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Abstract 

Background:  Plasmodium falciparum causes the deadliest form of malaria, which remains one of the most prevalent 
infectious diseases. Unfortunately, the only licensed vaccine showed limited protection and resistance to anti-malarial 
drug is increasing, which can be largely attributed to the biological complexity of the parasite’s life cycle. The progres-
sion from one developmental stage to another in P. falciparum involves drastic changes in gene expressions, where 
its infectivity to human hosts varies greatly depending on the stage. Approaches to identify candidate genes that are 
responsible for the development of infectivity to human hosts typically involve differential gene expression analysis 
between stages. However, the detection may be limited to annotated proteins and open reading frames (ORFs) pre-
dicted using restrictive criteria.

Methods:  The above problem is particularly relevant for P. falciparum; whose genome annotation is relatively 
incomplete given its clinical significance. In this work, systems proteogenomics approach was used to address this 
challenge, as it allows computational detection of unannotated, novel Open Reading Frames (nORFs), which are 
neglected by conventional analyses. Two pairs of transcriptome/proteome were obtained from a previous study 
where one was collected in the mosquito-infectious oocyst sporozoite stage, and the other in the salivary gland 
sporozoite stage with human infectivity. They were then re-analysed using the proteogenomics framework to identify 
nORFs in each stage.

Results:  Translational products of nORFs that map to antisense, intergenic, intronic, 3′ UTR and 5′ UTR regions, as 
well as alternative reading frames of canonical proteins were detected. Some of these nORFs also showed differential 
expression between the two life cycle stages studied. Their regulatory roles were explored through further bioinfor-
matics analyses including the expression regulation on the parent reference genes, in silico structure prediction, and 
gene ontology term enrichment analysis.

Conclusion:  The identification of nORFs in P. falciparum sporozoites highlights the biological complexity of the para-
site. Although the analyses are solely computational, these results provide a starting point for further experimental 
validation of the existence and functional roles of these nORFs,
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Background
Plasmodium falciparum causes the deadliest form of 
malaria, which impacts over 200 million individuals and 
results in nearly 450,000 deaths each year, 60% of which 
are children aged under 5 years [1]. It belongs to the large 
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Apicomplexa phylum of diverse eukaryotic intracellu-
lar parasites. In addition to malaria, this phylum also 
encompasses infectious agents of cryptosporidiosis and 
toxoplasmosis [2]. The latter is caused by Toxoplasma 
gondii, which is estimated to infect over 30% of the world 
population, and hence considered as one of the most 
successful parasites [3]. These diseases are not only life-
threatening but also widespread and, therefore, represent 
a serious threat to public health.

Unfortunately, both vaccines and treatment options 
with drugs are limited due to the biological complex-
ity of the Apicomplexan parasites [4]. Even for the well-
studied Plasmodium species, there is only one vaccine 
targeted for malaria with relatively low efficacy [5, 6]. The 
complexity arises from the highly regulated life cycles 
that allow them to inhabit different hosts and intracel-
lular niches [7]. To tackle this challenge, multi-omics 
data including genomic, transcriptomic, and proteomic 
datasets have been produced to understand the biologi-
cal processes underlying infection and disease causation, 
which can potentially be targeted with drug design [8]. 
However, these studies are often conducted in silos and, 
therefore, their insights are limited due to the lack of con-
sistency [9].

Developmental cycle of Plasmodium falciparum 
and annotation challenge
Like many other Apicomplexan parasites [10], P. falci-
parum is specialized to infect two separate hosts—the 
human host, and the female mosquitoes of approximately 
40 Anopheles species that can transmit the disease [11]. 
The developmental cycle starts with malaria-infected 
female Anopheles mosquito taking a blood meal, through 
which the sporozoites of Plasmodium parasites are trans-
mitted from the mosquito’s salivary gland to the human 
host (Additional file  1: Figure  S1). The sporozoites then 
travel to the liver and infect liver cells, allowing them to 
replicate and mature into schizonts. They then rupture 
and release merozoites, which infect red blood cells and 
is the stage that causes clinical manifestation of malaria. 
Some of the blood-stage parasites mature into sexual pre-
cursor cells, known as gametocytes, which are ingested 
by the Anopheles mosquito during a blood meal. The 
gametocytes are activated by environmental stimuli 
inside mosquito midgut and differentiate into gam-
etes and fuse to form a zygote [12]. The zygotes further 
develop into oocysts, within which sporogony takes place 
and produces sporozoites to invade mosquito’s salivary 
gland, ready for next round of infection via a mosquito 
bite.

The progression from one developmental stage to 
another in P. falciparum involves drastic changes in gene 
expression [13], and infectivity of the parasites to human 

hosts can also vary greatly depending on the stage. For 
instance, while oocyst sporozoites are highly infectious 
for the mosquito salivary gland, they are non-infectious 
to mammalian hosts; on the contrary, salivary gland 
sporozoites exhibit specific infectivity for mammalian 
liver, but correspondingly loose infectivity for mosqui-
to’s salivary gland [14]. Understanding the mechanism 
for this switch of infectivity is of great interest, because 
inhibiting it allows us to prevent infection before the 
symptomatic phase, which is where malaria intervention 
efforts using vaccines have been focused on [15].

Approaches to identify candidate genes that are 
responsible for the development of infectivity to mam-
malian hosts typically involve differential gene expres-
sion analysis between oocyst sporozoites and salivary 
gland sporozoites [16, 17]. However, although these stud-
ies have successfully identified genes and proteins that 
are upregulated in the mammalian-infectious stage, the 
detection may be limited to annotated proteins [9] and 
open reading frames (ORFs) predicted using restrictive 
criteria such as a minimum length of 100 codons [18].

This problem is particularly relevant for P. falciparum, 
whose genome annotation is relatively incomplete despite 
its clinical significance [19]. Even with the advancement 
of sequencing techniques and computational power, over 
33% of predicted genes in the parasite genome remain 
functionally unannotated [20], which represent a great 
challenge for discovering vaccine candidates and thera-
peutic drugs. Furthermore, untranslated region such as 
5′ and 3′ UTRs are also absent in the annotation, which 
have been shown to regulate protein expression in P. fal-
ciparum [21]. The lack of annotation despite community 
efforts can be attributed to several factors. As an Apicom-
plexan parasite, it is evolutionarily distant from other 
eukaryotic model organism where less than 25% of the 
protein sequences share significant similarity with those 
outside the phylum [22]. Even within the same phylum, 
many of the parasites have evolved pathways for cell inva-
sion of their specific host and, therefore, only 12–34% of 
the protein-coding genes are shared by all apicomplexans 
[23]. Therefore, there is a pressing need for improving the 
genome annotation of P. falciparum.

To further complicate the annotation challenge, anti-
sense transcription events have widely been discovered 
in P. falciparum and are thought to be important for gene 
expression regulation and parasite development between 
life cycle stages [24]. Of particular interests are the anti-
sense transcripts reported in the var gene regions [25], 
which represent a gene family that encodes for roughly 
60 different variants of P. falciparum erythrocyte mem-
brane protein-1 (PfEMP1). PfEMP1 is a virulence fac-
tor that adhere to human receptors and hence enable 
the parasite to evade from the host immune system. To 
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avoid recognition by antibodies, P. falciparum switches 
between the variant forms of PfEMP1 in a mutually 
exclusive manner [26]. However, the tightly controlled 
mechanisms underlying var gene transcriptional con-
trol remain largely unknown. It was recently shown that 
antisense long non-coding RNA (lncRNA) derived from 
intronic region of var can activate the corresponding var 
gene [27], which may shed light on var gene expression 
control. Unravelling the regulatory roles of these non-
canonical regions, such as their coding potential, will 
require novel approaches that are specifically tailored to 
them.

Proteogenomics and novel open reading frames (nORFs) 
discovery
One approach that can address the challenges above is 
proteogenomics, which combines the power of genomic, 
proteomic and transcriptomic data to improve genome 
annotation and the current understanding of protein 
expression (Additional file  1: Figure  S2) [28]. The tradi-
tional proteomics analysis detects peptides by match-
ing spectra from tandem mass spectrometry (MS/MS) 
against existing reference protein sequence database, 
which is prone to the assumption that the database con-
tains all proteins in the genome of interest [29]. Especially 
for less well-annotated genomes, this assumption will 
have a more significant impact on peptide identification 
and downstream analysis like protein quantification. The 
peptide search in proteogenomic approach uses custom-
ized database instead, which can be generated by either 
six frame translation (6FT) of the genome, or by trans-
lation of the transcriptome [30]. It allows the detection 
of translation of nORFs that may otherwise be neglected, 
such as those from non-coding regions, including anti-
sense transcripts, lncRNAs, intergenic and intronic 
sequences. The definitions of nORFs used in this study 
are as shown in Fig.  1a. Conversely, the proteomic data 
can provide peptide evidence for novel transcripts and 
RNA editing events, further improving the gene models. 

This approach can be iterative as more multi-omics data 
are being generated, and continuously improve genome 
annotation.

The use of proteogenomic approach has gained its pop-
ularity given the increasing amount of transcriptome data 
available thanks to next-generation sequencing [31, 32], 
as well as the improved accuracy and resolution in MS 
data for proteomics [33]. For the larger human genome, it 
has been used to identify novel coding regions in normal 
tissues and cancer cell lines, where a significantly larger 
number of novel peptides were discovered in the lat-
ter, indicating the biological importance of unannotated 
coding sequences [34]. The proteogenomic methods are 
particularly valuable for non-model organisms like P. fal-
ciparum, whose genome assembly and annotation tend 
to be incomplete, and protein database construction is 
difficult owing to the lack of close sequence relatives [35]. 
Previous successful examples include Thermococcus gam-
matolerans, an archaea extremophile whose genome was 
sequenced and annotated using proteogenomic analysis 
[36].

Here, proteogenomic analysis was performed using 
the transcriptomic and proteomic data obtained from 
the oocyst sporozoites and salivary gland sporozoites of 
P. falciparum used by a previous study [37]. nORFs were 
detected in both life cycle stages. Bioinformatics analyses 
suggest that these nORFs may be of functional impor-
tance with interesting properties and are, therefore, 
worth further experimental investigation.

Methods
Dataset
A literature review was conducted to identify the datasets 
suitable for proteogenomic analysis, which should consist 
of a pair of proteomes and transcriptomes from the same 
developmental stage. Thanks to the substantial research 
efforts devoted to P. falciparum, several transcriptome 
and proteome datasets have been deposited in the NCBI 
Sequence Read Archive (NCBI-SRA) and the PRIDE 

Fig. 1  a The figure illustrates the nORF definitions used in this study. Translational products are quantified as peptide-spectral matches and 
classified into these five nORFs categories depending on where they map to the canonical gene. b Schematics of the proteogenomics analysis that 
was performed to identify translational products from novel open reading frames using transcriptomes and proteomes. oo-spz: oocyst sporozoite, 
sg-spz: salivary gland sporozoite from Lindner et al. [37]

(See figure on next page.)
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database, respectively [38]. However, it was difficult to 
find both transcriptomes and proteomes from the same 
stage, and some are not available in retrievable format. 
For instance, a study by Lasonder et al. [39] reported the 
transcriptomes and associated proteomes of female and 
male gametocytes, but the proteomic data was submitted 
to PlasmoDB [40], which could not be retrieved as raw 
data. Additionally, omics-data for P. falciparum are usu-
ally generated from different, independent studies, mak-
ing the downstream analysis susceptible to batch effects.

As a result, this work focuses on two pairs of tran-
scriptome/proteome generated by Lindner et  al. [37]. 
The authors produced transcriptomic and proteomic 
data for oocyst sporozoites from wild-type P. falciparum 
parasites (NF54 strain) as well as salivary gland sporo-
zoites, with three biological replicates for each sample 
type. The reasons for narrowing down to these datasets 
are threefold: firstly, the original analysis by Lindner 
et al. only considered annotated genes, leaving room for 
the discovery of novel ORFs. Secondly, the two life cycle 
stages analysed correspond to the mosquito-infectious 
and human-infectious stage, and therefore novel ORFs 
detected by proteogenomic analysis could help explain 
the development of human-specific infectivity. Finally, 
since the datasets were produced in the same labora-
tory, the conditions should presumably be similar and 
differential expression is mainly caused by biological 
differences between the developmental stages. The tran-
scriptomic data was downloaded from the GEO database 
(Accession #GSM3109291, GSM3109292, GSM3109293 
for oocysts sporozoites; # GSM3109294, GSM3109295, 
GSM3109296 for salivary gland sporozoites), and the 
proteomic data from PRIDE (Accession #PXD009726 
for salivary gland sporozoites, #PXD009728 for oocysts 
sporozoites).

Proteogenomic workflow
The novelty of proteogenomic analysis comes from 
matching the MS/MS spectra against a customized data-
base constructed [28] based on the transcript informa-
tion, instead of limiting the searches to known proteins 
as in the analysis by Lindner et al. [37] and in most prot-
eomic analyses [41]. In this work, a customized database 
was constructed from the transcripts assembled from the 
HISAT2-StringTie pipeline as described by Pertea et  al. 
[42] (Fig. 1b). However, one should be aware of the limi-
tation of discovering novel ORFs using this approach, as 
it is just a computational prediction.

Briefly, the quality of RNA-seq data from oocyst sporo-
zoites and salivary gland sporozoites were assessed using 
FastQC to check for contamination from sequences 
from other species, which is essential given that separat-
ing the parasite from its mosquito vector still represents 

a significant technical challenge [43]. The adapter 
sequences ligated to DNA fragments for library prepa-
ration were subsequently trimmed using Cutadapt [44]. 
The processed reads were then aligned to the reference 
genome for P. falciparum  3D7 strain retrieved from 
PlasmoDB ver.46 [40] using HISAT2 [45]. The BAM 
files with sequence alignment data were used to assem-
ble transcripts using StringTie [46], which was guided 
by the reference annotation GFF file (PlasmoDB ver.46) 
and also allow the assembly of novel transcripts includ-
ing splice variants. The assembled transcripts, therefore, 
include known transcripts from reference annotation 
with “PF3D7” as transcript ID prefix, and potentially 
novel transcripts with “MSTRG” prefix, which are con-
structed from reads that cannot be explained by refer-
ence transcripts. Compared to gene-level quantification 
where all reads are mapped to known genes, transcript-
based approach taken by StringTie does not assume that 
genome annotation is complete and effectively expands 
the search space for matching MS/MS peptide spectra. 
The transcript nucleotide sequences were then extracted 
from the reference genome using BEDTools getfasta 
[47]. The constructed transcriptome database was then 
searched in six-frames for matching to MS/MS spectra 
by Mascot, a search engine that identifies protein using 
the MS data [48]. It matches all peptide spectra to the in 
silico translated proteins derived from the transcriptomic 
database “on the fly”, hence identifies which transcript is 
supported by peptide evidence. For each peptide-spec-
trum match (PSM), Mascot also computes a probability 
score which is higher for proteins with more peptides 
matched to it.

Novel peptides classification
Since the known genes have been analysed thoroughly by 
Lindner et al. when they reported the transcriptomes and 
proteomes [37], only potentially novel transcripts with 
“MSTRG” prefix were considered in discovering nORFs 
that have been overlooked previously. Peptides that iden-
tify these MSTRG transcripts were subsequently clas-
sified (Fig. 1b) into different categories as defined above 
based on the position of matched peptides relative to the 
reference genes. Each category was classified indepen-
dently as described below.

Antisense
The first step to identify antisense peptides was to iden-
tify antisense transcripts from the pool of potentially 
novel MSTRG transcripts. Firstly, all the assembled tran-
scripts were compared with reference transcripts using 
BEDtools intersect [47], using parameters that only 
return transcript that is on the complementary strand 
of the reference transcript that it overlaps with. Peptides 
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that are matched to these antisense transcripts are then 
compared with the protein sequences from six frame 
translation using Transeq [49] to see which frame it origi-
nated from. Only peptides that are translated from frame 
4 to 6 are considered translation evidence for antisense 
transcripts, because it could be degenerate peptides from 
reference genes due to six frame translation.

Intergenic
The intergenic regions were extracted by using BEDtools 
complement [47] to subtract the genome from all anno-
tated regions and return genome intervals with no genes 
identified. The MSTRG transcripts were mapped to these 
intervals with BEDtools intersect, returning transcripts 
that overlap completely are classified as intergenic. Inter-
genic transcripts with peptides from any frame that iden-
tified them are intergenic ORFs.

Retained intron
MSTRG transcripts that contain the introns of overlap-
ping reference genes are determined by GffCompare [50] 
that compares their intron–exon structures. The exons of 
these transcripts were subsequently intersected with the 
introns of reference genes to extract the retained intron 
region, which were six frame translated by Transeq and 
mapped by the peptides to see if they fall into the introns 
The intronic peptides were then checked manually to 
see if they are in-frame with the neighbouring exon on 
genome visualizer, Artemis [51]; if not, they are classified 
as AltORFs instead.

3′ and 5′ UTR​
Unlike other well-characterized genomes, informa-
tion about the untranslated regions of P. falciparum is 
relatively scarce [52], where the majority of research 
has been focussed on coding sequences only. Therefore, 
the first attempt to extract 3′ and 5′ UTRs by subtract-
ing coding sequence from the genomic coordinates of 
mRNAs failed, because they are of equal lengths. BED-
tools intersect was combined with length filtering to find 
MSTRG transcripts with complete overlap with a refer-
ence gene, and are also longer than the overlapped gene. 
These transcripts contain extended region on the 3′ and/
or 5′ end outside coding sequence and regarded as UTRs 
accordingly. The UTRs were then translated into pro-
tein sequence to check if any peptides can confirm their 
translation. Similarly, peptides from UTRs need to be in-
frame with the parent reference gene to be considered, 
otherwise moved to the AltORFs category.

AltORF
Along with the out-of-frame peptides from retained 
intron and UTR classification, all peptides from MSTRG 
transcripts (excluding antisense transcripts) that over-
lap with known genes were also compared with the cor-
responding six frame translated coding sequences. The 
frame from which the peptides are translated can then 
be detected, and those from non-canonical frame, were 
classified as products of AltORFs. However, it is worth 
noting that almost half of these AltORF peptides map to 
frames that are antisense (frame 4, 5 and 6) to the canoni-
cal genes (341/732 peptides in oocyst sporozoites, and 
379/733 peptides in salivary gland sporozoites), these 
peptides are categorized as AltORF products as they are 
not associated with antisense transcript.

Differential expression analysis
To identify novel ORFs that may be involved in the 
development of infectivity to human hosts, differen-
tial expression analysis between the two stages studied 
was conducted at both transcript and protein levels. For 
RNA-seq data, DESeq  2 [53] was chosen to perform 
differential expression analysis, which is an R pack-
age available within the Bioconductor project [54]. This 
is because DESeq  2 is widely used by the community, 
including Lindner et al. that published the analysed data-
set [37], and it has also been recently proved to have the 
best overall performance among 12 methods [55]. Since 
DESeq2 requires read counts as an input, while StringTie 
outputs coverage values for transcript abundance, these 
were first converted from coverage to counts for each 
transcript, using the formula reads_per_transcript = cov-
erage * transcript_len/read_len  with a python script 
(available at http://ccb.jhu.edu/softw​are/strin​gtie/dl/
prepD​E.py). DESeq2 then normalizes the counts inter-
nally and compares them between oocyst sporozoites 
and salivary gland, producing statistics metrics includ-
ing adjusted p-values and log-transformed fold changes. 
Transcripts with adjusted p-values < 0.1 were called dif-
ferentially expressed between the two stages.

For protein differential expression analysis, the spectral 
count method was used for protein expression analysis 
that compares the peptide-spectrum matches (PSM) for 
each protein between the two stages, which has the high-
est reproducibility for label-free proteomics data [56]; it 
is then combined with the G test statistics [57] for com-
puting p-values. However, in this study the MS/MS spec-
tra were matched against a customized transcriptome 
database instead of annotated protein database, defini-
tion of a protein was, therefore, adjusted. Because the 
protein sequence of a translated transcript is different for 
each frame, an assumption was made that a given peptide 
can only identify one frame of the matched transcript 

http://ccb.jhu.edu/software/stringtie/dl/prepDE.py
http://ccb.jhu.edu/software/stringtie/dl/prepDE.py
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being translated, and that a maximum of one protein can 
be translated from each frame of a transcript. As a result, 
the sum of PSMs that identify one frame of a transcript 
are the spectral counts for the protein product from that 
frame of the transcript.

Based on this assumption, the spectral counts were 
computed for each frame of each transcript (potential 
protein) with peptide evidence, and increase all of them 
by 1 to remove zero-values. These counts were subse-
quently normalized by first calculating the sum of all 
PSMs of both samples to identify the sample with smaller 
sum, where its PSMs were multiplied by the ratio of two 
PSM sums to minimize the background effect between 
samples. It was then possible to determine the differences 
in spectral counts of a protein between two stages by 
applying the G test of significance as follows:

where G is the G test static, Coo and Csg are the normal-
ized spectral counts for a protein in oocyst sporozoite 
and salivary gland sporozoite respectively. A p-value was 
calculated as the probability that a χ2 distribution with 1 
degree of freedom was more extreme than the G statistic 
for that protein. The Benjamini–Hochberg method was 
used to correct for false discovery rates from multiple 
hypothesis testing, where a protein needs to satisfy the 
criteria of both G-test and FDR < 5.0% to be called differ-
entially expressed.

Estimation of full‑length ORF from peptide‑spectral match
While differential expression analysis compares the 
expression level of one protein between samples, it is also 
interesting to compare the relative abundance of a pro-
tein with other proteins within and between samples. 
Therefore, the normalized spectral abundance factors 
(NSAF) were computed for each protein, which has been 
proved to provide reliable quantification [58]. For a given 
protein k, the spectral abundance factor (SAF) is calcu-
lated as the total PSMs (or spectral counts) that identi-
fies the protein normalized by its length, and the NSAF is 
then the SAF normalized by total SAF values in the sam-
ple as shown below:

where (NSAF)k is the NSAF value for protein k, SpC is 
spectral count and length is the protein length. This 
method adjusts for the protein length, because larger 

G = 2[Cooln

(

Coo

(
Csg + Coo

2 )

)

+ Csgln

(

Csg

(
Csg + Coo

2 )

)

]

(NSAF)k =
(SpC/Length)k

∑N
i=1(SpC/Length)i

proteins tend to have higher probabilities of generat-
ing more PSMs; as well as the total protein abundance 
in one sample. However, for peptides that do not map to 
canonical coding sequences, the open reading frame in 
the mapped transcript from which they were translated 
needed to be estimated to obtain protein length. The esti-
mated ORFs could also be used for downstream func-
tional analysis.

Briefly, for all transcripts with peptide-spectrum 
matches, their spliced nucleotide sequences were first 
extracted and six frame translation was performed. Then, 
for each peptide-spectrum match, the frame of which 
the matched transcript it maps to was identified and the 
translated protein sequence was extracted. All possible 
open reading frames were subsequently determined from 
the protein sequence defined by the presence of start and 
stop codon, which is indicated by methionine and “*” 
respectively in the protein sequence. The matched pep-
tide was then mapped to these possible ORFs and see if it 
matches to any of them. If not, the ORF will be defined as 
the sequence flanked by the start and stop codons closet 
to the matched peptide (Additional file  1: Figure  S3). 
An R script was written to perform this task and can be 
found in https​://githu​b.com/Praba​karan​Group​/nORFs​
-in-malar​ia.

Gene ontology term and pathway enrichment analysis
All categories of nORFs analysed in this work except for 
intergenic ORFs have overlaps with a known gene. The 
sets of reference genes that overlapped with novel ORFs 
identified in the oocyst sporozoites and salivary gland 
sporozoites, respectively, were extracted and GO term 
and KEGG pathway enrichment analysis was performed 
on these genes using the Analyze tools on PlasmoDB 
[40]. InterProScan [59] was used instead to predict GO 
terms in novel ORFs.

Structural prediction
For small proteins with less than 200 amino acids, the 
structures were predicted using an ab  initio  structure 
prediction tool QUARK [60], which has shown top-rank-
ing performance in the Critical Assessment of Structure 
Prediction (CASP) experiments consistently [61]. Since 
template-free, ab initio methods work best on small pro-
teins, QUARK has a size limit of 200 amino acids, and 
larger proteins were predicted using the template-based 
I-TASSER [62] instead.

Results
Identification of novel transcripts and peptides
Using the HISAT2-StringTie [42] workflow to align the 
RNA-seq reads to reference genome and assemble into 
full length transcripts, a total of unique 7844 transcripts 

https://github.com/PrabakaranGroup/nORFs-in-malaria
https://github.com/PrabakaranGroup/nORFs-in-malaria
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were detected, with 4727 and 4431 canonical transcripts 
identified in oocyst sporozoite (oo-spz) and salivary 
gland sporozoite (sg-spz) stages, respectively, which are 
comparable with the results reported by Lindner et  al. 
(3535 and 3575). The log transformed fold changes of the 
canonical transcripts also correlate reasonably well with 
their data (Additional file 1: Figure S4a), with a correla-
tion coefficient of − 0.533, where the negative correlation 
is caused by the stages being compared (oo-spz:sg-spz vs 
sg-spz:oo-spz). An addition of 2045 transcripts were also 
identified, which are assembled from reads that could not 
be explained by canonical transcripts (with “MSTRG” 
transcript prefix). These potentially novel transcripts 
were then classified into different categories based on 
their comparison with the overlapped reference genes 
as described in “Methods” section (Fig.  1b). From the 
MSTRG transcripts, 780 and 790 transcripts were pre-
dicted to contain 3′ and 5′ UTR regions that are unseen 
in canonical transcripts along with 326 transcripts with 
retained introns. In addition, 41 antisense transcripts and 
427 intergenic transcripts were detected. Identification of 
AltORFs requires translational evidence and are, there-
fore, not applicable. The high abundance of transcripts 
from the UTR and intergenic regions agrees with a recent 

study [63] that reported nearly 90% of the P. falciparum 
genome is being actively transcribed. Together, these 
results demonstrated the possibility of identifying nORFs 
in untranslated regions that could not have been possible 
using traditional methods, which might have biological 
functions given their transcriptional potential. The gene 
boundaries also need to be re-defined to take the regions 
outside coding sequence into consideration.

However, transcriptional evidence alone tends to be 
very noisy, especially for non-canonical transcripts that 
are constructed from de novo assembly [64]. With the 
availability of proteomic data, it was possible to use the 
peptide-spectrum matches (PSMs) from novel tran-
scripts to identify their existence with much higher con-
fidence. As shown in Fig. 2, most of the novel transcripts 
have one or two unique peptides mapped to them, with 
very rare cases of over ten peptides. This suggests that 
most of these novel transcripts tend to be translated in 
only one frame even with six-frame translation and the 
translated region probably covers a small segment of the 
transcript.

Furthermore, a relatively small fraction of novel tran-
scripts has translation evidence from proteomic data, 
which emphasizes the need to confirm their existence 

Fig. 2  Distribution of number of unique peptides mapped to novel transcripts identified in oocyst sporozoite and salivary gland sporozoite

Table 1  Number of  novel transcripts identified from  RNA-seq data and  number of  novel transcripts with  translational 
evidence in oocyst and salivary gland sporozoites using the proteogenomic workflow

Antisense Intergenic Retained intron 3′ UTR​ 5′ UTR​ AltORF

41 427 326 780 790 / Novel 
transcript

Oocyst sporozoite 1 64 1 22 18 261 Novel 
tran-
script 
with 
pep-
tides

Salivary gland sporozoite 1 87 4 24 21 261

Transcript common in both stages 0 21 0 7 8 132

Total unique transcript 2 130 5 39 31 390
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experimentally. Less than 1/3 of the intergenic transcripts 
from the two stages have peptide spectral matches that 
can identify them (n = 130), although many of them are 
specific to either salivary gland or oocyst sporozoites 
(Table  1). Notably, despite many transcripts showed 
retained introns of canonical genes, only five of them 
have peptide evidence that supports the translation of 
these introns, indicating that the current intron–exon 
structures of coding sequences are likely to be accurate. 
Similarly, antisense peptides were detected at a very low 
level, with one PSM in each stage. Unlike other untrans-
lated regions, slightly more novel peptides were detected 
to be translated from the 3’ and 5′ UTRs. One explana-
tion is that they reflect the incomplete annotation of 
reference genes, or they could arise from stop-codon 
read-through [65] and translation of upstream ORFs 
respectively, where the latter has been shown to regu-
late the expression of downstream canonical ORFs [66]. 
However, despite the sparse evidence for translation of 
these novel transcripts, their regulatory roles on canoni-
cal proteins may be at RNA level only, especially anti-
sense transcripts, whose RNA molecules were shown to 
interact with chromatin and regulate gene expression in 
P. falciparum [25].

Majority of the novel peptides belong to the alternative 
ORF (AltORF) category, which was defined as the trans-
lational products from a non-canonical reading frame of 
the overlapped coding sequence, including those that fall 
into introns and the 3′ and 5′ UTR regions of the tran-
script. AltORFs have previously been found in viruses, 
bacteriophages as well as humans [67], but their exist-
ence has not yet been reported in P. falciparum. This sug-
gests that the proteome of P. falciparum may be much 
more complicated than previously thought, and the 
abundance of AltORFs suggests that the parasite may use 
it to expand the coding potential of existing genes in the 
compact genome. Although the functions of AltORFs 
remain largely unknown, it was thought that the transla-
tion of these non-canonical ORFs alone could provide a 
mechanism for expression control [68]. It would, there-
fore, be interesting to investigate if these novel peptides 
could explain the development of infectivity for human 
host in the parasite.

ORF prediction and differential expression analysis
Although the identification of nORFs in this study is 
limited to computational prediction, it is worthwhile 
to investigate whether some of them are more interest-
ing targets for experimental verification than others. To 
study the potential regulatory roles of the novel peptides, 
differential expression analysis was performed on their 
parent proteins between oocyst sporozoites and sali-
vary gland sporozoites. However, unlike most canonical 

proteins whose amino acid sequences have been identi-
fied experimentally, novel peptides themselves do not 
provide information of the full-length novel proteins 
from which they were generated, they are only evidence 
that there are PSMs that identify a segment of the tran-
script. An attempt was made to predict the open read-
ing frame based on where the peptides map to translated 
sequence of transcripts (see “Methods” section).

This approach was applied to both putative novel 
proteins and canonical proteins, where the latter have 
annotated protein lengths that allow one to verify the fea-
sibility of estimating full-length ORFs from PSMs of six-
frame translated transcripts. By searching the MS/MS 
spectra against the customized transcriptome database, 
2901 and 2933 canonical proteins in oocyst sporozoite 
and salivary gland sporozoite were identified, respec-
tively, as compared to 1432 and 2040 proteins identified 
by Lindner et al. [37]. The results for the protein-length 
normalized spectral abundance factors (SAF) for canoni-
cal proteins were then compared with those reported by 
Lindner et al. The protein abundances (in SAF) that were 
computed for canonical proteins in the samples from two 
stages correlated strongly with the published data (Addi-
tional file 1: Figure S4b), with correlation coefficients of 
0.95 and 0.91 for oocyst sporozoite and salivary gland 
sporozoite, respectively, indicating that one could deduce 
the ORFs for novel peptides using this method (Addi-
tional file 1: Figure S3) as well.

After computing the PSMs for both novel and canonical 
proteins in two different stages, one could then proceed 
to identify the ones that were differentially expressed 
using G-test statistics. In total, 86 differentially expressed 
nORFs were observed, which share a similar distribution 
of nORF categories (classified in Fig.  1) with those pre-
sent in the total proteomics data of salivary gland sporo-
zoites and oocyst sporozoites (Fig.  3). One exception is 
the intergenic ORFs—while the intergenic peptides were 
the second most abundant category in both stages, only 
6% of the differentially expressed nORFs are from the 
intergenic region.

Antisense transcripts and peptides
Although only two unique antisense peptides were 
identified in this study, antisense transcripts have pre-
viously been shown to be incorporated into chromatin 
and consequently activate the virulence factor in P. fal-
ciparum, the var gene family [25]. It is, therefore, worth 
investigating further the regulatory roles of the antisense 
transcripts on their parent transcripts. The correspond-
ing reference genes of the 41 antisense transcripts were 
first extracted and the transcript abundances in TPM 
(Transcripts Per Million) of both sense and antisense 
transcripts were calculated, and finally compared the 
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TPM values using Pearson correlation. As a result, five 
antisense transcripts were shown to have significant cor-
relation (p < 0.05) with the sense reference transcripts 
(Table 2), where three of them have positive correlation 
that suggests an activation mechanism. Interestingly, 
regardless of the transcript correlation, all reference 

genes with associated antisense transcripts are signifi-
cantly downregulated at transcript level in salivary gland 
sporozoites. Especially for the two antisense transcripts 
that showed anticorrelated expression, one of the parent 
gene has both downregulated mRNA and protein expres-
sion, while the other is downregulated at mRNA level but 

a b

c

Fig. 3  Distribution of nORF categories in total proteomes of oocyst sporozoite (a) and salivary gland sporozoite (b), as well as in differentially 
expressed nORFs (c)

Table 2  Correlation of  TPM values between  antisense transcripts and  their associated reference transcripts 
across the two life cycle stages (oocyst and salivary gland sporozoites)

↓ indicates that the fold change is negative in differential expression analysis and ↑ indicates positive fold-change. ns indicates that the reference transcript was not 
significantly differentially expressed

Associated reference 
transcript

Antisense transcript Correlation 
coefficient

p-value Reference transcript 
fold-change

Reference 
protein fold-
change

PF3D7_0209600.1 MSTRG.182.1 0.984 0.000360 ↓ ns

PF3D7_0103800.1 MSTRG.17.1 − 0.964 0.00187 ↓ ↓
PF3D7_0414500.1 MSTRG.618.1 0.947 0.00415 ↓ ns

PF3D7_0314000.1 MSTRG.401.1 − 0.928 0.00758 ↓  ↑
PF3D7_1116000.1 MSTRG.2636.1 0.879 0.0211 ↓ ↓
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upregulated at protein level. Notably, the MSTRG.401.1 
transcript also has translational evidence, suggesting that 
the regulation by antisense transcripts could be medi-
ated by their translational product. Overall, the actions 
of antisense transcripts observed are not uniform where 
they could potentially regulate the expression of their 
target genes not just by activation but also by repres-
sion, which has been well-established in mammalian 
genomes [69]. However, since the transcript level of the 
parent reference genes do not correlate well with protein 
expression, further experimental evidence is required to 
confirm the roles of these antisense transcripts.

GO term and pathway enrichment
To investigate if nORFs could be involved in a particu-
lar function in P. falciparum, enrichment analysis was 
performed on the GO terms and KEGG pathways on 
their parent reference genes, because they might affect 
the functions of existing genes. As shown in Fig. 4, par-
ent genes of the novel peptides identified from oocyst 
sporozoites and salivary gland sporozoites are associated 
with very different sets of known genes. With a strin-
gent p-value cut-off of 0.01, the parent genes that over-
lap with the novel peptides in oocyst sporozoites have a 
clear enrichment in processes related to cell localization 
and movement, which is further supported by the 100% 
enrichment of the background genes in actomyosin. On 

Fig. 4  GO terms and KEGG pathways enrichment of the reference genes associated with novel peptides identified in oocyst sporozoite and salivary 
gland sporozoite. For GO terms enrichment the p-value cut-off was 0.01, and 0.02 for KEGG pathways. Percentage of genes means how many 
percents of the background genes (in Plasmodium falciparum) with a particular term are present in the gene set of interest
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the other hand, the gene set for salivary gland sporozoite 
is also enriched in the actomyosin structure, and distinc-
tively enriched in replisome complex as well.

Since oocyst sporozoites need to migrate from mos-
quito midgut to salivary gland and await for injection 
into human host via a blood meal, motility is crucial for 
host invasion and achieved by the invasion machinery 
called glideosome, which is powered by the actomyosin 
system [70]. Given its importance to entry into host cells, 
attempt has been made to target the glideosome-associ-
ated proteins with small molecule as a potential approach 
to discover anti-malarial drugs [71]. Therefore, it shows 
that the identified nORFs are associated with important 
loci for infectivity and could serve as an extended reser-
voir to target for future drug design.

For KEGG pathway enrichment, a less stringent cut-off 
was chosen because otherwise no pathways could pass 
the filter, which still returned very few enriched path-
ways (Fig. 4). Interestingly, the gene set in salivary gland 
sporozoite is enriched in the pathway for the biosynthesis 
of an antibiotic, puromycin, where the genes involved in 
this pathway are all alpha/beta hydrolases. Of particular 
interest is the BEM 46-like protein, which was shown to 
modulate the development of sporozoites [72] and, there-
fore the associated novel peptides may play a role in the 
modulation as well.

High quality peptide filtering and re‑analysed differential 
expression
To obtain high quality novel peptides, a quality filter of 
Mascot score > 20 was applied on the proteomic datasets 
and subsequently performed differential expression anal-
ysis on the proteins of filtered peptides. Approximately 
half of the total peptides remained after applying the filter 
(Table 3), whereas for novel peptides the proportions are 
much lower, ranging from 14% to 20%. This suggests that 
compared with peptides from canonical proteins, novel 
peptides tend to have lower probabilities of being a real 
positive match. A total of 138 and 131 unique novel pep-
tides remained in the oocyst and salivary gland sporozo-
ite dataset respectively (Table 4) after the filtering, with 
AltORF being the most common category followed by 
intergenic, which follows a similar trend before filter-
ing. Unfortunately, no peptides from antisense strand 
or retained intron passed the filter, which were very rare 
before filtering too.

The ORFs of the filtered novel peptides as described 
previously, and see which of them was differentially 
expressed. With a much smaller pool of high-quality 
peptides, only five unique novel ORFs showed differen-
tial expression between the two stages (Table  5), where 
AltORF is still the most common category, and one ORF 
from 3′ UTR and intergenic regions. Interestingly, four 
out of five DE nORFs showed opposite trend in transcript 
and protein expression, meaning that those that have 
positive fold-change at mRNA-level showed negative 

Table 3  Percentage of  novel peptides and  total peptides 
passing the  filter of  Mascot score > 20. oo1, oo2, oo3 
represent the  three biological replicates from  oocyst 
sporozoite and  sg1, sg2, sg3 are the  replicates 
from salivary gland sporozoite

Sample Percentage of novel 
peptides passing the filter

Percentage of total 
peptides passing 
the filter

oo1 17.5 50.5

oo2 19.8 49.7

oo3 15.2 48.2

sg1 14.5 53.0

sg2 19.9 53.4

sg3 17.7 52.8

Table 4  Number of  novel peptides from  different 
categories that passed the quality filter of Mascot score > 
20

Number of unique novel peptides

5′ UTR​ 3′ UTR​ AltORF Intergenic

Oocyst sporozoite 4 4 116 14

Salivary gland sporozoite 4 4 107 16

Table 5  High quality (Mascot score > 20) novel ORFs identified by using filtered peptides only

PSM values were normalized as described in “Methods” section

Transcript ID Frame Category of nORF PSM in oo-spz PSM in sg-spz Log ratio of PSMs Log fold-change 
of transcripts

p-value

MSTRG.2270.1 1 3p UTR​ 3.32 16.00 2.27 − 1.74 0.0026

MSTRG.231.2 1 AltORF 28.75 1.00 − 4.85 11.57 0.0000

MSTRG.633.1 6 AltORF 22.12 2.00 − 3.47 ns 0.0000

MSTRG.4174.1 2 Intergenic 1.11 11.00 3.31 − 3.49 0.0022

MSTRG.4394.1 1 AltORF 1.11 15.00 3.76 − 3.34 0.0002
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fold-change at protein level and vice versa. The poor 
correlation between mRNA and protein abundances 
are not uncommon, which is often caused by the regu-
latory mechanism governing transcripts or proteins, but 
sometimes by noise and experimental error as well [73]. 
Further experiments are required to confirm if it is the 
former.

Differentially expressed 3′ UTR​
It was worth noting that the differentially expressed 3′ 
UTR (MSTRG.2270.1), despite showing higher expres-
sion in salivary gland sporozoites, the peptide spectrum-
match that maps to the 3′-end of the canonical gene 
(gene identifier: PF3D7_1013400) was only present in 
oocyst sporozoites. This is in line with the RNA-seq data, 
where the 3′-end is clearly expressed in oocyst sporozo-
ites but almost undetectable in salivary gland sporozoite. 
Even though there were only two PSMs from this nORF 
before normalization in oocyst sporozoites, the 3′ UTR 
was still captured at such low expression, it is unlikely 
that the absence of peptide from 3′ UTR in salivary gland 
sporozoites is due to chance or physical chemistry of the 
peptide ion. It is possible that the protein with 3′UTR is 
an isoform specific to the oocyst sporozoite stage.

To understand the function of the extended 3′UTR 
region, InterProScan [59] was used to analyse the 
sequence of this nORF. The results revealed that while the 
canonical gene PF3D7_1013400 has only a long stretch 
of “Non-cytoplasmic domain” identified, the extended 
3′-end of 71 amino acids was predicted with multiple 
transmembrane helices.This is further confirmed by the 
prediction of transmembrane helices from TMHMM 
[74], which predicted two helices in the region after the 
canonical stop codon (Additional file  1 Figure  S5). The 
inclusion of this transmembrane tail might also explain 
the low expression of this protein in oocyst sporozoites, 
because membrane proteins require specialised protocols 
to be fully solubilised in sample preparation [75].

Results from TMHMM also suggested that canonical 
protein is likely to be outside of the membrane, which 
coincides with the non-cytoplasmic domain detected 
by InterProScan. Therefore, the extended region in the 
3′ end can potentially act as an anchor that tether the 
canonical protein to the membrane in oocyst sporozo-
ites. When the parasite transitions into salivary gland 
sporozoite, the canonical stop codon is used and without 
expressing the 3′ end of transmembrane helices.

Since there is no function annotated for the parent 
gene of this 3′UTR other than it encodes a conserved 
protein, its structures with and without the 3′ exten-
sion were predicted using the template-based I-TASSER 
[62]. It appears that the isoform with extra helices at the 
3′-end (Fig.  5a, highlighted in red) has a very different 

structure than the one without, where the former is 
predicted to have a more compact, ordered structure 
and likely to bind to a peptide substrate, while the latter 
contains a lot of disordered loops with nucleic acid sub-
strate. Therefore, it is possible that the presence of extra 
helices allows the parent protein to tether to the mem-
brane and adopt a more stable structure to bind to differ-
ent substrates. When the parasite matures into salivary 
gland sporozoite, it expresses the canonical protein with 
no transmembrane helices, which may be released into 
the extracellular environment given its non-cytoplasmic 
domain and potentially involved in the host-parasite 
interaction upon infection.

Intergenic ORF and transmembrane domains
Surprisingly, an intergenic nORF was also differentially 
expressed after the quality filtering. It is a short ORF with 
only 30 amino acids and unique to salivary gland sporo-
zoites, identified by 10 raw PSMs (Table 5). InterProScan 
could not detect any functional domain possibly due to 
its short length and, therefore, its structure was mod-
elled using an ab initio structure prediction tool QUARK 
[60], which can yield high-resolution structures for small 
proteins [76]. The predicted structure (Fig. 5b) is highly 
ordered with two short helices connected by a loop, sug-
gesting that the intergenic ORF could form protein-like 
products too.

Intergenic ORFs with high-quality PSMs were then 
analysed to see if they have functional roles. Firstly, a 
BlastP search was performed on all the intergenic ORFs 
against the non-redundant protein sequence database, 
and no significant hit with expected value (E-value) 
smaller than 0.05 was returned, indicating that these 
ORFs share little or no sequence homology with known 
proteins. Interestingly, InterProScan detected many 
transmembrane domains in the intergenic ORFs from 
prediction by TMHMM (Fig.  6a), where 12 out of 34 
were predicted with one or more transmembrane heli-
ces, and one of them was predicted with four helices. A 
similar scenario was observed in AltORFs (Fig.  6b) as 
well, where 99 out of 248 ORFs were predicted to con-
tain transmembrane domain. Such abundance suggests 
that these ORFs may have biological functions in the 
membrane, which have been previously overlooked by 
the conventional annotation methods. Interestingly, this 
scenario has previously been observed in Escherichia coli 
as well [77], where over half of the novel small proteins 
(16–50 amino acids) identified in the intergenic region 
were predicted to have a transmembrane segment and 
also shown to co-fractionate with the membrane experi-
mentally. Therefore, it is possible that this may be a com-
mon strategy adopted by organisms with small genomes 
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to expand their proteome, although their exact functional 
roles still require experimental testing.

Correlation of nORF expression with canonical gene
Finally, the correlation between the protein expression of 
high-quality nORFs and that of their associated canonical 
gene was tested. By computing the normalized spectral 
abundance factor (NSAF) values, it was possible to com-
pare the expression across proteins and samples, which 
were used to perform Pearson Correlation analysis. In 
total, nORFs (Table 6) that showed significant expression 

correlation (p-values < 0.05) with the parent gene were 
identified, which are all AltORFs except for one 3′ UTR. 
It is worth noting that majority of them showed positive 
correlation, suggesting that either a positive regulation 
on the parent gene is a wide-spread scenario in nORFs, 
or that their expression is a by-product of the canonical 
translation event via mechanisms such as ribosome shift-
ing [78].

Interestingly, two AltORFs (MSTRG 4605.2 and 
MSTRG 2092.1) have anti-correlated expression with 
the parent gene, which are less likely to be a by-product 
and more likely have regulatory role on the expression 

a

b c

Fig. 5  Predicted structures of a differentially expressed nORF (MSTRG.2270.1) with 3′UTR (3′ end coloured in red) of PF3D7_1013400 using I-TASSER; 
b differentially expressed intergenic nORF (MSTRG.4174.1) using QUARK; and c two AltORFs that have protein expression that was anticorrelated 
with the associated reference genes using QUARK
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of canonical proteins. Moreover, one of the parent 
genes, PF3D7_1467600 was significantly downregu-
lated in salivary gland sporozoite, where the associated 
AltORF is uniquely present, suggesting that it may be 

involved in the downregulation mechanism. InterPro-
Scan did not find any functional domains other than 
transmembrane helices in the two AltORFs, which 
was common for novel ORFs as previously discussed. 

a b

Fig. 6  Predicted protein domains in high quality (Mascot score > 20) intergenic ORFs (a; total ORFs = 32) and AltORFs (b; total ORFs = 248) from 
InterProScan results

Table 6  High quality novel ORFs that  have significantly (p-value < 0.05) correlated protein expression (calculated 
in NSAF) with their associated reference genes

Transcript ID Frame Category of nORF Reference gene p-value Correlation 
coefficient

MSTRG.4605.2 2 AltORF PF3D7_1467600 0.0251 − 0.868

MSTRG.2092.1 6 AltORF PF3D7_0927900 0.0425 − 0.827

MSTRG.1076.2 2 AltORF PF3D7_0606600 0.0480 0.815

MSTRG.1556.1 2 AltORF PF3D7_0728700 0.0457 0.820

MSTRG.3171.1 1 AltORF PF3D7_1225600 0.0367 0.839

MSTRG.2151.1 6 AltORF PF3D7_0934500 0.0149 0.898

MSTRG.2472.1 2 3p UTR​ PF3D7_1033500 0.0134 0.904

MSTRG.2472.1 6 AltORF PF3D7_1033500 0.0134 0.904

MSTRG.4173.1 2 AltORF PF3D7_1417600 0.00838 0.924

MSTRG.370.1 1 AltORF PF3D7_0311100 0.00560 0.938

MSTRG.3602.1 6 AltORF PF3D7_1322400 0.00098 0.974

MSTRG.4140.1 1 AltORF PF3D7_1414500 0.000685 0.979

MSTRG.2185.1 2 AltORF PF3D7_1004300 0.000073 0.993

Table 7  Predicted molecular functions of  the  structures modelled by  QUARK for  MSTRG.4605.2 and  MSTRG.2092.1, 
which showed negative correlation of protein expression with associated reference gene

C-scores are confidence scores that range from 0 to 1, which higher score indicating a more confident prediction

MSTRG.4605.2 MSTRG.2092.1

Molecular function C-score Molecular function C-score

Phosphatidic acid binding 0.13 Nucleic acid binding 0.46

Phosphatidylinositol-4-phosphate binding 0.13 Phosphatase binding 0.40

Sterol transporter activity 0.13 Nucleic acid binding transcription factor 
activity

0.40

Oxysterol binding 0.13 Structural constituent of cytoskeleton 0.28

Phosphatidylinositol-4,5-bisphosphate binding 0.13 Catalytic activity 0.26
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Therefore, an attempt was made to infer function from 
their three-dimensional structures by first predicting 
the structures using QUARK (Fig.  5c), and then sub-
mitting them to the structure-based function predictor 
COFACTOR [79]. Although there were no significant 
hits (C-score > 0.4) of the predicted Molecular Func-
tion GO terms for MSTRG 4605.2 (Table  7), MSTRG 
2092.1 was predicted with nucleic acid binding func-
tion. Taken together, binding to the mRNA of canoni-
cal gene or to the chromosome could be a mechanism 
through which this AltORF regulates the expression of 
canonical proteins.

Discussion
Despite years of research efforts, malaria continues to be 
one of the most severe global health problems and affects 
millions of pregnant women and children in the Afri-
can Regions [1]. This can be attributed to several factors 
including the rise of resistance to anti-malarial drugs [80] 
and the lack of a vaccine that has high efficacy [5]. It is, 
therefore, of great interest to discover new vaccine can-
didates and novel drug targets. Additionally, the genome 
annotation of P. falciparum remains relatively incom-
plete where a large portion of genes remains function-
ally unannotated and regulatory elements outside coding 
sequences are not included [20]. As an attempt to address 
these issues, proteogenomics analysis was performed to 
discover novel open reading frames that would not have 
been identified using conventional approaches and could 
enhance the current understanding in the parasite biol-
ogy. The datasets analysed are the total transcriptomes 
and proteomes of oocyst sporozoites and salivary gland 
sporozoites [37], which correspond to the life-cycle 
stages that are mosquito-infectious and human-infec-
tious, respectively, and the identified nORFs could, there-
fore, contribute to the understanding of the development 
of infectivity.

In this work, putative novel transcripts were classi-
fied based on how they map to the canonical genes and 
subsequently determined where their peptide-spectrum 
matches align to the translated sequence to identify 
novel peptides. A total of 1734 novel peptides were iden-
tified, where 269 of them passed the high-quality filter 
of Mascot score > 20. A method was also developed to 
predict the full-length open reading frame from pep-
tides by finding the most suitable start and stop codons 
in the translated transcript, so that differential analysis 
could be performed for novel ORFs. The results for the 
length-normalized spectral abundance factors of canoni-
cal genes correlated well with those reported by Lindner 
et al. [37] (Additional file 1: Figure S4b), which were com-
puted using annotated protein lengths, suggesting that 
the approach used is feasible.

By performing GO terms enrichment analysis on 
the canonical genes associated with the novel ORFs, it 
appears that they arise from functionally important loci 
that are critical to the parasite invasion and survival. 
While the gene set associated with novel ORFs identified 
in oocyst sporozoites was enriched in GO terms of motil-
ity and localization, the gene set for salivary gland sporo-
zoites was more enriched in replisome-related GO terms 
(Fig. 4). More importantly, both gene sets showed signifi-
cant enrichment in the genes that form the actomyosin 
complex, which is part of the parasite invasion machin-
ery, also known as the glideosome. It is therefore pos-
sible that these novel ORFs play a role in host invasion 
and could serve as a drug target well, especially given that 
attempt has already been made to target glideosome with 
small molecules as a potential malaria therapy [71].

The functional roles of antisense transcripts have been 
a subject of debate where previous studies showed con-
flicting results—some suggest that they can activate 
transcription [25, 27] and others showed no effects [81, 
82], where the former is achieved by epigenetic modifica-
tions and the latter is due to the lack of RNAi machiner-
ies. The presented results align with these observations 
where the levels of the 41 identified antisense transcripts 
do not have a consistent correlation with protein expres-
sion. Interestingly, some translation of the antisense tran-
scripts was observed, suggesting that their regulatory 
roles could be performed by the translation product as 
well.

It was worth noting that while a lot of assembled tran-
scripts have extended 3′/5′ ends and retained introns, 
very few peptides are mapped to these untranslated 
regions. Nevertheless, these UTRs tend to be regula-
tory elements that function at mRNA level and very little 
is known about their roles in transcriptional and trans-
lational regulation in the Plasmodium parasite [83], the 
results of this work could provide a starting point for fur-
ther investigation. Furthermore, one high quality novel 
ORF from the 3′ UTR category was identified, which was 
differentially expressed between the two stages studied, 
and the peptide that maps to 3′ end was only observed 
in oocyst sporozoite despite low protein expression. The 
extra sequences provided by the 3′ extension are pre-
dicted to form a transmembrane helix and could affect 
the protein structure significantly, which may allow the 
protein to attach to the membrane and bind to different 
substrates. One possible explanation is that the parasite 
may choose to use different protein isoforms depend-
ing on the life cycle stage by skipping a stop codon and 
express the 3′ end, which could be an efficient mecha-
nism to change infectivity for different hosts.

Finally, AltORFs and intergenic ORFs are sur-
prisingly abundant, with AltORFs being the most 
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common category in both stages as well as in differen-
tially expressed novel ORFs. By correlating the nORF 
expression with their associated canonical genes, it 
was observed that most nORFs with significantly cor-
related expression are AltORFs showing positive cor-
relation, except for two AltORFs that showed negative 
correlation. Structural analysis reveals that one of 
them is likely to form a protein structure that binds to 
nucleic acid, which provides a possible mechanism for 
this AltORF to regulate the expression of the associ-
ated gene by repressing its transcription or the trans-
lation of mRNA. On the other hand, intergenic ORFs 
were not only translated, some of them were even dif-
ferentially expressed between oocyst and salivary gland 
sporozoites, suggesting that they might be involved in 
the stage-specific functions. An intriguing finding is 
that 12 out of 34 high-quality intergenic ORFs, and 99 
out of 248 AltORFs were predicted with transmem-
brane domain, which may indicate that they have an 
important functional role in the membrane. Given that 
a similar scenario has been observed in Escherichia coli, 
non-canonical transmembrane ORFs might be com-
mon in organisms with small genomes to expand the 
functional proteome.

In summary, the novel ORFs in oocyst sporozoites 
and salivary gland sporozoites were identified through 
proteogenomics analysis, which allowed analysis on 
transcription and translation events outside the coding 
sequences that are annotated using conventional crite-
ria. Combining analyses of differential expression, GO 
term enrichment and predicted structures, this work 
has shown that some of these nORFs may play a role in 
the parasite invasion and expression control. Therefore, 
they are interesting targets for further experimental 
validation on their existence and functional roles.
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