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Abstract

Deep learning has achieved a great success in natural image classification. To overcome

data-scarcity in computational pathology, recent studies exploit transfer learning to reuse

knowledge gained from natural images in pathology image analysis, aiming to build effective

pathology image diagnosis models. Since transferability of knowledge heavily depends on

the similarity of the original and target tasks, significant differences in image content and sta-

tistics between pathology images and natural images raise the questions: how much knowl-

edge is transferable? Is the transferred information equally contributed by pre-trained

layers? If not, is there a sweet spot in transfer learning that balances transferred model’s

complexity and performance? To answer these questions, this paper proposes a framework

to quantify knowledge gain by a particular layer, conducts an empirical investigation in

pathology image centered transfer learning, and reports some interesting observations.

Particularly, compared to the performance baseline obtained by a random-weight model,

though transferability of off-the-shelf representations from deep layers heavily depend on

specific pathology image sets, the general representation generated by early layers does

convey transferred knowledge in various image classification applications. The trade-off

between transferable performance and transferred model’s complexity observed in this

study encourages further investigation of specific metric and tools to quantify effectiveness

of transfer learning in future.

Introduction

Pathology is a medical sub-specialty that studies and practices the diagnosis of disease through

examining biopsy samples under microscopes by pathologists. It serves as the golden truth of

cancer diagnosis. To address subjectivity in pathology examination [1, 2], computational

pathology exploits image analysis and machine learning for histological information under-

standing in tissue images. Owing to its time-efficiency, consistency, and objectivity, computa-

tional pathology merges as a promising approach to cancer diagnosis and prognosis. Inspired

by domain knowledge of cancer diagnosis, many algorithms based on hand-crafted feature
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engineering were proposed to classify pathology images using nuclei’s morphology and spa-

tial-distribution features and image texture features [3–10]. Though pathology image diagnosis

has achieved impressive progress using hand-crafted feature engineering, effective numerical

representation of heterogeneous histological information in pathology images is still the

bottleneck. To address this issue, data-driven methods, especially the end-to-end training of

convolutional neural network (CNN), are adopted more often in recent pathology image clas-

sification studies [11–18]. Though data sets containing hundreds of pathology images are con-

sidered “quite” large, they are still far smaller compared to the number of parameters in a

medium-size neural network. Consequently, deep diagnostic models training with these data

sets are prone to over-fitting and less generalizable in pathology practice.

To address the shortage of large database in deep pathology learning, collecting large

pathology image set is highly desirable. However, due to difficulty and time-consuming nature

of pathology annotation, large pathology databases with labels are expensive to collect. With

recent advance in whole-slide imaging, we believe that very large pathology image sets would

accelerate the development of deep learning in computational pathology. At the same time,

alternative candidate to address the shortage of large database in deep learning is transfer

learning. In transfer learning, a “data-hungary” net is first trained on a very large database, e.g.

ImageNet, and the pre-trained model is then applied to relevant but different tasks. Many

studies have demonstrated its effectiveness in data-scarce applications related to natural image

classification and object recognition [19–22], and natural language processing (NLP) [23].

However, due to the lack of very large annotated pathology image database, there is no reliable

pre-trained deep model available in computational pathology. Hence, different from prior

studies where data in the original and target tasks share similar properties (e.g. training and

test sets are composed of natural images), transfer learning in computational pathology usually

adopts pre-trained CNNs on natural images instead [24–29].

It should be noted that though there are different strategies, transfer learning is essentially

the use of knowledge gained in one task to solve a new but related problem. Hence, transfer-

ability of knowledge heavily depends on the similarity between original and target tasks, and

features transfer more poorly when the datasets are less similar [21]. Consequently, on one

hand, when using off-the-shelf features in transfer learning, one needs to identify the layers

generating general features so that layers computing task-specific features are either discarded

or fine-tuned; On the other hand, in the transfer learning strategy of fine-tuning a pretrained

model, one needs to specify the values of hyperparameters in finetuning, such as the learning

rate and the number of iterations for model refinement (i.e. similar target and source tasks

usually requires less refinement). As researchers focusing on computational pathology, we

are fully aware the significant differences in image contents and statistics between pathology

images and natural images (which is demonstrated in Fig 1), and want to investigate effective-

ness of transfer learning by answering following questions:

• Is transfer learning still effective from natural image classification to computational

pathology?

• Which layer in a deep net contributes more to pathology image diagnosis?

• Is there a sweet spot to balance transferred model’s complexity and performance?

Though answers to these questions form the basis of current pathology-image centered

transfer learning, seldom literature tackles them explicitly and, to the best of our knowledge,

there are only two studies related to our questions. The study in [26] concludes that fine-tun-

ing a pre-trained net outperforms training a CNN from scratch in medical image analysis.
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However the experimentation does not include pathology image sets. Recently, different strat-

egies to combine off-the-shelf features are investigated in pathology image centered transfer

learning [29]. Since this study focuses on comparison of different pre-trained models (i.e.

VGG16, ResNet, and DenseNet et al.), it is non-trivial to infer the descriptive power of off-the-

shelf representations by layers directly from its results. In addition, neither of them discuss the

trade-off between transferred model’s complexity and performance.

Our contributions

To answer above questions, we define a framework to measure information gain of a particular

layer in a pre-trained CNN. Using performance of a random-weight layer as the comparison

baseline, the knowledge gain of that particular layer is quantified by the gap between their clas-

sification accuracy. We conduct experimentation using two public-accessible breast cancer

pathology image sets in this study. Based on the experimental results, though middle-layer

representations lead to the highest diagnosis rates, we observe that (i) transferred general

knowledge mainly resides in early layers, (ii) the depth layers in a CNN may bring marginal

performance improvement in transfer learning, but the complexity of the transferred model

(i.e numbers of parameters) increased greatly. This trade-off between transferred model’s com-

plexity and transferable performance encourages further investigation of specific metric and

tools to quantify effectiveness of transfer learning in future. Note, though fine-tuning a pre-

trained model may achieve better performance over the strategy of extracting off-the-shelf

representation, the focus of this study is the amount of knowledge that can be reusable in the

pretrained net. In addition, fine-tuning a model requires larger data set. Considering data scar-

city in current computational pathology research, this study focuses on investigation of off-

the-shelf feature extraction methods only.

The rest of this paper is organized as follows. The proposed method to measure knowledge

gain of a particular layer in transfer learning is presented in the Methodology Section. Experi-

mental results and discussions are presented in the Experimentation Section, followed by

conclusions.

Methodology: Framework to measure reusable knowledge in

transfer learning

In deep learning, the incremental learning nature ensures the transition of representations in

layers from generality to specificity. Hence, to reuse a model to a new task, one needs to know

how much knowledge is reusable and thus to identify the layers that generate general features,

or to specify hyper-parameters in model’s fine-tuning. To investigate the amount of reusable

Fig 1. Examples of hemotoxylin and eosin (H&E) stained pathology images and natural images. Image (a) corresponds to a

normal tissue while image (b) contains abnormal breast cancer tissue. Compared to the natural images (c)-(d), pathology images

containing normal tissues and cancerous tumor appears more similar.

https://doi.org/10.1371/journal.pone.0240530.g001
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knowledge in transfer learning, we define a framework to measure the knowledge gain in each

layer of a pre-trained net.

Specifically, as presented in Fig 2, we first define two base models. Assume that a CNN A
has been trained using a database in the original task TA. Its off-the-shelf features are extracted

from different layers and passed to a support vector machine (SVM) for a new task TB. Follow-

ing the identical architecture of A, we define a neural network R with all convolutional and

fully connected layers having random weights. In this figure, layer n in the pre-trained model

Fig 2. Overview of the evaluation method for knowledge gain in off-the-shelf features. In the two base models, model A is pre-

trained on natural images and net R is composed of random-weight layers. Three evaluation models are defined to measure

knowledge gains in transfer learning. In this figure, we use layer n = 3 as the example layer chosen. The performance difference

between models A1,3 and A1,2 R3 are contributed by knowledge transferred from the third layer of the pre-trained model, A3. And the

overall information gained by the first 3 layers of the pre-trained model is quantified by the performance difference between A1,3 and

R1,3.

https://doi.org/10.1371/journal.pone.0240530.g002
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is denoted by An; Similarly, random-weight layer n in the model R is represented by Rn. The

labeled color rectangles (e.g. A1 and R1) represent the weight vectors for that layer, with color

differentiating the pretrained and random weights. The vertical transparent bars between

weight vectors represent activations at each layer. Then to evaluate the amount of knowledge

transferred by the off-the-shelf representation in layer An, we build three models based on the

two base nets as follows:

1. R1,n + SVM: numerical features generated by the first n layers in the random-weight model

R are passed to a SVM classifier. Its performance constitutes the comparison baseline in

this study.

2. A1,n + SVM: the first n layers of the pre-trained model A are used to compute the off-the-

shelf representation. The obtained features are then passed to a SVM machine. The perfor-

mance gain to the comparison baseline is the overall knowledge gain transferred by the first

n layer in model A.

3. A1,n−1 Rn + SVM: the first n − 1 layers in model A concatenating with the nth layer in model

R are used to generate features for the target task TB. The performance difference between

A1,n and A1,n−1 Rn are the information gain obtained by the nth layer of model A.

In the following sections of this paper, we name the three models R1,n, A1,n, and A1,n−1 Rn

for short.

In summary, given a pre-trained model A and a target task TB, we measure the quantity of

transferred knowledge in A by comparing its performance to net R’s performance in task TB.

We select a net composed of random-weight layers as a comparison baseline for the following

reason. It is reported that the combination of random-weight convolutional layer, relu layer,

pooling layer, and normalization layer might achieve similar performance as learned features

[30]. Since a random-weight layer knows nothing about both the original and target tasks,

its activations deliver knowledge gained without any effort/train. Through comparing the per-

formance of R1,n and A1,n, we can tell how much knowledge obtained by the first n layer in

model A is transferable to the target task TB. Similarly, the performance difference of A1,n−1 Rn

and A1,n is attributed to the information brought by layer An. We repeat the comparison for all

n 2 [1, N].

Experimentation

Data sets. This experiment quantifies the transferability of off-the-shelf representation by

the performance of pathology image classification. The two public pathology images exploited

in the study are described as follow. The breast cancer benchmark biopsy dataset collected

from clinical samples was published by the Israel Institute of Technology (IIT data set in short)

[31]. The image set consists of 361 samples, of which 119 were classified by a pathologist as

normal tissue, 102 as carcinoma in situ, and 140 as invasive carcinoma. The samples were gen-

erated from patients’ breast tissue biopsy slides, stained with H&E. They were photographed

using a Nikon Coolpix 995 attached to a Nikon Eclipse E600 at magnification of 40× to pro-

duce images with resolution of about 5 μm per pixel. No calibration was made, and the camera

was set to automatic exposure. The images were cropped to a region of interest of 760 × 570

pixels and compressed using the lossy JPEG compression. The resulting images were again

inspected by a pathologist to ensure that their quality was sufficient for diagnosis. Fig 3 pres-

ents examples of pathology images in this breast cancer benchmark.
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The second dataset is from the ICIAR2018 Grand Challenges on breast cancer histology

images (BATCH) [32]. It is composed of 400 high-resolution (2048 × 1536 pixels) annotated

H&E stained images with four balanced classes: normal, benign, in situ carconima and inva-

sive carcinoma. All images are digitized with the same acquisition conditions, with magnifica-

tion of 200× and pixel size of 0.42 μm × 0.42 μm. Examples of ICIAR2018 image set are shown

in Fig 4.

Deep net architecture. Considering the experimental datasets have relatively small num-

ber of pathology images, we selects the AlexNet (which has fewer layers and parameters com-

pared to other deep models) [33] pre-trained on the ImageNet database as the model A in this

experimentation. AlexNet is composed of 25 layers, including 5 convolutional layers and 3

fully-connected layers. In this study, the off-of-shelf features are extracted after the 8 learned

layers as illustrated in Table 1. The random-weight neural network R shares the identical archi-

tecture as AlexNet but with filter weights randomly generated following the standard normal

distribution N(0, 0.01), i.e. Gaussian distribution with zero mean and standard deviation of

0.01.

Evaluation protocol. The image set is divided into training set and test set, with a ratio of

7:3. Images in the training set are augmented by rotation with an angle randomly drawn from

[0, 360) degrees, vertical reflection, and horizontal flip. The augmented training images are fed

to the three evaluation models A1,n, A1,n−1 Rn, and R1,n, generating three different feature sets

for each n 2 [1, 8]. Then for each off-the-shelf feature set, a linear SVM is trained and opti-

mized for pathology image diagnosis. In the testing phase, test images are processed by the

evaluated models and classified by corresponding linear SVMs. Finally, agreement of classifi-

cation results and annotated image labels is recorded for comparison. This study uses classifi-

cation accuracy ACC 2 [0, 1] to measure pathology image diagnosis performance. Since the

number of images in each category of both datasets is quite close, the limitation of ACC (i.e.

Fig 3. Examples of pathology images in the IIT benchmark [31]. Images from left to right correspond to normal breast tissue, in-

situ breast carcinoma, and invasive breast cancer, respectively.

https://doi.org/10.1371/journal.pone.0240530.g003

Fig 4. Examples of ICIAR2018 pathology images [32]. Images from left to right correspond to normal breast tissue,

benign tumor, in-situ breast carcinoma, and invasive breast cancer, respectively.

https://doi.org/10.1371/journal.pone.0240530.g004
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biased by disease prevalence) is mitigated. To obtain a reliable conclusion, we repeat the exper-

iments 50 times for each n 2 [1, 8] and obtain the final data by averaging all ACCs.

Results and discussion

The experimental results for the pathology image datasets are shown in Fig 5, where ach

marker is the figure represents the average accuracy over the validation set for 50 times. The

blue line connects models used off-the-shelf representation A1,n extracted from the nth layer.

The Orange line connects models A1,n Rn, which applies a random-weights filter layer to the

A1,n−1 representation, and the gray solid line corresponds to the performance associated with

random-weight layer models R1,n. Note that for the IIT image set, classification accuracy

achieved by the state-of-the-art hand-crafted method [7] is marked by the gray dash line in the

left figure for reference. Since no hand-crafted method specifically designed for the BATCH

set, gray dash line is not shown in the right figure.

First, for the binary classification of the IIT image set reported on the left of the Fig 5, trans-

fer learning outperforms the hand-crafted method. Then let’s focus on A1,n and A1,N−1 Rn,

which are denoted by the blue and orange lines, respectively. The difference between these two

models is whether weights in the nth layer are pre-trained. The performance gap is mainly

attributed to knowledge transferred from natural image classification to pathology image diag-

nosis. In this experiment on the IIT image set, most transferable information is delivered by

Table 1. Off-the-shelf feature extraction from AlexNet. AlexNet is composed of 25 layers, including 5 convolutional

layers and 3 fully-connected layers. In this study, the off-of-shelf features are extracted after the 8 learned layers.

Layer Layer type Off-the-shelf features

0 input

1 convolution representation layer 1

2 Relu

3 normalization

4 max-pooling

5 convolution representation layer 2

6 Relu

7 normalization

8 max-pooling

9 convolution representation layer 3

10 Relu

11 convolution representation layer 4

12 Relu

13 convolution rrepresentation layer 5

14 Relu

15 max-pooling

16 fully-connected representation layer 6

17 Relu

18 dropout

19 fully-connected representation layer 7

20 Relu

21 dropout

22 fully-connected representation layer 8

23 Softmax

24 Output

https://doi.org/10.1371/journal.pone.0240530.t001
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the first and second layers and increase of layer index comes with marginal performance

improvement after the third layer. Performance difference between the blue line A1,n and the

gray solid line R1,n reveals total amount of transferable information accumulated by the first n
layers in the pre-trained AlexNet. Performance gap grows slightly wider from layer n = 3 to

n = 6. This observation again verifies that the transferred middle layers in the pre-trained

model do not introduce more knowledge compared to the random-weights layers R1,n for 3�

n� 6. Above observations suggests that applying the first two layers in the pretrained AlexNet

to IIT image classification is the sweet point to balance the classification performance and

model’s complexity.

The BATCH image set poses a problem of 4-category pathology image classification. In the

left figure of Fig 5, we observe a steady increment of diagnosis accuracy from the first layer to

the sixth layer. Transferring the fully-connected layers in the representation layer 7 and 8

degrades the diangosis performance. Compared to the experiment on the IIT image set, the

sweet spot for model transfer (i.e. transferring representation layer 1 to 6) is more obvious.

Since effectiveness of transfer learning depends on a specific image set, it encourages the fur-

ther investigation of specific metric and tools to quantify the feasibility of transfer learning in

future.

Conclusions

In this work, we proposed a framework to quantify the amount of information gained by each

pre-trained layer, and experimentally investigated and reported transfer efficiency of deep

net’s off-the-shelf representation over different pathology image sets. The experiments sug-

gested that the off-the-shelf features learned from natural images can be reused in compua-

tional pathology, but the amount of information that could be transferable heavily depended

on complexity of pathology images. The observation in this study had practical reference to

pathology image centered transfer learning.
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