UBC868a7, UBC841a14, U12BC807a and UBC810a13) selected as the most important markers by all attribute weighting
models. K-Medoids unsupervised clustering run on SVM dataset was fully able to cluster each olive cultivar to the right
classes. All trees (176) induced by decision tree models generated meaningful trees and UBC841a4 attribute clearly
distinguished between foreign and domestic olive cultivars with 100% accuracy. Predictive machine learning algorithms
(SVM and Naı̈ve Bayes) were also able to predict the right class of olive cultivares with 100% accuracy. For the first time, our
results showed data mining techniques can be effectively used to distinguish between plant cultivares and proposed
machine learning based systems in this study can predict new olive cultivars with the best possible accuracy.
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Introduction

Olive (Olea europaea L.) has been domesticated by 5800 B.P. [1]

probably both in Eastern and Western of the Mediterranean basin

[2–4]. Archaeological findings revealed that olive cultivation in

Iran dates back to more than 2000 years ago [5]. Until recent

years, cultivar identification has been based on morphological and

agronomic traits. However, the recognition of olive cultivars based

on phenotypic characters is often problematic, especially at the

early stages of tree development [6]. This has led to great

confusion and uncertainty about the current status of olive

germplasm in many countries. The ability to discriminate and

predict olive cultivars is important for successful breeding

programs and improved management of genetic resources [7].

With the development of PCR-based DNA markers such as

RAPD [8] SSR [9], AFLPs [10] and SNP [11], marker technology

today offers powerful tools to analysis the plant genome. They

have enabled the identification of genes and genome associated

with the expression of qualitative and quantitative traits and has

led to a better understanding of the complex genome of various

plants. The use of molecular markers to manage olive germplasm

is particularly advantageous, due to the fact that the olive has an

exceptionally long juvenile period [12]. Recently, bioinformatics

and data mining application have been widely used in interpreting

information from biological data. [13–16].

The main goal of this work was to construct a molecular

database based on RAPD and ISSR markers for olive cultivares

and to find specific molecular markers to quickly distinguish

between Iranian and foreign olive tree cultivars.

Materials and Methods

Genomic DNA of five Iranian and five foreign olive (Olea

europaea L.) cultivars were isolated from freshly harvested young

leaves of five plants from IKIU fields of Qazvin University (with

the permission from the head; school of agriculture, Qazvin

University, Iran; the cultivars have not been designed as protected

or endangered species) of each cultivar by Mini prep method. To

eliminate the effects of impurity, just these ten cultivares; whom

were officially proven by administrative bodies to be pure and the

most reliable; were chosen for lab experiments. A total of 14

primers ((AG)8T, (AG)8C, (GA)8T, (GA)8C, (GA)8A, (CA)8G,

(AG)8CT, (AG)8CC, (AG)8CA, (GA)8CC, (GA)8CCY, (AC)8YA,

(GA)8A and (GGAGA)3) for inter-simple sequence repeat-poly-

merase chain reaction (ISSR-PCR) and 14 primers (59-GTGA-

TCGCAG-39, 59-CAATCGCCGT-39, 59-GTTTCGCTCC-39,

59-AAGACCCCTC-39, 59-GGTGACTGTG-39, 59-TCTGTGC-

CAC-39, 59-TCGGCGGTTC-39, 59-CCGAATTCCC-39, 59-

CACAGAGGGA-39, 59-GTGACGTAGG-39, 59-TGAGCG-

GACA-39, 59-CATCCGTGCT-39, 59-CCTGGGCTTC-39, and

59-GTCCCGTTCA-39) for random amplified polymorphic DNA

were used in the study (Table 1).

ISSR-PCR was conducted in a reaction volume of 15 ml

containing 30 ng template DNA, 0.2 mmol/L primer, 200 mmol/

L each dNTP, 10 mmol/L Tris-Cl (pH 8.3), 50 mmol/L KCl,

2.0 mmol/L MgCl2, and 1 U of Taq polymerase. PCR amplifi-

cation conditions were set as initial denaturation at 94uC for

5 min, 40 cycles of denaturation at 94uC for 1 min, annealing at

50uC for 1 min, extension at 72uC for 2 min, and a final extension

at 72uC for 7 min. PCR was performed in 96-well plate thermal
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cycler (Eppendorf, Germany). The amplified products were mixed

with loading dye (0.4 g/ml sucrose and 2.5 mg/ml bromophenol

blue), resolved on 18 mg/ml.

The RAPD technique consists of preferential amplification of

random sequences by PCR. In this assay, 10 different primers

were used (Table 1). Each 25 mL PCR reaction mixture consisted

of 50 ng genomic DNA, 0.2 mMdNTPs, 2 mM MgCl2, 10pmol

primer, 2.5 mL 106 Taq buffer, and 1 unit of Taq polymerase.

Samples were subjected to the following thermal profile: 4 min of

denaturing at 94uC, forty-five cycles of three steps: 30 s of

denaturing at 94uC, 1 min of annealing at 36uC, and 2 min of

elongation at 72uC, with a final elongation step of 7 min 72uC.

Separation of the amplified fragments was performed on 1.2% (w/

v) agarose gels, TAE 1x] at 80V during 2 h. The gels were stained

with ethidium bromide for visualizing the RAPD and ISSR

fragments. The fragments between 200 and 4k base pair (bp) were

visually scored as present (1) or absent (0).

A dataset of 10 cultivar with 402 RAPD and ISSR reproducible

fragments or attributes prepared and was imported into Rapid-

Miner software [RapidMiner 5.2, Rapid-I GmbH, Stochumer Str.

475, 44227 Dortmund, Germany]. Then, the steps detailed below

were applied to this dataset.

Data Cleaning
Useless attributes were removed from the dataset. Nominal

attributes were regarded as useless when the most frequent values

were above or below per cent of all examples. After cleaning, this

database was labelled the final cleaned database (FCdb).

Attribute Weighting
To identify the most important features that contribute to

different olive cultivars, 10 different algorithms of attribute

weightings (Information gain, Information Gain ratio, Rule, Deviation,

Chi squared statistic, Gini index, Uncertainty, Relief, SVM and PCA) were

used (for more information see [14,15,17]).

Attribute selection
Application of attribute weighting models on the dataset gave

each alleles attribute (feature) a value between 0 and 1, which

revealed the importance of that attribute with regards to a target

attribute (Iranian or foreign cultivar). All variables with weights

higher than 0.50 were selected and 10 new datasets created. These

newly formed datasets were named according to their attribute

weighting models (Information gain, Information gain ratio, Rule,

Deviation, Chi Squared, Gini index, Uncertainty, Relief, SVM and PCA)

and were subjected to subsequent supervised or unsupervised

models. Each supervised or unsupervised model was performed 11

times; the first time it ran on the main dataset (FCdb) and then on

the 10 newly formed datasets from attribute weighting and

selection.

Unsupervised Clustering Algorithms
The clustering algorithms listed below were applied on the 10

newly created datasets (generated as the outcomes of 10 different

attribute weighing algorithms) as well as the main dataset (FCdb).

K-Means. This operator uses kernels to estimate the distance

between objects and clusters. Because of the nature of kernels, it is

Table 1. Names and the sequences of ISSR and RAPD marker.

ISSR Primer Sequence 59–39 Primer ISSR Sequence 59–39 Primer RAPD Sequence 59–39 Primer RAPD Sequence 59–39

UBC-807 (AG)8T UBC-835 (AG)8CC OPA-10 GTGATCGCAG OPA08 GTGACGTAGG

UBC-808 (AG)8C UBC-836 (AG)8CA OPA-11 CAATCGCCGT OPD05 TGAGCGGACA

UBC-810 (GA)8T UBC-841 (GA)8CC OPB-01 GTTTCGCTCC OPD15 CATCCGTGCT

UBC-811 (GA)8C UBC-841Y (GA)8CCY OPE-06 AAGACCCCTC OPDP6 TCGGCGGTTC

UBC-812 (GA)8A UBC-856 (AC)8YA OPE-16 GGTGACTGTG OPD01 CCTGGGCTTC

UBC-818 (CA)8G UBC-868 (GA)8A OPF-05 CCGAATTCCC OPA01 TCTGTGCCAC

UBC-834 (AG)8CT UBC-880 (GGAGA)3 OPA-04 CACAGAGGGA OPA00 GTCCCGTTCA

doi:10.1371/journal.pone.0044164.t001

Table 2. The numbers and the averages of most important alleles (fragments) selected by different attribute weighting
algorithms.

Alleles (fragments)
Number of attribute
weightings

Average of attribute
weightings Alleles (fragments)

Number of attribute
weightings

Average of attribute
weightings

UBC841a4 10 0.982 UBC841Ya8 10 0.737

UBC868a7 10 0.982 OPD16a1 10 0.737

UBC841a14 10 0.680 UBC807a13 10 0.735

OPA0a21 10 0.680 OPA0a8 10 0.735

OPD16a 10 0.680 OPD15a1 10 0.735

OP01a1 10 0.720 OPD15a2 10 0.735

BC807a12 10 0.712 UBC810a12 10 0.688

UBC810a13 10 0.712 UBC868a8 10 0.688

doi:10.1371/journal.pone.0044164.t002
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necessary to sum over all elements of a cluster to calculate one

distance.

K-Medoids. This operator represents an implementation of

k-Medoids. This operator will create a cluster attribute if it is not

yet present.

Support vector clustering (SVC). This operator represents

an implementation of Support Vector algorithm. This operator

will create a cluster attribute if not present yet.

Expectation maximization (EM). This operator represents

an implementation of the EM-algorithm.

Supervised Classification
Three classes of supervised classification (Decision Trees, SVM

and Baysian models) applied as follows. To calculate the accuracy

of each model, 10-fold cross validation [18] is used to train and test

models on all patterns. To perform cross validation, all the records

were randomly divided into five parts; four sets were used for

training and the 5th one for testing. The process was repeated five

times and the accuracy for true, false and total accuracy

calculated. The final accuracy is the average of the accuracy in

all five tests.

Decision Trees
Six tree induction models including Decision Tree, Decision Tree

Parallel, Decision Stump, Random Tree, ID3 Numerical and Random Forest

were run on the main dataset (FCdb). Each tree induction model

ran with the following four different criteria: Gain Ratio, Information

Gain, Gini Index and Accuracy. In addition, a weight-based parallel

decision tree model, which learns a pruned decision tree based on an

arbitrary feature relevance test (attribute weighting scheme as

inner operator), was run with 13 different weighing criteria (SVM,

Gini Index, Uncertainty, PCA, Chi Squared, Rule, Relief, Information Gain,

Information Gain Ratio, Deviation, Correlation, Value Average, and Tree

Importance). The accuracy of each tree computed based on the

previous explanation.

Table 3. The attribute weighting models and the numbers of important protein features selected by each model and the most
important variables selected by each attribute weighting algorithms.

Attribute Weighting Number of Variable Important variable

Information gain 16 UBC841A4; UBC868A7; OPA0A21; OPA0A8

Information gain Ratio 16 UBC841A4; UBC868A7; OPA0A21; OPA0A8

Rule 57 UBC841A4; UBC868A7; OPA0A21; OPA0A8

Deviation 160 UBC808A13; UBC808A15; OPA10A10; OPA11A7

Chi squared 2 UBC841A4; UBC868A7; UBC841A14; OPA0A21

Gini index 16 UBC841A4; UBC868A7; UBC841A14; OPA0A21

Uncertainty 16 UBC841A4; UBC868A7; UBC841A14; OPA0A21

Relief 16 UBC841A4; UBC868A7; UBC841A14; OPA0A21;

SVM 115 OPD1A1; OPA0A7; UBC841A4; UBC868A7

PCA 76 UBC834A7; UBC834A8; UBC856A3; UBC856A6;

FCdb 400

doi:10.1371/journal.pone.0044164.t003

Figure 1. Application of K-Medoids to the SVM was able to categorize each cultivar into right cluster.
doi:10.1371/journal.pone.0044164.g001
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Support Vector Machine Approach
Support Vector Machines (SVMs) are popular and powerful

techniques for supervised data classification and prediction; so

SVM, LibSVM, SVM Linear and SVME used here to implement

different models to predict olive cultivars based on Iranian -

foreign features. Briefly, main database (FCdb) transformed to

SVM format and scaled by grid search (to avoid attributes in

greater numeric ranges dominating those in smaller numeric

ranges) and to find the optimal values for operator parameters. To

prevent overfitting problems, 5-fold cross validation applied.

Dataset divided into 5 parts and 4 parts used as training set and

the last part as testing set, the procedure repeated for 10 different

testing sets and the average of accuracy computed. RBF kernel

which nonlinearly maps samples into a higher dimensional space

and can handle the case when the relation between class labels and

attributes is nonlinear used to run the model. Other kernels such as

Figure 2. Decision Tree generated from three models ran with Gini Index criterion. As may be inferred from the figure, UBC841A4 and
UBC868A7 fragments were the most important attribute alleles in distinguishing Iranian from foreign cultivars.
doi:10.1371/journal.pone.0044164.g002

Table 5. The accuracies, precisions and recalls of tree induction models on Final Cleaned database (FCdb) computed on 5-fold
cross validation.

Models Algorithm Gain Ratio Information Gain Gini Index Accuracy

Decision Tree Overall Accuracy 70 70 70 70

Iranian Recall 60 60 60 60

Foreign Recall 80 80 80 80

Iranian Precision 75 75 75 75

Foreign Precision 66.7 66.7 66.7 66.7

Decision Tree Parallel Overall Precision 70 70 50 50

Iranian Recall 60 60 0 0

Foreign Recall 80 80 100 100

Iranian Precision 75 75 unknown unknown

Foreign Precision 66.7 66.7 50 50

Decision Stump Overall Precision 70 70 50 50

Iranian Recall 60 60 0 0

Foreign Recall 80 80 100 100

Iranian Precision 75 75 unknown Unknown

Foreign Precision 66.7 66.7 50 50

Random Forest Overall Precision 70 70 70 70

Iranian Recall 60 60 60 60

Foreign Recall 80 80 80 80

Iranian Precision 75 75 75 75

Foreign Precision 66.7 66.7 66.7 66.7

Random Tree Overall Precision 70 70 70 70

Iranian Recall 60 60 60 60

Foreign Recall 80 80 80 80

Iranian Precision 75 75 75 75

Foreign Precision 66.7 66.7 66.7 66.7

doi:10.1371/journal.pone.0044164.t005

Prediction Olive Classification by Data Mining
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linear, poly, sigmoid and pre-computed were also applied to the

dataset to find the best accuracy.

Naı̈ve Bayes
Naı̈ve Bayes based on Bayes conditional probability rule is used

for performing classification tasks. When the sample sizes tend to

be small (as in our experiments with just 5 cultivars in each class), a

Bayesian approach can be applied for classification problems with

far more predictors than samples; the same have been widely used

before (for more details see [19,20]. Naı̈ve Bayes assumes the

predictors are statistically independent which makes it an effective

classification tool that is easy to interpret. Two models, Naı̈ve base

(returns classification model using estimated normal distributions)

and Naı̈ve base kernel (returns classification model using estimated

kernel densities) used and the model accuracy in predicting the

right Iranian - foreign computed as stated before.

Results

As mentioned in Materials and Methods, the initial dataset

contained 10 cultivars with 400 RAPD and ISSR reproducible

fragments (attributes). Following removal of duplicates, useless

attributes, and correlated features (data cleaning) 312 features

remained; meaning these attribute fragments were polymorphic,

ranging in size from 100 to 3000 bp.

Attribute Weighting
The number of attributes gained weights higher than 0.5 in

each weighting model were as follows: PCA 76, SVM 114, Relief 16,

Uncertainty 16, Gini index 16, Chi Squared 16, Deviation 244, Rule 57,

Gain ratio 16 and Info gain ratio 16 (Table 2). The details of the most

important attributes have been presented in Table 3.

Unsupervised Clustering Algorithms
Three different unsupervised clustering algorithms (K-Means,

K-Medoids and SVC) were applied on ten datasets created using

attribute selection (weighting) algorithms. Some models, such as

the application of the SVC algorithm on ten datasets were unable

to differentiate interior from foreign cultivars (Table 4). Applica-

tion of the K-Means and K-Medoids on all databases (except

Deviation, PCA and SVM databases) was unable to assign any

cultivars into its correct class. K-Means and K-Medoids methods

correctly predicted Iranian and foreign cultivares into the right

cluster, respectively. So the combination of K-Means and K-

Medoids with Deviation, PCA and SVM databases can effectively

cluster the right cultivars. Interestingly, just application of K-

Medoids method to the SVM dataset was able to categorize

cultivars into the correct cluster (Figure 1).

Supervised Classification
Decision trees. All 176 tree induction tree (4 models: Decision

Stump, Decision Tree, Decision Parallel and Random Forest Tree each with

4 different criteria - Gain ratio, Information gain, Gini index and Accuracy

– run on 11 different datasets) were able to produce the same trees

(Figure 2A). The accuracies and precisions of decision tree

algorithms were nearly the same (Table 4). UBC841A4 allele

was the most important attribute used to build the trees. When this

attribute has removed from datasets, interestingly again a simple

decision tree were generated by all models (Figure2 B). So, if the

fragment of UBC841A4 presents, the cultivar is foreign origin,

otherwise, if the fragment of UBC868A7 detects, the cultivar

origin is from Iran. When these two attributes were removed from

databases, another simple decision tree generated (Figure2 C). The

figure shows that UBC807A12 fragment can predict Iranian

cultivars with little accuracy.

As shown in Table 5, the overall accuracies for tree induction

models were generally high enough for all algorithms ran with

various criteria which are a very sharp increase in model accuracy

and performance. Almost in all models and algorithms, precision

of Iranian cultivar prediction were better than foreign cultivar

prediction except when Decision Stump Tree and Decision Tree Parallel

models ran with Accuracy and Gini Index. In these cases induced

trees were not able to predict Iranian cultivars.
SVM approach. The total accuracy predicted by different

SVM methods (when Gamma and C were 0.0065 and 10,

respectively) reached 100%.The overall accuracies of different

SVM models ran with different database were in the range of 0–

100%, while the same accuracies for SVM and SVMLinear model

ran on all databases were over 80%.
Naı̈ve bayes. The accuracies of Naı̈ve base and Naı̈ve Bayes

Kernel models ran on all databases were at maximum point (100%)

except when applied on FCdb, PCA and Deviation databases which

fell down to 8060.43%. Kernel Distribution model for label attribute

(foreign and Iranian) on the base of selected features has shown in

figure 3. As shown in figure 3, two fragment attributes can simply

predict Iranian from foreign cultivars.

Discussion

Accurate and rapid identification of clones, varieties, or species

is especially important in vegetatively propagated plants. The

Figure 3. Kernel distribution model distinguishing between two classes of Olive cultivares based on allele attribute type.
doi:10.1371/journal.pone.0044164.g003

Prediction Olive Classification by Data Mining
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official key for identification of olive varieties is based on

morphological criteria [21,22] although they are influenced by

environmental conditions. However, molecular markers are

environment-independent and efficient to identify olive cultivares

and to detect synonymous and homonymous [23–25]. With the

light of recent molecular genetic studies, another aspect of olive

identification has become ‘‘rich genetic diversity’’ [26,27]. This

genetic diversity at cultivar level is important due to significant

economic aspects such as yield and chemical and/or aromatic

composition of fruit and olive oil [27–30]. To resolve the genetic

complexity and to differentiate cultivars from one another different

molecular systematic studies have been conducted [31,32].

Herein, we aimed to determine the most important features

contribute to the clustering, classification and prediction of Iranian

from foreign cultivars based on genetic alleles. Various modelling

techniques were applied to study more than 311 attribute alleles of

this family.

Knowledge discovery through pattern finding in data is central

to modern molecular biology, with thousands of databases and

similar numbers of tools for data processing. Any data analysis in

molecular biology involves gathering and processing data from

many sources, even before the analysis for the central biological

question takes place. The goal of the clustering algorithms

(unsupervised pattern ) is to figure out the underlying similarities

among a set of feature vectors, and to cluster similar vectors

together [14,15,33], while decision trees are very popular tools for

classification [34]. The attractiveness of decision trees is due to the

fact that, decision trees represent rules. Rules can readily be

expressed so that humans can understand them. Decision trees

provide the information about which attributes are most important

for prediction or classification [15,16,35,36].

When the number of variables or attributes is sufficiently large,

the ability to process units is significantly reduced. Data cleaning

algorithms were used to remove correlated, useless or duplicated

attributes which results in a smaller database [14–16]. More than

20% of the attribute alleles discarded when these algorithms were

applied on the original dataset. Each attribute weighting system

uses a specific pattern to define the most important features by

feature selection [37–39]. Thus, the results may be different [40],

as has been highlighted in previous studies [13–17].

UBC841A4, UBC868A7 and UBC841YA8 fragments from

ISSR markers and OPE16A1, OPA0A8 and OPD15A1 fragments

from RAPD markers were the most important feature to

distinguish Iranian from foreign cultivars, as defined by the entire

attribute weighting algorithms (Table 1). Several previous studies

have used these markers for fingerprinting identification and

characterization of genomic region in olives [41–50] but to our

knowledge, this is the first study reports the use of supervised and

unsupervised methods and predictive models to identify the

Iranian from foreign olive cultivars with a precision rate up to

100%.

Unsupervised clustering algorithms have been widely used in a

various areas in the biological sciences, including proteomics,

predicting gene function and genomics [14,15,34,51], metabolo-

mics [52,53] and transcriptomics [51]. These methods are

preferred for prediction because they are capable of discovering

structure by exploring similarities and differences between

individual data points in a given data set. Here, we used four

different unsupervised clustering methods (K-Means, K-Medoids,

SVC and MEMC) on 11 datasets created from RAPAD and ISSR

allele attributes, which were assigned high weights. The perfor-

mances of these algorithms varied significantly, usually these

algorithms work well when the numbers of classes to be clustered

are small (less than 4). Here we have only two classes, foreign and

Iranian cultivars and it is expected that these algorithms are

suitable for this condition and there is no need more complex

clustering. The results showed that the performance of k-Medoids

by SVM algorithm was better than the others. It is able to classify

Iranian and foreign cultivar into the correct classes. Cluster

analysis techniques are concerned with exploring data sets to assess

whether or not they can be summarized meaningfully in terms of a

relatively small number of groups or clusters of objects or

individuals which resemble each other and which are different

in some respects from individuals in other clusters. Standard

clustering methods have been developed in many directions to

encompass realistic situations. Application fields such as genetics,

combined with increasing computing power, have prompted some

of these developments [14,34,36,54]. The classification of plants

has clearly played an important role in the fields of biology

[31,55,56].

All prediction trees generated by tree induction models had

simple shape with two branches. The ability of various decision

tree induction models applied in this study to correctly and

effectively classify cultivars based on fragment attributes were

identical. Therefore all tree induction algorithms may be

effectively used as suitable tools to classify those olive cultivars

with maximum accuracies. As shown in Table 5, the overall

accuracies for tree induction models were generally high enough

for all algorithms. Precision of Iranian cultivar prediction is more

than foreign cultivar prediction except when Decision Tree Stump

and Decision Tree Parallel ran with Accuracy and Gini Index. In these

cases trees did not predict Iranian cultivars.

The support vector machine is a learning machine for two-

group classification problems and have been widely employed by

researchers in different areas of science, including genomics,

proteomics, metabonomics, researches [15–17,34–36]. According

to this study, SVM has shown promising capability for prediction

of Iranian and foreign olive cultivars. Therefore, SVM is expected

to be a potential eligible algorithm which can be employed for

classification and prediction of any two classes of olive cultivar.

Conclusion
The past decade has been witness to a tremendous growth in

bioinformatics, as a combination of molecular biology, computer

science, mathematics and statistics. Such growth has been

accelerated by the ever-expanding genomic and proteomic

databases, which are themselves the result of rapid technological

advances in molecular genetics. Statistics and bioinformatics have,

so far, played important roles in this scientific revolution.

Molecular genetics techniques have made it clear that major

events in the life of a cell are regulated by factors that alter the

expression of the gene. Huge amounts of data accumulated in this

field need new tools other than classical statistical methods to

interpret and manipulate them; bioinformatics tools have served

great job in this field. Herein, various supervised and unsupervised

tools applied to identify groups of alleles with similar patterns of

expression to find suitable tools to correctly cluster 10 olive

cultivars. Up to our knowledge, this is the first report showing the

importance and application of bioinformatics algorithms in

classifying olive cultivares and the first designed machine learning

and predictive system to predict the cultivares with the maximum

possible accuracy.

Acknowledgments

The authors greatly appreciate support from IKIU and Bioinformatics

Research Group, GRC, University of Qom.

Prediction Olive Classification by Data Mining

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e44164



Author Contributions

Conceived and designed the experiments: AB ME SS. Performed the

experiments: SS ME. Analyzed the data: AB ME. Contributed reagents/

materials/analysis tools: AB SS. Wrote the paper: ME AB. Designed lab

experiments: AB. Supervised SS during lab work: ME. Designed and

conducted bioinformatics work: AB ME. Prepared manuscript: AB ME.

References

1. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world.

Science 187: 319–327.

2. Alonso-Salces RM, Moreno-Rojas JM, Holland MV, Reniero F, Guillou C, et
al. (2010) Virgin olive oil authentication by multivariate analyses of 1H NMR

fingerprints and delta13C and delta2H data. J Agric Food Chem 58: 5586–5596.

3. Garcia-Gonzalez DL, Romero N, Aparicio R (2010) Comparative study of

virgin olive oil quality from single varieties cultivated in Chile and Spain. J Agric
Food Chem 58: 12899–12905.

4. Simopoulos AP (2001) The Mediterranean diets: What is so special about the
diet of Greece? The scientific evidence. J Nutr 131: 3065S–3073S.

5. Perez-Jimenez F, Fernandez Duenas A, Lopez-Miranda J, Jimenez-Pereperez JA

(2000) [Olive oil: healthy food since caliphal time to the threshold of the new

millennium]. Med Clin (Barc) 114: 219–221.

6. Banilas G, Minas J, Gregoriou C, Demoliou C, Kourti A, et al. (2003) Genetic
diversity among accessions of an ancient olive variety of Cyprus. Genome 46:

370–376.

7. Owen CA, Bita EC, Banilas G, Hajjar SE, Sellianakis V, et al. (2005) AFLP

reveals structural details of genetic diversity within cultivated olive germplasm
from the Eastern Mediterranean. Theor Appl Genet 110: 1169–1176.

8. Sesli M, Yegenoglu ED (2010) RAPD assay of wild-type olives in Turkey. Genet
Mol Res 9: 966–972.

9. Ercisli S, Ipek A, Barut E (2011) SSR marker-based DNA fingerprinting and

cultivar identification of olives (Olea europaea). Biochem Genet 49: 555–561.

10. Pafundo S, Agrimonti C, Marmiroli N (2005) Traceability of plant contribution

in olive oil by amplified fragment length polymorphisms. J Agric Food Chem 53:
6995–7002.

11. Reale S, Doveri S, Diaz A, Angiolillo A, Lucentini L, et al. (2006) SNP-based
markers for discriminating olive (Olea europaea L.) cultivars. Genome 49: 1193–

1205.

12. Montemurro F, Diacono M, Vitti C, Debiase G (2009) Biodegradation of olive

husk mixed with other agricultural wastes. Bioresour Technol 100: 2969–2974.

13. Ebrahimi M, Ebrahimie E (2010) Sequence-based prediction of enzyme
thermostability through bioinformatics algorithms. Current Bioinformatics 5:

195–203.

14. Ebrahimie E, Ebrahimi M, Sarvestani NR (2011) Protein attributes contribute to

halo-stability, bioinformatics approach. Saline Systems 7: 1.

15. Ebrahimi M, Lakizadeh A, Agha-Golzadeh P, Ebrahimie E (2011) Prediction of

thermostability from amino acid attributes by combination of clustering with
attribute weighting: a new vista in engineering enzymes. PLoS One 6: e23146.

16. Ashrafi E, Alemzadeh A, Ebrahimi M, Ebrahimie E, Dadkhodaei N (2011)

Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small

Numbers of Organisms to Cope with Heavy Metal Pollution. Bioinform Biol
Insights 5: 59–82.

17. Bijanzadeh E, Emam Y, Ebrahimie E (2010) Determining the most important

features contributing to wheat grain yield using supervised feature selection

model. Australian Journal of crop science 4: 402–407.

18. Habashy HO, Powe DG, Glaab E, Ball G, Spiteri I, et al. (2010) RERG (Ras-
like, oestrogen-regulated, growth-inhibitor) expression in breast cancer: a marker

of ER-positive luminal-like subtype. Breast Cancer Res Treat.

19. West M (2003) Bayesian factor regression models in the ‘large p, small n’

paradigm. Bayesian Statistics 7: 723–732.

20. Baseri S, Tohidi M, Ebrahimie E (2011) A Modified Efficient Empirical Bayes

Regression Model for Predicting Phenomena with a Large Number of
Independent Variables and Fewer Observations; Examples of its Application

in Human Disease, Protein Bioinformatics, and Microarray Gene Expression
Profiling. Advanced Studies in Biology 3: 181–204.

21. Helfert RH, Schwartz IR (1987) Morphological features of five neuronal classes
in the gerbil lateral superior olive. Am J Anat 179: 55–69.

22. Fernandez MF, Duran I, Olea N, Avivar C, Vierula M, et al. (2012) Semen

quality and reproductive hormone levels in men from Southern Spain.
Int J Androl 35: 1–10.

23. Vietina M, Agrimonti C, Marmiroli M, Bonas U, Marmiroli N (2011)
Applicability of SSR markers to the traceability of monovarietal olive oils. J Sci

Food Agric 91: 1381–1391.

24. Mariotti R, Cultrera NG, Diez CM, Baldoni L, Rubini A (2010) Identification of

new polymorphic regions and differentiation of cultivated olives (Olea europaea
L.) through plastome sequence comparison. BMC Plant Biol 10: 211.

25. Corrado G, La Mura M, Ambrosino O, Pugliano G, Varricchio P, et al. (2009)
Relationships of Campanian olive cultivars: comparative analysis of molecular

and phenotypic data. Genome 52: 692–700.

26. Vitale S, Santori A, Wajnberg E, Castagnone-Sereno P, Luongo L, et al. (2011)
Morphological and molecular analysis of Fusarium lateritium, the cause of gray

necrosis of hazelnut fruit in Italy. Phytopathology 101: 679–686.

27. Jimenez-Diaz RM, Olivares-Garcia C, Landa BB, del Mar Jimenez-Gasco M,

Navas-Cortes JA (2011) Region-wide analysis of genetic diversity in Verticillium
dahliae populations infecting olive in southern Spain and agricultural factors

influencing the distribution and prevalence of vegetative compatibility groups

and pathotypes. Phytopathology 101: 304–315.

28. Rjiba I, Dabbou S, Gazzah N, Hammami M (2010) Effect of crossbreeding on

the chemical composition and biological characteristics of tunisian new olive

progenies. Chem Biodivers 7: 649–655.

29. Dabbou S, Rjiba I, Echbili A, Gazzah N, Mechri B, et al. (2010) Effect of

controlled crossing on the triglyceride and fatty acid composition of virgin olive
oils. Chem Biodivers 7: 1801–1813.

30. Talhinhas P, Sreenivasaprasad S, Neves-Martins J, Oliveira H (2005) Molecular

and phenotypic analyses reveal association of diverse Colletotrichum acutatum
groups and a low level of C. gloeosporioides with olive anthracnose. Appl

Environ Microbiol 71: 2987–2998.

31. Nisiotou AA, Panagou EZ, Nychas GJ (2010) Candida olivae sp. nov., a novel
yeast species from ‘Greek-style’ black olive fermentation. Int J Syst Evol

Microbiol 60: 1219–1223.

32. Rojas AM, de Los Rios JE, Fischer-Le Saux M, Jimenez P, Reche P, et al. (2004)

Erwinia toletana sp. nov., associated with Pseudomonas savastanoi-induced tree

knots. Int J Syst Evol Microbiol 54: 2217–2222.

33. Bakhtiarizadeh MR, Ebrahimi M, Ebrahimie E (2011) Discovery of EST-SSRs

in Lung Cancer: Tagged ESTs with SSRs Lead to Differential Amino Acid and
Protein Expression Patterns in Cancerous Tissues. PLoS One 6: e27118.

34. Ebrahimi M, Ebrahimie E, Ebrahimi M (2009) Searching for patterns of

thermostability in proteins and defining the main features contributing to
enzyme thermostability through screening, clustering, and decision tree

alogorithms. EXCLI Journal 8: 218–233.

35. Hosseinzadeh F, Ebrahimi M, Goliaei B, Shamabadi N (2012) Classification of
Lung Cancer Tumors Based on Structural and Physicochemical properties Of

Proteins by Bioinformatics Models. PLoS One In Press.

36. Ebrahimi M, Ebrahimie E, Shamabadi N (2010) Are there any differences

between features of proteins expressed in malignant and benign breast cancers?

J Res Med Sci 15: 299–309.

37. Mishra D, Dash R, Rath AK, Acharya M (2011) Feature selection in gene

expression data using principal component analysis and rough set theory. Adv
Exp Med Biol 696: 91–100.

38. Zhu L, Yang J, Song JN, Chou KC, Shen HB (2010) Improving the accuracy of

predicting disulfide connectivity by feature selection. J Comput Chem 31: 1478–
1485.

39. Xu R, Damelin S, Nadler B, Wunsch DC, 2nd (2010) Clustering of high-

dimensional gene expression data with feature filtering methods and diffusion
maps. Artif Intell Med 48: 91–98.

40. Baumgartner C, Lewis GD, Netzer M, Pfeifer B, Gerszten RE (2010) A new data
mining approach for profiling and categorizing kinetic patterns of metabolic

biomarkers after myocardial injury. Bioinformatics 26: 1745–1751.

41. Biedermann A, Taroni F (2012) Bayesian networks for evaluating forensic DNA
profiling evidence: a review and guide to literature. Forensic Sci Int Genet 6:

147–157.

42. Freire-Aradas A, Fondevila M, Kriegel AK, Phillips C, Gill P, et al. (2012) A new
SNP assay for identification of highly degraded human DNA. Forensic Sci Int

Genet 6: 341–349.

43. Hameed U, Pan YB, Muhammad K, Afghan S, Iqbal J (2012) Use of simple

sequence repeat markers for DNA fingerprinting and diversity analysis of

sugarcane (Saccharum spp) cultivars resistant and susceptible to red rot. Genet
Mol Res 11: 1195–1204.

44. Kumla S, Doolgindachbaporn S, Sudmoon R, Sattayasai N (2012) Genetic
variation, population structure and identification of yellow catfish, Mystus

nemurus (C&V) in Thailand using RAPD, ISSR and SCAR marker. Mol Biol

Rep 39: 5201–5210.

45. Randhawa GJ, Singh M (2012) Multiplex, construct-specific, and real-time

PCR-based analytical methods for Bt rice with cry1Ac gene. J AOAC Int 95:
186–194.

46. Riaz S, Sadia B, Awan FS, Khan IA, Sadaqat HA (2012) Development of a

species-specific sequence-characterized amplified region marker for roses. Genet
Mol Res 11: 440–447.

47. Sheridan H, Krenn L, Jiang R, Sutherland I, Ignatova S, et al. (2012) The

potential of metabolic fingerprinting as a tool for the modernisation of TCM
preparations. J Ethnopharmacol 140: 482–491.

48. Simon M, Simon A, Martins F, Botran L, Tisne S, et al. (2012) DNA
fingerprinting and new tools for fine-scale discrimination of Arabidopsis thaliana

accessions. Plant J 69: 1094–1101.

49. Yang H, Tao Y, Zheng Z, Li C, Sweetingham M, et al. (2012) Application of
next-generation sequencing for rapid marker development in molecular plant

breeding: a case study on anthracnose disease resistance in Lupinus angustifolius

L. BMC Genomics 13: 318.

50. Zhang JJ, Shu QY, Liu ZA, Ren HX, Wang LS, et al. (2012) Two EST-derived

marker systems for cultivar identification in tree peony. Plant Cell Rep 31: 299–
310.

Prediction Olive Classification by Data Mining

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e44164



51. Abeel T, Saeys Y, Rouze P, Van de Peer Y (2008) ProSOM: core promoter

prediction based on unsupervised clustering of DNA physical profiles.
Bioinformatics 24: i24–31.

52. Adams MW, Kelly RM (1998) Finding and using hyperthermophilic enzymes.

Trends Biotechnol 16: 329–332.
53. Georis J, de Lemos Esteves F, Lamotte-Brasseur J, Bougnet V, Devreese B, et al.

(2000) An additional aromatic interaction improves the thermostability and
thermophilicity of a mesophilic family 11 xylanase: structural basis and

molecular study. Protein Sci 9: 466–475.

54. Ebrahimie M, Mohammadi-Dehcheshmeh M, Ebrahimi M, Ebrahimi M (2010)

A study on functional modulations of genome in somatic embryogenesis pathway
using EST analysis New Biotechnology Volume 27, Supplement 1: S43.

55. Guzman E, Baeten V, Pierna JA, Garcia-Mesa JA (2012) A portable Raman

sensor for the rapid discrimination of olives according to fruit quality. Talanta
93: 94–98.

56. Elbeaino T, Digiaro M, Martelli GP (2011) Complete sequence of Fig fleck-
associated virus, a novel member of the family Tymoviridae. Virus Res 161:

198–202.

Prediction Olive Classification by Data Mining

PLOS ONE | www.plosone.org 9 September 2012 | Volume 7 | Issue 9 | e44164


