
TreeMerge: a new method for improving the

scalability of species tree estimation methods

Erin K. Molloy and Tandy Warnow *

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

*To whom correspondence should be addressed.

Abstract

Motivation: At RECOMB-CG 2018, we presented NJMerge and showed that it could be used within

a divide-and-conquer framework to scale computationally intensive methods for species tree esti-

mation to larger datasets. However, NJMerge has two significant limitations: it can fail to return a

tree and, when used within the proposed divide-and-conquer framework, has O(n5) running time

for datasets with n species.

Results: Here we present a new method called ‘TreeMerge’ that improves on NJMerge in two

ways: it is guaranteed to return a tree and it has dramatically faster running time within the same

divide-and-conquer framework—only O(n2) time. We use a simulation study to evaluate

TreeMerge in the context of multi-locus species tree estimation with two leading methods,

ASTRAL-III and RAxML. We find that the divide-and-conquer framework using TreeMerge has a

minor impact on species tree accuracy, dramatically reduces running time, and enables both

ASTRAL-III and RAxML to complete on datasets (that they would otherwise fail on), when given 64

GB of memory and 48 h maximum running time. Thus, TreeMerge is a step toward a larger vision

of enabling researchers with limited computational resources to perform large-scale species tree

estimation, which we call Phylogenomics for All.

Availability and implementation: TreeMerge is publicly available on Github (http://github.com/

ekmolloy/treemerge).

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Species tree estimation is a basic step in many biological studies and

has traditionally been performed by selecting regions from across

the genomes for a set of species, constructing multiple sequence

alignments on each of these regions, and then estimating a species

tree from the concatenated alignment using popular phylogeny esti-

mation methods, such as maximum likelihood (ML) heuristics.

While these concatenation analyses are standard in systematic stud-

ies, the realization that different parts of the genome can have differ-

ent evolutionary histories (Maddison, 1997) has spurred the

development of new approaches to species tree estimation that can

address heterogeneity across the genome. Many biological processes

can result in gene trees being different from each other (and from

the species phylogeny), including gene duplication and loss (GDL),

incomplete lineage sorting (ILS), horizontal gene transfer (HGT)

and hybridizing speciation. The presence of hybridization and HGT

implies that phylogenetic networks are needed rather than trees, but

ILS and GDL are consistent with a species tree. The inference of

phylogenetic trees in the presence of GDL is particularly difficult

and is related to the problems of orthology prediction and gene tree

reconciliation (Bansal and Eulenstein, 2013; Bayzid and Warnow,

2018; Boussau et al., 2013; Lai et al., 2012; Nakhleh, 2013; The

Quest for Orthologs Consortium et al., 2014; Tofigh et al., 2011).

ILS, which is modeled by the multi-species coalescent (MSC)

model (Kingman, 1982), has been shown to be a major challenge for

estimating species trees for many biological datasets, including birds

(Jarvis et al., 2014) and plants (Wickett et al., 2014). Concatenation

analyses using ML are not statistically consistent under the MSCþ
Generalized Time Reversible (GTR) model [even if run in a fully

partitioned mode, as shown in Roch et al. (2019)], where the

MSCþGTR model assumes that gene trees evolve within a species

tree under the MSC model, and then sequences evolve down each

gene tree under the GTR model (Tavaré, 1986). Furthermore, simu-

lation studies have shown that concatenation analyses can have

poor accuracy when ILS levels are high (Kubatko and Degnan,

2007; Mirarab et al., 2014b, 2016; Molloy and Warnow, 2018c).

VC The Author(s) 2019. Published by Oxford University Press. i417

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i417–i426

doi: 10.1093/bioinformatics/btz344

ISMB/ECCB 2019

http://orcid.org/0000-0001-7717-3514
http://github.com/ekmolloy/treemerge
http://github.com/ekmolloy/treemerge
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz344#supplementary-data
https://academic.oup.com/

Because gene tree heterogeneity is frequently observed in bio-

logical datasets, many new methods have been developed to estimate

species trees from multi-locus datasets taking ILS into consideration,

surveyed in Warnow (2017). Some of the most scalable species tree

methods operate by estimating gene trees and then combining the

estimated gene trees together, typically using summary statistics.

Methods that combine gene trees, referred to as ‘summary methods’,

are often provably statistically consistent under the MSC model

when given true gene trees as input. However, in practice, gene trees

are estimated, and standard summary methods can be statistically

inconsistent (and even positively misleading) when using estimated

gene trees (Roch et al., 2019). Furthermore, summary methods tend

to have poorer accuracy when gene tree estimation error is high

(Mirarab and Warnow, 2015) and can be less accurate than concat-

enation analyses using ML even under high ILS conditions when

gene tree estimation error is sufficiently high (Molloy and Warnow,

2018c). Note that gene tree estimation error can be impacted by the

choice of sequencing methodologies and sampling strategies; for ex-

ample, ultra-conserved elements (UCEs) typically have lower phylo-

genetic signal and thus higher gene tree estimation error

(Meiklejohn et al., 2016).

Many phylogenomic analyses of biological datasets estimate spe-

cies trees with both concatenation analyses and summary methods.

Among summary methods, one of the most popular methods is

ASTRAL (Mirarab et al., 2014a), which has typically produced

more accurate trees than other similarly scalable summary methods

in simulation studies. ASTRAL has a polynomial running time that

scales with the number of species, the number of gene trees, and the

degree of heterogeneity in the input gene trees (which is greater

when ILS levels are high). The most popular concatenation analysis

is ML, often using RAxML (Stamatakis, 2014), which is optimized

for multi-locus datasets. ML is NP-hard (Roch, 2006), so RAxML

uses heuristics based on hill-climbing and randomization to search

for an optimal ML tree within an exponentially-sized search space,

terminating when its stopping criterion is met. As a result, RAxML

can be very expensive to use for datasets with large numbers of spe-

cies and even for datasets with only moderate numbers of species

but with long alignments that are not highly compressible.

Divide-and-conquer is a well-known approach for scaling meth-

ods to larger datasets. Recently, Molloy and Warnow (2018a) pre-

sented a divide-and-conquer framework that operates by dividing

species into pairwise disjoint subsets, estimating trees on subsets,

and merging subset trees together using a new method, called

NJMerge. NJMerge uses an estimated distance matrix to perform

the merger, treating the input subset trees as absolute constraints, so

that the topology of the returned species tree must agree with the

topology of each of the input subset trees. Molloy and Warnow

(2018b) proved that some species tree estimation pipelines using

NJMerge are statistically consistent under the MSCþGTR model,

and furthermore, pipelines using NJMerge were shown to dramatic-

ally reduce the running time of ASTRAL-III and RAxML on large

multi-locus datasets, while maintaining accuracy. Despite these

promising results, NJMerge has two main issues that limit its utility

in practice. First, NJMerge can fail to return a tree, and although the

failure rate in these studies was low, the conditions under which

NJMerge fails have not been carefully evaluated. Second, when used

within the proposed divide-and-conquer framework, NJMerge has

O(n5) running time, where n is the number of species.

Here, we present two new methods for merging trees on pairwise

disjoint leaf sets using an estimated distance matrix: NJMerge-2,

which is a minor modification to NJMerge, and TreeMerge. Both

NJMerge-2 and TreeMerge are guaranteed to return a compatibility

supertree on all inputs, and so never fail. When used within the pro-

posed divide-and-conquer framework, NJMerge-2 and a slow vari-

ant of TreeMerge have the same running time as NJMerge—O(n5).

In contrast, a fast variant of TreeMerge has only O(n2) running

time. We establish that divide-and-conquer pipelines using

NJMerge-2 and TreeMerge are provably statistically consistent

under the MSCþGTR model; however, the requirements for pipe-

lines using the fast variant of TreeMerge to be statistically consistent

are stronger than the very mild requirements for pipelines using the

slow variant of TreeMerge. Despite this difference in theory, our ex-

perimental results show that the less constrained divide-and-conquer

pipelines using the fast variant of TreeMerge dramatically reduced

the running time of both ASTRAL-III and RAxML and maintained

accuracy. Most significantly, both ASTRAL-III and RAxML failed

to complete on many datasets with 1000 species and 1000 genes

using the available resources (64 GB of memory and 48 h maximum

wall-clock time); however, the fast variant of TreeMerge enabled

each method to complete on all the datasets using the same resour-

ces. Thus, TreeMerge is a promising technique for scaling species

tree estimation methods to larger datasets.

The rest of the paper is organized as follows. In Section 2, we

present NJMerge-2 and TreeMerge and establish their theoretical

guarantees. In Section 3, we describe how TreeMerge was used in a

divide-and-conquer framework for species tree estimation and the

experimental study designed to evaluate this approach. In Section 4,

we discuss the results of this study, and we conclude in Section 5

with suggestions for future work.

2 Materials and methods

2.1 Divide-and-conquer framework
The input to the species tree estimation problem is a multi-locus

dataset with sequences coming from m genomic regions for a set S

of n species. We use a divide-and-conquer framework, introduced in

Molloy and Warnow (2018a), to estimate the species tree (i.e. an

unrooted binary tree with the n leaves labeled by the species set S) as

follows:

1. Decompose the species set S into pairwise disjoint subsets with a

predetermined maximum size.

2. Estimate a species tree on each subset, producing a set T of trees

on pairwise disjoint subsets of species.

3. Compute any auxiliary information (e.g. a dissimilarity matrix

D on S so that D[x, y] is an estimated ‘distance’ between species

x and species y) required for step 4.

4. Merge the set T of trees together into a compatibility supertree

(Definitions 2 and 3) using the auxiliary information.

This approach requires the user to specify methods for perform-

ing each of the five steps. Thus, users may choose to select methods

that operate on gene trees or methods that operate on concatenated

alignments, depending on their preferred approach. If the subset

trees and the dissimilarity matrix are estimated using statistically

consistent methods, then the divide-and-conquer pipeline using

NJMerge is provably statistically consistent under the MSCþGTR

model [Corollary 7 in Molloy and Warnow (2018b)]. As an ex-

ample, the subset trees could be estimated using ASTRAL and the

dissimilarity matrix could be estimated using average leaf-to-leaf

distances in the input gene trees [referred to as the AGID or the

USTAR distance matrix; see Liu and Yu (2011); Allman et al.

(2018)]. However, statistical consistency is not the main objective,

as achieving high accuracy in practice is typically more challenging,

i418 E.K.Molloy and T.Warnow

especially for large heterogeneous datasets, which is the focus of this

study.

2.2 Terminology
All trees in this paper are unrooted binary trees with leaves labeled

by elements in a set S of species. T ¼ fT1; . . . ;Tkg is a set of k trees

with the property that each species in S is a leaf in exactly one tree in

T ; thus, we say that the trees in T are leaf-disjoint. We denote the

set of leaves in a tree T or in a set of trees T by LðTÞ and LðT Þ, re-

spectively. A dissimilarity matrix is a square matrix D that is zero

on the diagonal and symmetric (i.e. D½i; j� ¼ D½j; i�). We work with

dissimilarity matrices (rather than distance matrices), because most

statistical methods for estimating distances between species in

phylogenetic analyses fail to satisfy the triangle inequality; see

Warnow (2017). Finally, given a dissimilarity matrix D, we denote

the restriction of D to the rows and columns for LðTiÞ [LðTjÞ by

Di;j.

DEFINITION 1. Let T be a tree with edge-weighting w : EðTÞ ! R
þ and

leaves labeled 1; 2; . . . ; n. We define the n� n matrix A by setting A½i; j�
to be the sum of the edge weights in T between i and j; such a matrix is

said to be additive for T. We say that an n� n matrix M is nearly addi-

tive for T if for all i, j, jM½i; j� � A½i; j�j < f=2 where f is the length of the

shortest internal edge in T.

DEFINITION 2. Let T be a tree on leaf set S, and let T 0 be a tree on leaf set

R � S. We say that T 0 agrees with T if restricting T to leaf set R induces

a binary tree that (after suppressing the internal nodes of degree 2) is iso-

morphic to T 0.

DEFINITION 3. We say that a tree T on leaf set S is a compatibility super-

tree for a set T of k unrooted binary trees if each tree Ti 2 T agrees with

T and [k
i¼1LðTiÞ ¼ S.

We now describe the input and output for Disjoint Tree Merger

(DTM) methods:

• Input: A set T of unrooted binary trees that are leaf-labeled by

the set S so that each s 2 S labels exactly one leaf in exactly one

tree in T , and auxiliary information (e.g. a dissimilarity matrix,

a multiple sequence alignment, etc.)
• Output: A compatibility supertree T for T (Definition 3)

Because the trees in T are leaf-disjoint, a compatibility supertree

always exists (Fig. 1), and the objective is to find a compatibility

supertree T that is close to the (unknown) true tree T* in polynomial

time by using the auxiliary information; note that no specific

dependence between the input auxiliary information and the output

supertree is implied.

2.3 NJMerge and NJMerge-2
NJMerge is a DTM method based on the well-known Neighbor

Joining (NJ) method (Saitou and Nei, 1987), but modified to ad-

dress the requirement of obeying the input constraint trees. As

NJMerge considers siblinghood proposals, it modifies the constraint

trees and checks to see if the set of constraint trees are still compat-

ible. Because determining the compatibility of a set of k unrooted

trees on overlapping leaf sets is NP-complete (Steel, 1992), NJMerge

uses a heuristic that can fail for k>2 trees. In other words,

NJMerge sometimes accepts a siblinghood proposal that causes the

set of constraint trees to become incompatible, in which case

NJMerge fails to return a tree. This failure is not due to insufficient

computational resources and is instead an algorithmic failure; how-

ever, anytime that NJMerge does not fail, it returns a compatibility

supertree for T . A second limitation of NJMerge is its O(kn4) run-

ning time, where the input has n species divided among k leaf-

disjoint trees. Thus, NJMerge has two limitations: it can fail, and its

running time (although polynomial) is not fast enough to run on

ultra-large datasets.

NJMerge-2 is a simple extension to NJMerge that is guaranteed

to always return a compatibility supertree, addressing the first limi-

tation of NJMerge. NJMerge-2 operates as follows:

1. Select Ti;Tj 2 T with i 6¼ j.

2. Build a compatibility supertree Ti;j for fTi;Tjg by running

NJMerge on the input pair ðfTi;Tjg;Di;jÞ.
3. Update T by removing Ti and Tj and adding Ti;j.

4. Repeat Steps 1-3 until jT j ¼ 1.

5. Return T .

THEOREM 4. NJMerge-2 returns a compatibility supertree in O(kn4) time,

where the input has n species divided among k leaf-disjoint subset trees.

Furthermore, if every tree in T agrees with a tree T* and D is nearly

additive for T*, then NJMerge-2 returns T*.

PROOF. It is easy to see that the constraint trees remain leaf-disjoint (and

thus compatible) during the iterative process, and because the heuristic

used by NJMerge correctly determines the compatibility for exactly two

trees, NJMerge returns a compatibility supertree given any two compat-

ible trees as input. Thus, by induction on the number of constraint trees,

NJMerge-2 returns a compatibility supertree given any set of leaf-

disjoint trees and dissimilarity matrix as input. If, in addition, the trees

in T are compatible with T* and the dissimilarity matrix D is nearly

additive for T*, then NJMerge applied to the input ({Ti, Tj}, Di,j) for any

pair of trees Ti, Tj 2 T returns a tree that agrees with T* [Theorem 3 in

Molloy and Warnow (2018b)]. Thus, the set T remains compatible with

T* during the iterative process, and, by induction on the number of con-

straint trees, NJMerge-2 returns T*. For the running time analysis, we

make the simplifying assumption that each tree in T has exactly n/k

leaves, where jSj ¼ n. At iteration x, for any two trees

t; t0 2 T ; jLðtÞ [Lðt0Þj � ðxþ 1Þn=k, so NJMerge can be run on any

pair of trees in Oðx4n4=k4Þ time. A total of k – 1 iterations are required,

and so the running time of NJMerge-2 scales with ðn4=k4Þ
Pk

x¼2 x4 (note

that
Pk

x¼2 x4 is Oðk5Þ). Thus, NJMerge-2 has O(kn4) running time. h

2.4 TreeMerge
We now present a new DTM method called TreeMerge that is

inspired by PASTA (Mirarab et al., 2015), a divide-and-conquer

Fig. 1. Given a set of trees on pairwise disjoint leaf sets, many possible com-

patibility supertrees exist. Here we show two compatibility supertrees,

labeled Ti;j;k and T
0

i;j;k , for T ¼ fTi ;Tj ;Tkg; others can also be identified.

Notably, the trees in T form connected subtrees in Ti;j;k (i.e. Ti;j;k is formed by

connecting the trees in T by edges), but this is not the case for T
0

i;j;k . We refer

to the first type of compatibility supertree as un-blended, and the second type

as blended

TreeMerge i419

method for co-estimating large-scale multiple sequence alignments

and gene trees. A generic version of the TreeMerge algorithm is pre-

sented in the box below.

The generic TreeMerge algorithm

Input: A set T of leaf-disjoint trees on species set S, and aux-

iliary information (which includes a tree G with nodes labeled

by T so that Ti 2 G labels exactly one node in G)
Output: A compatibility supertree T for T
Stage 1. For each edge ðTi;TjÞ 2 EðGÞ, build a compatibility

supertree Ti;j for fTi;Tjg using auxiliary information.

Stage 2. Iteratively merge pairs of trees via their shared back-

bone tree (defined in the text), as indicated by G.
2a. Root G at an arbitrary edge (Tx, Ty), and let T ¼ Tx;y.

2b. Perform a pre-order traversal of the edges in the rooted

spanning tree G. For each edge ðTi;TjÞ 2 EðGÞ:
- Build a compatibility supertree T 0 for fT;Ti;jg using

auxiliary information.

- Let T ¼ T 0.

2c. Return T.

We now describe how we performed stage 1 and stage 2 of the

generic TreeMerge algorithm in our simulation study, using an esti-

mated dissimilarity matrix D on S as auxiliary information.

Stage 1. We build a compatibility supertree Ti;j for fTi;Tjg by

running NJMerge on the input pair (fTi;Tjg;Di;j).

Stage 2. We merge pairs of trees via their shared backbone tree

using techniques similar to the Strict Consensus Merger (Swenson

et al., 2012; Warnow et al., 2001). We describe this in the context

of merging two trees Ti,j and Tj;k with LðTi;jÞ ¼ LðTiÞ [LðTjÞ and

LðTj;kÞ ¼ LðTjÞ [LðTkÞ. Because Ti;j and Tj;k induce a common tree

topology Tj on their shared leaf set LðTjÞ, we refer to Tj as the back-

bone tree. A compatibility supertree for fTi;j;Tj;kg can be built by

simply inserting the missing leaves (i.e. LðTiÞ [LðTkÞ) into the back-

bone tree Tj. Note that each edge e in Tj maps to a path p in Ti;j and

a path p0 in Tj;k (where the paths may be of length 1). When the edge

maps to a path of length greater than 1, the internal nodes on those

paths define subtrees that need to be inserted into the backbone tree

Tj. Thus, we iterate over each edge e 2 Tj, adding subtrees from Ti;j

and/or Tj;k to Tj, until all missing leaves have been inserted. This

process is straightforward except when both Ti;j and Tj;k contribute

one or more subtrees to the same edge; this is called a collision

(Warnow et al., 2001). When collisions occur, there are multiple

ways to merge the two trees while maintaining compatibility

(Fig. 2), and picking the best one cannot be done purely using topo-

logical information in the two input trees. We propose two methods,

one slow and one fast, to resolve collisions using the dissimilarity

matrix D, referred to as ‘TreeMerge-slow’ and ‘TreeMerge-fast’,

respectively.

TreeMerge-slow. TreeMerge-slow resolves edge collisions be-

tween two trees as follows. Let e ¼ ðX;YÞ be an edge in the back-

bone tree involved in a collision, and select two leaves x; y 2 Tj on

opposite sides of e. Let Ti;jje (and Tj;kje) denote the set of subtrees in

Ti;j (and Tj;k) that need to be attached to edge e 2 Tj, and define con-

straint trees t and t0 by restricting Ti;j to leaf set fx; yg [LðTi;jjeÞ and

by restricting Tj;k to leaf set fx; yg [LðTj;kjeÞ. Because t and t0 share

only two leaves in common (and thus are compatible), a

compatibility supertree for ft; t0g can be computed in polynomial

time by running NJMerge on the input pair ðft; t0g;D0Þ, where D0 is

D restricted to L(t) [L(t0). The path from x to y in the resulting tree

indicates how this compatibility supertree for ft; t0g should be

inserted into e 2 Tj. Note that this technique enables t and t0 to

blend, as shown in Figure 2.

TreeMerge-fast. TreeMerge-fast resolves edge collisions between

two trees as follows. First, TreeMerge-fast fits branch lengths to all

trees Ti;j (computed in step 2) using the O(p2) time algorithm from

Bryant and Waddell (1998) that takes as input a tree topology with

p leaves and a p�p dissimilarity matrix and computes the optimal

branch lengths for T using a least squares approach. For two trees

Ti;j and Tj;k, each contributing one or more subtrees to an edge e in

the backbone tree Tj, TreeMerge-fast rescales the branch lengths so

that the associated paths (corresponding to edge e) in the two trees

have the same length. Then, the rescaled branch lengths determine

the order in which the subtrees are inserted into e (Fig. 2). Note that

this technique never produces a blended compatibility supertree, so

the subtrees added define clades (subtrees defined by edges in the

tree) in the resulting compatibility supertree.

Fig. 2. TreeMerge-slow versus TreeMerge-fast. TreeMerge-slow and

TreeMerge-fast differ with respect to how they resolve edge collisions.

Consider the case where we have two compatible trees t and t 0 involved in a

collision on edge (X, Y) in the backbone tree. We label the corresponding in-

ternal nodes in t and t 0 also by X and Y and then restrict the trees to just the

subtrees between X and Y to illustrate how the two methods perform on this

input. Note that the subtree of t shown on the upper left needs to insert two

subtrees [trees (A, B) and C] and the subtree of t 0 shown on the upper right

needs to insert one subtree [tree ðD; ðE ; FÞÞ] onto edge (X, Y). TreeMerge-

slow runs NJMerge on the restricted versions of t 0 and t 0 (as described in the

main text), resulting in a ‘blended’ compatibility supertree that has only two

subtrees inserted into the backbone edge. In contrast, TreeMerge-fast uses

the branch lengths in t and t 0 and rescales them (if necessary) so that the

lengths of the paths from X to Y in the two trees are the same (as shown

here). These paths can then be superimposed, so that the ordering in which

the subtrees appear along the path defines how the two trees are merged.

Thus, TreeMerge-fast maintains the separation between the subtrees and

does not allow ‘blending’ when resolving collisions

i420 E.K.Molloy and T.Warnow

THEOREM 5. TreeMerge-slow and TreeMerge-fast return a compatibility

supertree in O(kn4) and Oðnkþ n2=kþ n4=k3Þ time, respectively, where

the input has n species divided among k leaf-disjoint subset trees.

TreeMerge-slow and TreeMerge-fast require O(n2) and O(n2/k) storage,

respectively.

PROOF. The proof that TreeMerge-slow and TreeMerge-fast return a

compatibility supertree follows from NJMerge being guaranteed to re-

turn a compatibility supertree for two leaf-disjoint trees and from the

techniques for handling collisions (i.e. using either NJMerge on pairs of

compatible constraint trees or using branch lengths) being guaranteed to

return a compatibility supertree for two trees that agree on their shared

leaf set.

For the running time analysis, we make the simplifying assumption that

each tree in T has exactly n/k leaves, where jSj ¼ n: In stage 1, both

TreeMerge-slow and TreeMerge-fast run NJMerge on input pair

(fTi;Tjg;Di;j) for each of the k-1 edges in the spanning tree G. All input

constraint trees have n/k leaves, so stage 1 uses Oðn4=k3Þ time and

Oðn2=kÞ storage.

TreeMerge-fast and TreeMerge-slow address stage 2 differently; we dis-

cuss these methods separately, using the same notation presented in the

box above. We begin by analyzing TreeMerge-slow’s running time for

stage 2. At iteration x, TreeMerge-slow merges trees Ti;j and T using a

shared backbone tree tB, where jLðTi;jÞj ¼ 2n=k; jLðTÞj ¼ ðxþ 1Þn=k,

and jLðtBÞj ¼ n=k. Thus, there are ðxþ 1Þn=k possible leaves that could

be contributed to the n=k� 3 edges in tB. In the worst case analysis, ðxþ
1Þn=k leaves are contributed to a single edge in tB, and then NJMerge

runs in Oðx4n4=k4Þ time. A total of k – 2 iterations are required, and so

the running time scales with ðn4=k4Þ
Pk

x¼3 x4 (note that
Pk

x¼3 x4 is

Oðk5Þ). In the final iteration, NJMerge requires O(n2) storage in the

worst case analysis. Thus, TreeMerge-slow has O(kn4) time and O(n2)

storage for stage 2. We now analyze TreeMerge-fast’s running time for

stage 2. First, TreeMerge-fast computes branch lengths for the k – 1 trees

(each with 2n/k leaves) from stage 1 using the quadratic time and space

algorithm from Bryant and Waddell (1998). Then, at iteration x,

TreeMerge-fast merges trees Ti;j and T using a shared backbone tree tB
and branch lengths; note that this approach scales linearly with the num-

ber of leaves in the merged tree (i.e. jLðTi;jÞ [LðTÞj ¼ ðxþ 2Þn=k). A

total of k – 2 iterations are required, and so the running time scales with

ðn=kÞ
Pk

x¼3 x [note that
Pk

x¼3 x is O(k2)]. Thus, TreeMerge-fast has

Oðknþ n2=kÞ time and Oðn2=kÞ space for stage 2. Overall, TreeMerge-

fast has Oðnkþ n2=kþ n4=k3Þ time and Oðn2=kÞ storage, while

TreeMerge-slow has O(kn4) time and requires O(n2) storage. h

Corollary 6. When run within the divide-and-conquer framework

proposed in Section 2.1, NJMerge, NJMerge-2 and TreeMerge-slow

use O(n5) time. In contrast, TreeMerge-fast uses O(n2) time when

run within this same divide-and-conquer framework.

PROOF. In the divide-and-conquer framework, the input dataset of n spe-

cies is divided into k pairwise disjoint subsets of bounded size, so that

k¼O(n). The time to run NJMerge, NJMerge-2 or TreeMerge-slow

given the subset trees and the dissimilarity matrix as input is O(kn4), and

thus the total time to run NJMerge, NJMerge-2 or TreeMerge-slow

within the divide-and-conquer framework is O(n5). In contrast, the time

to run TreeMerge-fast given the subset trees, the dissimilarity matrix,

and the spanning tree on vertex set T as input is Oðnkþ n2=kþ n4=k3Þ,
and thus the total time to run TreeMerge-fast within the divide-and-

conquer framework is O(n2). h

THEOREM 7. Suppose every tree in T agrees with a tree T* and D is nearly

additive for T*. Then TreeMerge-slow returns T*.

PROOF. Let Tx and Ty be any two trees in T . By Theorem 3 in Molloy

and Warnow (2018b), NJMerge applied to the input ({Tx, Ty}, Dx,y)

returns a compatibility supertree tree Tx;y that agrees with T*. Since

TreeMerge-slow performs all its mergers using NJMerge, the result

follows by induction on the number of mergers. h

Corollary 8 follows easily from Theorems 4 and 7 [see also

Corollary 7 in Molloy and Warnow (2018b)], and its proof is omit-

ted due to space constraints.

Corollary 8. Any divide-and-conquer pipeline following the protocol

in Section 2.1 and using NJMerge-2 or TreeMerge-slow is statistical-

ly consistent under the MSCþGTR model when Step 2 is performed

with a statistically consistent method for estimating species trees on

subsets and Step 3 is performed with a statistically consistent

method for estimating distances.

Unfortunately, TreeMerge-fast is not guaranteed to be statistical-

ly consistent for these general pipelines, because it can fail in some

rare conditions to correctly combine trees in the presence of colli-

sions. (The simplest example is where the decomposition strategy

produces three subsets by deleting three edges all sharing a common

endpoint, creating a condition where the correct merger technique

must detect that the backbone edge should be subdivided into exact-

ly two edges and not into three, which is what the current strategy

in TreeMerge-fast would do.) However, a simple modification to

the pipeline is sufficient to guarantee statistical consistency, as we

now show.

THEOREM 9. Consider the pipeline where gene trees are computed using a

statistically consistent method, the distance matrix D is the AGID matrix,

and the starting tree T0 is computed using a statistically consistent method

(e.g. NJ on the AGID matrix). Suppose that the starting tree is decomposed

into disjoint subsets A1;A2; . . . ;Ak by removing a set E0 of edges from T0

so that every pair of edges in E0 is separated by at least two edges in T0.

For i ¼ 1; 2; . . . ; k, let ti denote the constraint tree computed on subset Ai

using a statistically consistent method (e.g. ASTRAL). Given node v in T0,

label v by i where v is on a path between two leaves that are both in Ai.

Define the spanning tree G on the constraint trees by making ti and tj adja-

cent in G if and only if there is an edge in T0 whose endpoints are labelled

by i and j. Then as the number of genes and number of sites per gene both

increase, the species tree computed using TreeMerge-fast on input ðT ¼
ft1; t2; . . . ; tkg;D;GÞ will converge to the true species tree. In other words,

this pipeline, using TreeMerge-fast to combine subset trees, is statistically

consistent under the MSCþGTR model.

PROOF. As the number of genes and sites per gene increases, all estimated

gene trees will converge to the true gene trees, the AGID distance matrix

will converge to an additive matrix defined by the true species tree, the

starting tree will converge to the true species tree, and each of the con-

straint trees will converge to a tree that agrees with the true species tree.

Hence, for a large enough number of genes and sites per gene, with high

probability (i) the deletion of the selected set of edges from the starting

tree will partition the species set into subsets so that the labelling

described above is unique for each internal node in the tree (i.e. the label-

ling is ‘convex’ on the starting tree), (ii) constraint trees computed on

each subset will be equal to the true species tree on the subset, and (iii)

constraint trees that are adjacent in the spanning tree will be adjacent in

the true species tree as well. Under these conditions, it is then easy to see

that applying TreeMerge-fast will return the true species tree, because

neither conflicts nor collisions will ever occur. h

3 Performance study

3.1 Overview
The main goal of this paper is empirical performance on large multi-

locus datasets, and so we focus our attention on TreeMerge-fast. We

TreeMerge i421

include a comparison to NJMerge and NJMerge-2, noting that

TreeMerge-slow and NJMerge-2 have the same theoretical perform-

ance (i.e. asymptotic computational complexity and statistical con-

sistency) and NJMerge-2 is simpler to implement. We explore

species tree estimation using ASTRAL v5.6.1 (i.e. ASTRAL-III) and

RAxML v8.2.12 (with SSE3 and pthreads). We computed species

trees using these two methods de novo as well as within a divide-

and-conquer framework, where they were used to estimate species

trees on subsets and then the estimated subset (species) trees were

combined using NJMerge, NJMerge-2, and TreeMerge-fast. We

used the exact same commands (for ASTRAL-III and RAxML) to es-

timate trees on the full species set as well as on the subsets. We eval-

uated performance with respect to algorithmic failure rate (for

NJMerge), computational failure rate (i.e. failure to complete due to

insufficient computational resources), running time, and topological

accuracy. All datasets used in this study are publicly available on the

Illinois Data Bank (https://databank.illinois.edu/datasets/IDB-

9570561), and the exact software commands used in this study are

in the Supplementary Materials.

3.2 Datasets
We used datasets with 1000 species and 2000 genes from a prior

study (Molloy and Warnow, 2018a) and describe the simulation

protocol below. SimPhy (Mallo et al., 2016) was used to generate

gene trees within species trees under the MSC model. By holding the

effective population size constant and varying the species tree height

(in generations), model conditions with two different levels of ILS

were created, each with 20 replicate datasets. The ILS level was

measured by the average normalized Robinson–Foulds (RF) distance

(Robinson and Foulds, 1981) between the true species tree and the

true gene trees (called AD). For the two model conditions, the aver-

age AD was 8–10% and 68–69%, and we refer to these conditions

as ‘low/moderate ILS’ and ‘very high ILS’, respectively.

Sequence alignments were simulated for each true gene tree using

INDELible (Fletcher and Yang, 2009) under the GTRþC model of

evolution. Sequence lengths were drawn from a distribution (varying

from 300 to 1500 bp). GTRþC model parameters were also drawn

from distributions [see Supplementary Table S2 in Molloy and

Warnow (2018a) for details] to simulate 1000 exon-like sequences

and 1000 intron-like sequences. Exons were characterized by slower

rates of evolution and thus had less phylogenetic signal than introns.

Exons and introns were analyzed separately, so all datasets had

1000 species and 1000 genes.

Finally, summary methods take gene trees as input, and we used

estimated gene trees that had previously been computed by Molloy

and Warnow (2018a) with FastTree-2 (Price et al., 2010). The aver-

age gene tree estimation error across all replicate datasets was from

26–51% for introns and 38–64% for exons.

3.3 Details for running divide-and-conquer pipelines
Subset decomposition. We evaluated divide-and-conquer pipelines

that used an estimated starting tree to divide the species set into pair-

wise disjoint subsets. Specifically, the set of 1000 species was divided

into 10–15 subsets by repeatedly deleting ‘centroid’ edges (i.e. edges

whose deletions divide the leaf set roughly in half) in the starting tree

until each subset was smaller than the maximum size of 120 species.

Running TreeMerge-fast. Because we used a starting tree Ts to

decompose the species set into subsets, we also used Ts to construct

a spanning tree on vertex set T (i.e. the tree G has vertices labeled by

T so that Ti 2 G labels exactly one node in G) for TreeMerge-fast as

follows: first, we randomly selected one leaf from each tree in T and

deleted all remaining leaves from Ts (suppressing the internal nodes

of degree 2), thus producing a tree T that has one leaf for every tree

in T . Second, we built a complete graph Gs with nodes labeled by

the trees in T and edges ðTi;TjÞ weighted by the path distance be-

tween leaves labeled Ti and Tj in T. Third, we computed a minimum

spanning tree G on Gs using Kruskal (1956). Finally, TreeMerge-fast

used PAUP* (Swofford, 2019) v4a163 to fit least squares branch

lengths to trees using a distance matrix, prohibiting negative branch

lengths.

Divide-and-conquer pipeline using ASTRAL-III. We evaluated these

pipelines by giving NJMerge, NJMerge-2 and TreeMerge the follow-

ing inputs:

• Distance matrix: AGID matrix computed using ASTRID

(Vachaspati and Warnow, 2015) v1.4 given estimated gene trees

as input
• Starting tree: NJ tree computed using FastMe (Lefort et al.,

2015) v2.1.5 on the AGID distance matrix [i.e. the NJst tree

from Liu and Yu (2011)]
• Constraint trees: Species trees computed using ASTRAL v5.6.1

(i.e. ASTRAL-III) on each subset given the induced subtrees from

the estimated gene trees as input

Divide-and-conquer pipeline using RAxML. We evaluated these

pipelines by giving NJMerge, NJMerge-2 and TreeMerge the follow-

ing inputs:

• Distance matrix: Matrix of log-det distances (Steel, 1994) com-

puted using PAUP* v4a163 given the concatenated alignment as

input
• Starting tree: Greedy maximum parsimony tree based on a random

taxon addition order computed using RAxML v8.2.12 (with SSE3

and pthreads) given the concatenated alignment as input
• Constraint trees: Species trees computed under the GTRþC

model of evolution using RAxML v2.12 (with SSE3 and

pthreads) on each subset given the unpartitioned concatenated

alignment for those species as input

3.4 Evaluation criteria
Species tree error. Species tree error was measured as the RF error

rate (i.e. the normalized RF distance between the true and the esti-

mated species trees) using Dendropy (Sukumaran and Holder,

2010).

Running time. All analyses were performed using a single Blue

Waters compute node (XE6 dual-socket nodes with 64 GB of phys-

ical memory and two AMD Interlagos model 6276 CPU processors,

i.e. one per socket each with eight floating-point cores) and a max-

imum wall-clock time of 48 h. All methods were given access to 16

threads with 1 thread per bulldozer (floating-point) core; however,

only RAxML was implemented with multi-threading at the time of

this study. We used the last checkpoint file written by RAxML to

evaluate species tree estimation error and running time; as a result

the running time for RAxML was measured as the time between the

info file and the last checkpoint file being written. Because we

assumed that researchers had access to a single compute node, we

approximated the total running time of divide-and-conquer pipe-

lines as

tðUDðSÞÞ þ
Xk

i¼1

tðUTðSiÞÞ þ tðUMðT ;DÞÞ; (1)

where UD is the method used to estimate a distance matrix, UT is the

method used to estimate constraint trees, and UM is the method used

i422 E.K.Molloy and T.Warnow

https://databank.illinois.edu/datasets/IDB-9570561
https://databank.illinois.edu/datasets/IDB-9570561
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz344#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz344#supplementary-data

to merge the set of constraint trees using a distance matrix. The ap-

proximate running time does not include the time required to esti-

mate starting trees, as these computations were relative fast,

requiring only a few minutes.

4 Results and discussion

4.1 How does TreeMerge compare with NJMerge and

NJMerge-2?
A comparison between these methods with respect to their theoretic-

al properties is provided in Table 1; here we explore their empirical

performance. When RAxML was used to construct subset trees,

NJMerge failed to return a tree on 6 out of 80 datasets (i.e. the fail-

ure rate was 7.5%); note that these were algorithmic failures, not

computational failures. For the same analyses in Molloy and

Warnow (2018a), only 2 out of 80 datasets resulted in failures (i.e.

the failure rate was 2.5%). The only difference between the analyses

here and the ones in Molloy and Warnow (2018a) is the starting

tree: here we used the randomized parsimony tree from RAxML,

whereas in Molloy and Warnow (2018a) starting trees were com-

puted using NJ on the log-det distance matrix. This finding suggests

that the choice of starting tree may be a factor in whether or not

NJMerge fails. In contrast, NJMerge-2 and TreeMerge-fast com-

pleted on all datasets within the allowed time using the allowed

memory. Finally, we compared the accuracy of NJMerge, NJMerge-

2, and TreeMerge-fast on the replicate datasets for which NJMerge

returned a tree. In this analysis, NJMerge-2 produced trees with the

same average error as NJMerge, while trees produced by

TreeMerge-fast had at most 1% greater error on average than those

produced by NJMerge (Supplementary Table S1).

That TreeMerge-fast had similar performance compared with

NJMerge and NJMerge-2 is noteworthy, as the ASTRAL-III pipeline

guarantees statistical consistency for NJMerge and NJMerge-2, but

does not for TreeMerge-fast. (The centroid edge decomposition does

not prohibit the case described above Theorem 9.) There are two

conclusions to be drawn from this result. First, it is a reminder that

statistical consistency is a theoretical guarantee for what happens in

the limit, as the amount of data increases, and does not predict per-

formance given finite data. Second, it suggests the possibility that

TreeMerge-fast might be even more accurate when used within pipe-

lines that do provide a guarantee of statistical consistency, which we

note in Section 5 as a topic for future research.

4.2 What is the impact of using TreeMerge-fast on

ASTRAL-III and RAxML?
Failure rate. In our experiments, ASTRAL-III and RAxML failed to

complete analyses on many datasets, though for different reasons.

ASTRAL-III failed to complete its analyses within 48 h using the

available computational resources on 19 (out of 40) exon datasets

and 4 (out of 40) intron datasets (i.e. the failure rate was 29%), and

note that all failures occurred on datasets with very high ILS.

RAxML reported Out Of Memory (OOM) errors on 39 (out of 40)

intron datasets and on 3 (out of 40) exon datasets (i.e. the failure

rate was 53%). In contrast, when run within divide-and-conquer

pipelines using TreeMerge-fast, all analyses with ASTRAL-III and

RAxML completed. Thus, TreeMerge-fast enabled both RAxML

and ASTRAL-III to complete analyses on large datasets, when given

only 64 GB of memory and 48 h wall-clock time.

The failure rate for ASTRAL-III and RAxML depended on the

model condition. RAxML failed (due to running out of memory) on

more intron datasets than exon datasets. Exon-like sequences, which

evolved more slowly than intron-like sequences, had fewer distinct

alignment patterns, and so could be compressed. When the align-

ments could not be effectively compressed (as was the case for the

intron datasets), RAxML was more likely to run out of memory. A

distributed-memory version of RAxML, called ExaML (Stamatakis

and Aberer, 2013), can be used to estimate trees when RAxML runs

out of memory, provided the user has access to a distributed-

memory system; however, in our study, we explicitly limited all

methods to a single compute node. ASTRAL-III failed (due to run-

ning longer than 48 h) on datasets with very high ILS. High ILS

datasets are characterized by true gene trees that are topologically

very different from the true species tree and from each other, result-

ing in a very large number of distinct bipartitions. The running time

of ASTRAL-III scales with the number of distinct bipartitions in the

estimated gene trees (Zhang et al., 2018a), explaining why

ASTRAL-III failed to complete within 48 h on many of the high ILS

datasets.

Species tree error. When ASTRAL-III or RAxML completed, we

were able to compare the accuracy of species trees estimated by

these base methods de novo or within the divide-and-conquer pipe-

line, where TreeMerge-fast was used to combine subset trees. We

found that using the divide-and-conquer pipeline had little impact

on the accuracy of ASTRAL-III and RAxML, with error rates differ-

ing on average by at most 1% (Figs 3 and 4). In general, ASTRAL-

III run de novo was on average 1% more accurate than when run

within the divide-and-conquer pipeline. The impact on RAxML was

approximately the same, with a difference of at most 1% on aver-

age, and for some datasets with very high ILS, the de novo approach

was less accurate than the divide-and-conquer approach.

Running time. The divide-and-conquer pipeline using

TreeMerge-fast reduced running time for both ASTRAL-III and

RAxML, often dramatically (Figs 3 and 4). For example, when the

level of ILS was very high, ASTRAL-III run de novo used on average

42 h, whereas ASTRAL-III run within the divide-and-conquer pipe-

line used just under 4 h on average. On exon datasets, RAxML run

de novo used 43 h on average, whereas RAxML used 11 h on aver-

age within the divide-and-conquer pipeline. Furthermore, the total

time spent merging trees using TreeMerge-fast was always low: on

average only 32 min and never more than 46 min, which was just a

small percentage (on average 3–7%) of the time required to estimate

subset trees using RAxML (Supplementary Table S2). We proto-

typed TreeMerge-fast (without parallelism) in Python using

Dendropy (Sukumaran and Holder, 2010), and so an optimized

Table 1. Theoretical properties of NJMerge, NJMerge-2,

TreeMerge-slow, and TreeMerge-fast

NJMerge NJMerge-2 TreeMerge-slow TreeMerge-fast

Can fail? Yes No No No

Consistent? Yes Yes Yes Yes*

Runtime O(kn4) O(kn4) O(kn4) Oðnkþ n4=k3Þ
Storage O(n2) O(n2) O(n2) Oðn2=kÞ
D&C runtime O(n5) O(n5) O(n5) O(n2)

Note: ‘Can Fail?’ means that the method can, on some inputs, fail to return

a tree due to algorithmic issues (rather than limited computational resources).

‘Consistent?’ means that the method is statistically consistent under the

MSCþGTR model, when used within the divide-and-conquer framework

described in Section 2.1. Runtime and storage are for worst-case analysis.

‘D&C runtime’ is the runtime of the method, when used within the divide-

and-conquer framework described in Section 2.1. ‘Yes*’ indicates that a

slightly modified divide-and-conquer pipeline is needed to ensure statistical

consistency for TreeMerge-fast; see Theorem 9.

TreeMerge i423

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz344#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz344#supplementary-data

implementation of TreeMerge-fast with multi-threading would pro-

duce even better results.

Many phylogenomic studies [e.g. Prum et al. (2015) and Wickett

et al. (2014)] have analyzed multi-locus datasets using both

ASTRAL and RAxML, so that differences in computational require-

ments are of interest. The timings we report for ASTRAL-III and

RAxML are not directly comparable, because the ASTRAL-III tim-

ings do not include the time required for gene tree estimation with

FastTree-2, which has a worst case running time of Oðn1:5 logðnÞLÞ,
where n is the number of species and L is the length of the alignment

(ML gene tree estimation using other methods would likely require

more time). In our study, the average time (6 standard deviation) to

estimate the full set of 1000 gene trees, each with 1000 species, was

217 6 20 min using a single Blue Waters compute node (with 64 GB

of memory and 16 floating-point cores). Thus, the amount time

spent estimating 1000 gene trees (3.6 h on average) was small in

comparison to the amount of time spent running ASTRAL-III on

datasets with very high ILS (42 h on average). However, if the time

for gene tree estimation were included, then the percent difference

between running ASTRAL-III de novo or within the divide-and-

conquer pipeline would decrease.

Recall that we earlier established that the component of the pipe-

line that uses TreeMerge-fast has a running time of only O(n2); here

we discuss the big-O complexity of the steps that proceed it. In the

preprocessing component of the ASTRAL-III pipeline, m gene trees

(each with n species) are computed, and the most expensive parts,

after computing gene trees, are the calculation of the AGID matrix,

which uses O(mn2) time, and the calculation of the starting tree

using NJ, which uses O(n3) time (although this could be reduced by

using FastME instead of NJ, as done in ASTRID). Thus the prepro-

cessing component of the pipeline is more expensive than the merger

of the subset trees using TreeMerge-fast.

5 Conclusion

TreeMerge is a new technique for merging a set of leaf-disjoint trees

through the use of an auxiliary dissimilarity matrix. TreeMerge is

motivated by the success of NJMerge (Molloy and Warnow,

2018a,b) and addresses two important limitations: NJMerge can fail

to return a tree on some datasets due to algorithmic failure (rather

than computational issues), and NJMerge has asymptotic complex-

ity that scales with kn4 (where the input has n species divided among

k leaf-disjoint trees), and so scales as n5 within the divide-and-

conquer framework described in Section 2.1. In contrast,

TreeMerge-fast runs in O(n2) time within the same divide-and-

conquer framework. Our study shows that the impact of

TreeMerge-fast is greatest for those datasets on which ASTRAL-III

or RAxML fails to complete, either due to limited running time (for

ASTRAL-III) or limited memory (for RAxML). In practice, the com-

putational requirements for ML analyses can be very large, even on

‘small’ numbers of species, when using genome-scale data; for ex-

ample, the Avian phylogeomics project with whole genomes for 48

birds used 1TB of memory and took more than 200 CPU years to

complete. Thus, TreeMerge-fast could make it computationally

Fig. 4. Impact of using TreeMerge-fast with RAxML. The top row shows spe-

cies tree estimation error for datasets with 1000 taxa and 1000 genes; note

that gray bars represent medians, gray squares represent means, gray circles

represent outliers, box plots extend from the first to the third quartiles, and

whiskers extend to plus/minus 1.5 times the interquartile distance (unless

greater/less than the maximum/minimum value). The bottom row shows run-

ning time (in minutes); bars represent means and error bars represent stand-

ard deviations across replicate datasets. The running time of TreeMerge-fast

is the time to estimate the distance matrix, to estimate each subset tree using

RAxML, and to combine the subset trees using TreeMerge-fast (Equation 1).

The number N of replicates on which RAxML completed is shown on the

x-axis; note that averages are taken across the replicates on which RAxML

completed. When RAxML did not complete, it was due to OOM errors; other-

wise the last checkpoint written by RAxML was evaluated

Fig. 3. Impact of using TreeMerge-fast with ASTRAL-III. The top row shows

species tree estimation error for datasets with 1000 taxa and 1000 genes;

gray bars represent medians, gray squares represent means, gray circles rep-

resent outliers, box plots extend from the first to the third quartiles, and

whiskers extend to plus/minus 1.5 times the interquartile distance (unless

greater/less than the maximum/minimum value). The bottom row shows run-

ning time (in minutes); bars represent means and error bars represent stand-

ard deviations across replicate datasets. The running time of TreeMerge-fast

is the time to estimate the distance matrix, to estimate each subset tree using

ASTRAL-III, and to combine the subset trees using TreeMerge-fast

(Equation 1). The number N of replicates on which ASTRAL-III completed is

shown on the x-axis; note that averages are taken across the replicates on

which ASTRAL-III completed. When ASTRAL-III did not complete, it was due

to running longer than the 48-h maximum wall-clock time

i424 E.K.Molloy and T.Warnow

feasible for researchers with limited resources to analyze large multi-

locus datasets, enabling ‘phylogenomics for all’.

Our study suggests several directions for future research. For ex-

ample, while we examined four model conditions (two levels of ILS

and two types of sequence data), a more extensive study should

evaluate performance on biological datasets as well as datasets simu-

lated under different model conditions (especially, considering other

sources of gene tree discord). Variations to the pipeline should be ex-

plicitly tested; for example, the dissimilarity matrix, the subset de-

composition, and the spanning tree on the subsets could all be

computed using different approaches; in particular, variants that en-

sure statistical consistency for TreeMerge-fast (as discussed in

Theorem 9) may be useful to evaluate. Explicit testing of robustness

to the starting tree (which impacts the subset decomposition and the

spanning tree) is another important direction for future work. It is

also worth evaluating this divide-and-conquer approach combined

with iteration, which has been used successfully in similar applica-

tions (Liu et al., 2009, 2012; Mirarab et al., 2015; Nelesen et al.,

2012), and may result in improved accuracy (and robustness to the

starting tree), at an increase in running time. We tested the divide-

and-conquer framework with ASTRAL-III and RAxML, but other

species tree estimation methods could be explored. Other extensions

include evaluating the divide-and-conquer framework in a

distributed-memory computing environment to scale Bayesian meth-

ods, such as StarBEAST-2, to larger datasets. Finally, Zhang et al.

(2018b) recently presented constrained-INC, a new algorithm for

merging leaf-disjoint trees in the context of gene tree estimation, and

Le et al. (2019) implemented and evaluated variants of the algo-

rithm on simulated data within a similar pipeline. It would be inter-

esting to see whether divide-and-conquer using constrained-INC is

suitable for species tree estimation.

Acknowledgements

The authors thank Sarah Christensen, William Gropp, Thien Le, Luay

Nakhleh, Mike Nute, Srilakshmi Pattabiraman, Marc Snir, Pranjal

Vachaspati and four anonymous reviewers for helpful comments that led to

improvements in the quality of this work.

Funding

This work was supported by the U.S. National Science Foundation [Award

No. CCF-1535977] to T.W. E.K.M. was supported by the NSF Graduate

Research Fellowship [Award No. DGE-1144245] and the Ira and Debra

Cohen Graduate Fellowship in Computer Science. Computational experi-

ments were performed on Blue Waters. This research is part of the Blue

Waters sustained-petascale computing project, which is supported by the NSF

[Award Nos. OCI-0725070 and ACI-1238993] and the state of Illinois. Blue

Waters is a joint effort of the University of Illinois at Urbana-Champaign and

its National Center for Supercomputing Applications.

Conflict of Interest: none declared.

References

Allman,E.S. et al. (2018) Species tree inference from gene splits by unrooted

STAR methods. IEEE/ACM Trans. Comput. Biol. Bioinf., 15, 337–342.

Bansal,M. and Eulenstein,O. (2013) Algorithms for genome-scale phyloge-

netics using gene tree parsimony. IEEE/ACM Trans. Comput. Biol. Bioinf.,

10, 939–956.

Bayzid,M.S. and Warnow,T. (2018) Gene tree parsimony for incomplete gene

trees: addressing true biological loss. Algorithms Mol. Biol., 13, 1.

Boussau,B. et al. (2013) Genome-scale coestimation of species and gene trees.

Genome Res., 23, 323–330.

Bryant,D. and Waddell,P. (1998) Rapid evaluation of least-squares and

minimum-evolution criteria on phylogenetic trees. Mol. Biol. Evol., 15,

1346.

Fletcher,W. and Yang,Z. (2009) INDELible: a flexible simulator of biological

sequence evolution. Mol. Biol. Evol., 26, 1879–1888.

Jarvis,E.D. et al. (2014) Whole-genome analyses resolve early branches in the

tree of life of modern birds. Science, 346, 1320–1331.

Kingman,J.F.C. (1982) The coalescent. Stoch. Process. Appl., 13, 235–248.

Kruskal,J.B. (1956) On the shortest spanning subtree of a graph and the travel-

ing salesman problem. Proc. Am. Math. Soc., 7, 48–50.

Kubatko,L. and Degnan,J. (2007) Inconsistency of phylogenetic estimates

from concatenated data under coalescence. Syst. Biol., 56, 17–24.

Lai,H. et al. (2012) Inferring duplications, losses, transfers and incomplete lin-

eage sorting with nonbinary species trees. Bioinformatics, 28, i409–i415.

Le,T. et al. (2019) Using INC within divide-and-conquer phylogeny estima-

tion. In: 6th International Conference on Algorithms for Computational

Biology, AlCoB 2019, May 28–30, 2019, Berkeley, CA, USA, in press.

Lefort,V. et al. (2015) FastME 2.0: a comprehensive, accurate, and fast

distance-based phylogeny inference program. Mol. Biol. Evol., 32,

2798–2800.

Liu,K. et al. (2009) Rapid and accurate large-scale coestimation of sequence

alignments and phylogenetic trees. Science, 324, 1561–1564.

Liu,K. et al. (2012) SATé-II: very fast and accurate simultaneous estimation of

multiple sequence alignments and phylogenetic trees. Syst. Biol., 61, 90–106.

Liu,L. and Yu,L. (2011) Estimating species trees from unrooted gene trees.

Syst. Biol., 60, 661–667.

Maddison,W.P. (1997) Gene trees in species trees. Syst. Biol., 46, 523–536.

Mallo,D. et al. (2016) SimPhy: phylogenomic simulation of gene, locus, and

species trees. Syst. Biol., 65, 334–344.

Meiklejohn,K.A. et al. (2016) Analysis of a rapid evolutionary radiation using

ultraconserved elements: evidence for a bias in some multispecies coalescent

methods. Syst. Biol., 65, 612–627.

Mirarab,S. and Warnow,T. (2015) ASTRAL-II: coalescent-based species tree

estimation with many hundreds of taxa and thousands of genes.

Bioinformatics, 31, i44–i52.

Mirarab,S. et al. (2014a) ASTRAL: genome-scale coalescent-based species tree

estimation. Bioinformatics, 30, i541–i548.

Mirarab,S. et al. (2014b) Statistical binning enables an accurate

coalescent-based estimation of the avian tree. Science, 346, 1250463.

Mirarab,S. et al. (2015) PASTA: ultra-large multiple sequence alignment for

nucleotide and amino-acid sequences. J. Comput. Biol., 22, 377–386.

Mirarab,S. et al. (2016) Evaluating summary methods for multi-locus species

tree estimation in the presence of incomplete lineage sorting. Syst. Biol., 65,

366–380.

Molloy,E.K. and Warnow,T. (2018a) NJMerge: a generic technique for scal-

ing phylogeny estimation methods and its application to species trees. In:

Blanchette M. and Ouangraoua A. (eds.) Comparative Genomics.

RECOMB-CG 2018. Lecture Notes in Computer Science. Vol. 11183,

Springer, Cham.

Molloy,E.K. and Warnow,T. (2018b) Statistically consistent divide-and-con-

quer pipelines for phylogeny estimation using NJMerge. Algorithms Mol.

Biol., in press.

Molloy,E.K. and Warnow,T. (2018c) To include or not to include: the impact

of gene filtering on species tree estimation methods. Syst. Biol., 67,

285–303.

Nakhleh,L. (2013) Computational approaches to species phylogeny inference

and gene tree reconciliation. Trends Ecol. Evol., 28, 719–728.

Nelesen,S. et al. (2012) DACTAL: divide-and-conquer trees (almost) without

alignments. Bioinformatics, 28, i274–i282.

Price,M.N. et al. (2010) FastTree 2—approximately maximum-likelihood

trees for large alignments. PLOS One, 5, 1–10.

Prum,R.O. et al. (2015) A comprehensive phylogeny of birds (Aves) using tar-

geted next-generation DNA sequencing. Nature, 526, 569–573.

Robinson,D. and Foulds,L. (1981) Comparison of phylogenetic trees. Math.

Biosci., 53, 131–147.

Roch,S. (2006) A short proof that phylogenetic tree reconstruction by max-

imum likelihood is hard. IEEE/ACM Trans. Comput. Biol. Bioinf., 3,

92–94.

TreeMerge i425

Roch,S. et al. (2019) Long-branch attraction in species tree estimation: incon-

sistency of partitioned likelihood and topology-based summary methods.

Syst. Biol., 68, 281–297.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

Stamatakis,A. (2014) RAxML version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Stamatakis,A. and Aberer,A.J. (2013) Novel parallelization schemes for

large-scale likelihood-based phylogenetic inference. In: 2013 IEEE 27th

International Symposium on Parallel and Distributed Processing, IPDPS

2013, May 20–24, 2013, Boston, MA, USA, pp. 1195–1204.

Steel,M. (1992) The complexity of reconstructing trees from qualitative char-

acters and subtrees. J. Classif., 9, 91–116.

Steel,M. (1994) Recovering a tree from the leaf colourations it generates under

a Markov model. Appl. Math. Lett., 7, 19–24.

Sukumaran,J. and Holder,M.T. (2010) DendroPy: a Python library for phylo-

genetic computing. Bioinformatics, 26, 1569–1571.

Swenson,M. et al. (2012) SuperFine: fast and accurate supertree estimation.

Syst. Biol., 61, 214–227.

Swofford,D.L. (2019) PAUP* (*Phylogenetic Analysis Using PAUP). http://

phylosolutions.com/paup-test/.

Tavaré,S. (1986) Some probabilistic and statistical problems in the analysis of

DNA sequences. Lect. Math. Life Sci., 17, 57–86.

The Quest for Orthologs Consortium (2014) Big data and other challenges in

the quest for orthologs. Bioinformatics, 30, 2993–2998.

Tofigh,A. et al. (2011) Simultaneous identification of duplications and

lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinf., 8, 517–535.

Vachaspati,P. and Warnow,T. (2015) ASTRID: accurate species trees from

internode distances. BMC Genomics, 16, S3.

Warnow,T. (2017) Computational Phylogenetics: An Introduction to

Designing Methods for Phylogeny Estimation. Cambridge University Press,

Cambridge, UK.

Warnow,T. et al. (2001) Absolute convergence: true trees from short sequen-

ces. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2001, January 7–9, 2001, Washington, DC,

USA, pp. 186–195.

Wickett,N.J. et al. (2014) Phylotranscriptomic analysis of the origin and early

diversification of land plants. Proc. Natl. Acad. Sci. USA, 111,

E4859–E4868.

Zhang,C. et al. (2018a) ASTRAL-III: polynomial time species tree

reconstruction from partially resolved gene trees. BMC Bioinformatics,

19, 153.

Zhang,Q.R. et al. (2018b) New absolute fast converging phylogeny estimation

methods with improved scalability and accuracy. In: 18th International

Workshop on Algorithms in Bioinformatics, WABI 2018, August 20–22,

2018, Helsinki, Finland, pp. 8:1–8:12.

i426 E.K.Molloy and T.Warnow

http://phylosolutions.com/paup-test/
http://phylosolutions.com/paup-test/

	btz344-TF1

