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Abstract: Childhood obesity is a strong predictor of adult obesity with health and economic con-
sequences for individuals and society. Adiposity rebound (AR) is a rise in the Body Mass Index
occurring between 3 and 7 years. Early adiposity rebound (EAR) occurs at a median age of 2 years
and predisposes to a later onset of obesity. Since obesity has been associated with intestinal dysbiosis,
we hypothesize that EAR could be related to early microbiome changes due to maternal/lifestyle
changes and environmental exposures, which can increase the unhealthy consequences of childhood
obesity. LIMIT is a prospective cohort study that aims at identifying the longitudinal interplay
between infant gut microbiome, infant/maternal lifestyle, and environmental variables, in children
with EAR vs. AR. Methods. The study evaluated 272 mother-infant pairs, enrolled at an Italian
neonatal unit, at different time points (T0, at delivery; T1, 1 month; T2, 6 months; T3, 12 months;
T4, 24 months; T5, 36 months after birth). The variables that were collected include maternal/infant
anthropometric measurements, lifestyle habits, maternal environmental endocrine disruptor expo-
sure, as well as infant AR. The LIMIT results will provide the basis for early identification of those
maternal and infant modifiable factors on which to act for an effective and personalized prevention
of childhood obesity.

Keywords: childhood obesity; early adiposity rebound; microbiome; lifestyle; nutrition

1. Introduction

Obesity is a worldwide epidemic and is one of the most critical public health challenges.
The number of people with obesity has tripled in Europe compared to 40 years ago [1]. In
the certain EU Member States, obesity prevalence in children is reaching well over 30% with
a significant impact on their health, affecting physical and psychological abilities, which
can further worsen health costs and quality of life in adulthood [1,2]. Indeed, obesity is
already responsible for 2–8% of the health costs and 10–13% of the deaths in different parts
of Europe [1].

Given that childhood obesity is a strong predictor of obesity in adulthood [3,4] and that
its prevalence is projected to increase further by 2030, obesity poses a major threat to the
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future increase of all non-communicable diseases (NCDs) including diabetes, cardiovascular
disease, hypertension, stroke, and some cancers, leading to an increased risk of premature
mortality [5,6].

Since 1980, the global prevalence of childhood obesity has increased by 47% [7]. In
2016, 40 million children under 5 years of age and more than 330 million children and
adolescents between 5 and 19 years old were estimated to be affected by overweight or
obesity [8]. Although recently, obesity prevalence among 7–8-year-old children has shown
a slight decrease in several EU countries (e.g., Greece, Italy, Portugal, Slovenia), almost
1 in 8 children have excessive weight gain (14% of males and 10% of females aged 7 to
8 in 23 EU countries) [1] with critical health-related consequences, including depression,
behavioral disorders, stigma, and poor self-esteem [9,10].

This global increase in obesity is driven by several lifestyles and environmental fac-
tors [11] (e.g., family environment related to a sedentary lifestyle, unhealthy dietary habits
and eating behavior, poor quality of sleep, increased screen time), which expose them to
biological, psychological, and social threats [12].

Finding an early predictor of later excessive body weight can help early interventions
to counteract the obesity epidemic. A promising predictive index for the early onset of
obesity is early adiposity rebound (EAR) [13,14]. In the physiological growth process, a
rapid increase in the Body Mass Index (BMI) occurs during the first year of life; then, the
BMI decreases and reaches the minimum value around 6 years of age, before starting a
sustained increase [15]. Evidence shows that when adiposity rebound (AR) occurs earlier, at
a median age of 3 years old [16], it is associated with an increased risk of overweight/obesity
and central body fat depot [16]. Indeed, in a study conducted on 76 adolescents affected by
obesity, Péneau et al. [17] showed that 97% of them experienced EAR at a median age of
2 years old, confirmed by others [3,18,19], who described a strong relationship between AR
timing and the subsequent risk of developing obesity, as well as impaired glucose tolerance
and type 2 diabetes, metabolic syndrome, coronary heart disease, and polycystic ovary
syndrome [3,20,21].

Those remarkable observations suggest that obesity in adolescence and adulthood is
somehow “programmed” much earlier in life, possibly even during periconception [22].
Recent evidence has explained the impact of prenatal and early postnatal events in pro-
moting obesity risk later in life [23]. Mainly, embryonic and fetal ages are vulnerable to
environmental insults, and acquired variations may endure through generations, despite
the absence of continuous exposure. This critical period for offspring’s future health corre-
sponds to “the first 1000 days”, which runs from conception and continues up to two years
of life [24].

In this same period, the intestinal microbiota changes shape and conforms to what
will later be the definitive microbiota in adulthood [25]. Cumulative evidence suggests
that the gut microbiome is an essential mediator between different factors such as genetics,
diet, exercise, environmental substances exposure (e.g., exposure to endocrine-disrupting
chemicals (EDCs)) and the pathophysiology of obesity and obesity-related metabolic dis-
orders, driving NCDs’ intergenerational nature [25–27]. Gut microbiota shaping and role
start during the fetal period with microbes exchanged from the mother to the fetus [28–30],
suggesting that this ecosystem composition, especially during “the first 1000 days” window,
is influenced by several maternal and infant factors (e.g., maternal adherence to healthy
dietary patterns, maternal physical activity, type of birth, maternal use of medications,
type of breastfeeding and weaning, sleep pattern, and infant dietary habits) [25,31–35].
Our previous study (Alimentazione Mamma e bambino nei primi Mille giorni (A.MA.MI))
demonstrated that delivery mode, maternal pre-pregnancy BMI, and type of feeding influ-
enced the infant microbiota composition [36,37]. Besides, women enrolled in the A.MA.MI
project reported widespread exposure to products containing EDCs (e.g., monoethyl ph-
thalate (MEP) and bisphenol A (BPA)) [38] which are reported to be associated with early
childhood obesity patterns, increasing the risk of developing obesity and NCDs during
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life [27], as they can cross the placenta and concentrate in the circulation of the fetus or can
be transferred from mother to baby through breast milk [39,40].

The period from conception up to 2 years of age is the most critical for the induction
of pathophysiological derangements, which may affect the health status of the offspring in
the short and long term [41,42], leading to the development of different diseases including
inflammatory bowel diseases (IBDs) and other autoimmune diseases [43,44], allergy [45],
obesity [46], and many NCDs [25,31–35,46–49].

Although the AR phenomenon appears well documented, the mechanisms underlying
an EAR have yet to be elucidated. Based on the above-mentioned considerations, the
LIfestyle and Microbiome InTeraction early adiposity rebound in children (LIMIT) study
aims at identifying the differences in the longitudinal interplay among the infant intestinal
microbiome, the infant/maternal lifestyle, and environmental exposure (e.g., EDCs), in
children with EAR vs. AR. The acquired knowledge may allow the definition of an AR-
healthy phenotype to design a model able to predict the risk of developing EAR in children.
Thus, a prognostic index like EAR could be linked to early dysbiosis, which could be
corrected by personalized lifestyle interventions to prevent childhood obesity development
and stop this epidemic.

2. Material and Methods

LIMIT is a prospective cohort study aimed at:

• Evaluating whether the (i) intra-individual abundance (alpha-diversity) and the
(ii) inter-individual abundance (beta-diversity) of the intestinal microbiota in the first
6 months of life is associated with EAR within 36 months of life (primary outcome);

• Investigating the correlation among the (i) maternal factors (pre-pregnancy BMI,
weight gain during pregnancy, dietary habits, and physical activity), (ii) infant fac-
tors (delivery mode, feeding and weaning mode, dietary habits, sleeping habits),
and (iii) environmental exposure factors (exposure to maternal endocrine-disrupting
chemicals) and infant intestinal microbiome composition (alpha- and beta-diversity)
at delivery and different time points of assessment.

2.1. Participants

To address LIMIT’s purposes, 272 mother-infant dyads were consecutively enrolled
during the pre-hospital care before birth at the UOC Neonatology and Neonatal Intensive
Care, Fondazione IRCCS Policlinico San Matteo of Pavia, and then, evaluated at a different
time point of assessment: at delivery (T0); 20–30 days post-delivery (T1); 6 months post-
delivery (T2); 12 months post-delivery (T3); 24 months post-delivery (T4); and 36 months
post-delivery (T5). Participants were included in the study according to the following
inclusion criteria: healthy term (gestational age between the 37th week and the 42nd week)
newborns; parents’ ability to speak and understand the Italian language; parents’ ability to
sign the informed consent and to fill in the questionnaires; elective caesarean section and
vaginal delivery (1:1 ratio).

The exclusion criteria were: infants with genetic/congenital diseases; infants requir-
ing intensive care immediately after birth; infants born with insulin-dependent diabetes-
mellitus; infants with severe intrauterine growth retardation (below the 3rd percentile)
and weighing <10th percentile, according to the Italian Neonatal Study (INeS) charts [50];
infants who required resuscitation; infants with meconium-tinged fluid; infants receiving
antibiotic therapy and/or maternal fever >38 ◦C in labor; maternal hyperthyroidism during
pregnancy; the presence of gestational diabetes; infants born from parents refusing to sign
the informed consent.

The study followed the Declaration of Helsinki. Written informed consent was ob-
tained from the parent or legal guardians.

Ethical approval was granted by the Ethical Committee of IRCCS Policlinico San Mat-
teo (Pavia) (protocol number: 0020200/22; Accepted: 11 April 2022). The LIMIT protocol
has been registered on clinicaltrial.gov (accessed on 23 August 2022) (NCT04960670).

clinicaltrial.gov
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At the different time points of assessment, infant auxological parameters (length/height,
weight, and head circumference) and maternal anthropometric measurements (height,
weight, and waist circumference) were measured.

Information about the mothers’ pathological/physiological history, pregnancy (type
of current pregnancy, spontaneous or assisted pregnancy, number of previous pregnancies);
socio-demographic data (e.g., socio-economic level of the family); pre-gestational/gestational
anthropometrics parameters (e.g., maternal weight status before pregnancy, weight gain
during pregnancy); infant medical history; maternal and infant use of antibiotics, probiotics,
and supplements; maternal lifestyle factors (e.g., dietary habits, physical activity level,
smoking habits before, during, and after pregnancy, feeding attitude), and infant ones
(feeding and weaning mode, dietary habits, sleeping habits, physical activity level), as well
as delivery mode, family environment (e.g., how many people live in the house, infant’s
exposure to passive smoking) and maternal environmental exposures (e.g., EDCs), by
means of interview, previously validated questionnaires or adapted questionnaire, by using
a forwarding–back translation (FBT) [51] were collected (Table 1).

Table 1. Variables and time of collection.

Variables Methods
Time Point of Assessment

T0 T1 T2 T3 T4 T5

Anthropometric parameters
M Weight status before/during pregnancy (weight,

height, BMI); direct measurement [52] X X X X X X

B Weight, length, and head circumference; direct
measurement [52,53] X X X X X X

Medical history
M Clinical record X 7 7 7 7 7

B Clinical record X X X X X X

Antibiotics/probiotics/
supplement use

M Interview X X X 7 7 7

B Clinical record and interview 7 X X X X X

Feeding/weaning B Interview 7 7 X 7 X 7

Feeding M Iowa Infant Feeding Attitude Scale (IIFAS)
(adapted by forwarding–back translation) [54] 7 X 7 7 7 7

Dietary habits
M Previously validated questionnaire [55] X X 7 X 7 7

B INTERGROWTH [56] 7 7 7 X X X

Adherence to Mediterranean dietary pattern M MEDI LITE score [57] X X 7 7 X X

Physical activity level
M International Physical Activity Questionnaire

(IPAQ-SF; short form) [58] X 7 7 7 7 7

B Interview 7 X X X X X

Smoking habits M Interview (before/during/after pregnancy) X X X X X X

Sleep B The infant sleep questionnaire (ISQ) (adapted by
forwarding–back translation) [59] 7 7 7 X X X

EDC levels/exposure M Questionnaire [38] 7 X 7 X 7 7

Socio-economic
status (SES) M Interview X 7 7 7 X X

Family environment M Interview X X X X X X

M: mother; B: baby; T0: time of delivery; T1: 20–30 days after delivery; T2: 6 months after delivery T3: 12 months
after delivery; T4: 24 months after delivery; T5: 36 months after delivery; BMI: Body Mass Index; EDCs: endocrine-
disrupting chemicals.

Biological samples, including infant stool samples and maternal urine samples at
different time points, were collected to assess the infant gut microbiota composition and
maternal EDC levels (Table 2).
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Table 2. Endocrine-disrupting chemicals measured in maternal urinary samples.

Phthalate Secondary Metabolite
Time Point of Assessment

T0 T1 T2 T3 T4 T5

Bisphenol A (BPA) (µg/L)
Monoethyl phthalate (MEP) (µg/L)

7 X 7 X 7 7

Diethyl phthalate (DEP) (µg/L) 7 X 7 X 7 7

Butylbenzyl phthalate (BBzP) (µg/L) Monobenzyl phthalate (MBzP) (µg/L) 7 X 7 X 7 7

Diisobutyl phthalate (DiBP) (µg/L) Monoisobutyl phthalate (MiBP) (µg/L) 7 X 7 X 7 7

Di-(2-ethyl-hexyl) phthalate (DEHP) (µg/L)

Mono- (2-ethyl-hexyl) phthalate (MEHP) (µg/L)
Mono- (2-ethyl-5-hydroxy-hexyl) phthalate

(5OH-MEHP) (µg/L)
5oxo-MEHP Mono- (2-ethyl-5-oxo-hexyl)

phthalate (5oxo-MEHP) (µg/L)

7 X 7 X 7 7

T0: time of delivery; T1: 20–30 days after delivery; T2: 6 months after delivery T3: 12 months after delivery;
T4: 24 months after delivery; T5: 36 months after delivery.

2.1.1. Infant Auxological Parameters

Length (cm) or height (cm) (T5), weight (Kg) (T0–T5), and head circumference (T0–T4)
were assessed at pre-determined time points (Table 1).

Briefly, the body weight of unclothed children was measured using a balanced weight
scale (accuracy ± 100 g), following standardized procedures [52]. The length was measured
using an infantometer; in the case of the impossibility of stretching both legs straight in the
correct position, the examiner would ensure that at least one leg was straight with the foot
flexed against the footrest.

Standing height was measured using a Harpenden stadiometer with a fixed vertical
backboard and an adjustable headpiece. The measurement was taken of the child in the
upright position, without shoes, hands at the sides, aligning the head with the Frankfort
horizontal plane. The child was instructed to stand as tall as possible, take a deep breath,
and hold this position to capture the result [53]. Head circumference was measured
according to the standard evaluation methods [52].

2.1.2. Infant Adiposity Rebound Monitoring

In the LIMIT project, auxological parameters (weight, length/height) and the BMI
Z-score (BMI-z) were, respectively, measured and calculated by using the World Health
Organization’s age and sex-specific standards [60]. In this study, the timings of AR were
set as a binary variable, and the children were categorized into early or non-early AR.
EAR was defined as an increase of more than two percentile thresholds in the BMI curve
between 1 and 36 months of age (maximum age of the children in the study). As previously
reported by Pereira-da-Silva and Virella [61], the inaccurate measurement of the length,
if squared (BMI), magnifies the error of the index in which it is included, while losing
the ability to differentiate overestimation from underestimation. In the LIMIT study, the
EAR was evaluated by two investigators: one trained and one under training, in a blinded
fashion, using BMI z-scores. For this reason, the inter- and intra-observer variability were
previously evaluated according to the standardized protocols described by Stomfai and
colleagues [62].

2.1.3. Maternal Anthropometric Parameters

Anthropometric measures of each woman were collected as follows: pre-pregnancy
weight (Kg) was self-reported, while height (cm) was measured on all the subjects enrolled
without shoes using a stadiometer (accuracy ± 1 mm). Pre-pregnancy Body Mass Index
(BMI, kg/m2) (T0) was then calculated as the ratio of the weight, expressed in kg, to height
in meters squared [52]. The pre-pregnancy BMI calculation allows defining and comparing
mothers with pre-pregnancy normal-weight mothers (BMI < 25 kg/m2) vs. mothers with
overweight/obesity (BMI ≥ 25 kg/m2), as also previously described in the A.MA.MI
project [36].
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Similarly, weight gain during gestation was self-reported and used to define women
with excessive gestational weight gain (EGW) vs. women with optimal gestational weight
gain (GWG), according to the Institute of Medicine (U.S.) and National Research Council
(U.S.) Committee to Reexamine IOM Pregnancy Weight Guidelines [63], as well as previ-
ously described in the A.MA.MI project [36]. In particular, the recommended weight gains
for women with underweight (BMI < 18.5 kg/m2), normal weight (BMI = 18.5–24.9 kg/m2),
overweight (BMI = 25.0–29.9 kg/m2), and obesity (BMI > 30.0 kg/m2) are 12.5–18, 11.5–16,
7.0–11.5, and 5.0–9.0 kg, respectively [63]. After delivery, body weight (Kg) was mea-
sured (T1–T5) with mothers in underwear, on a balanced weight scale (accuracy ± 100 g).
BMI (kg/m2) was then calculated as reported above. Waist circumference (WC, cm) (T3–T5)
was measured to the nearest centimeter with a flexible steel tape measure with the partici-
pants standing, with crossed arms resting on opposite shoulders, after a slight exhalation.
It was measured on the horizontal plane between the lowest portion of the rib cage and
the uppermost lateral margin of the right ileum [52]. The waist/height ratio (T3–T5) and
abdominal adiposity index (cut-off < 0.5) [52] were also calculated.

2.1.4. Maternal Dietary Habits

Food consumption frequency (FF) and dietary habits (DH) at T0, T1, and T3 were
investigated using a previously validated self-administered dietary questionnaire [62].
Before administration, two out of the nine sections of the original questionnaire, developed
and validated for a teen Italian population [55], were adapted by two dieticians to the adult
population, as previously described elsewhere [38].

In brief, the FF section (18 items) investigates the daily consumption of typical foods
and beverages, such as bread, pasta, cereal-based products, fruit and vegetables, milk and
yoghurt, tea and coffee, and weekly consumption of other foods such as meat and meat
products, fish, eggs, cheese, legumes, sweets, and alcohol [55]. Each section consists of a
multiple-choice questionnaire, which includes the following answer categories: always,
often, sometimes, never [55]. The score assigned to each answer ranges from 0 to 3, with the
highest score given to the healthiest one and the lowest score to the least healthy one [55].
The DH section (14 questions) is designed to investigate dietary habits including breakfast
consumption, the daily number of meals, fruit and vegetable intake, and consumption of
non-alcoholic or alcoholic beverages. In this section, some questions aim to assess whether
the number of servings consumed meets the recommendations [55]. Eight questions have
the following response categories: always, often, sometimes, never; the score assigned to
each answer ranged from 0 to 3 [55]. The other six questions have four differently structured
response categories, and the score ranges from 1 to 4. In both cases, the maximum score
is assigned to the healthiest one and the minimum score to the least healthy [55]. The
total score is then divided into tertiles, where the lowest one corresponds to “inadequate
eating habits”, the average one corresponds to “partially satisfactory eating habits”, and the
highest one corresponds to “satisfactory eating habits”, according to the Italian National
Dietary Guidelines [64].

2.1.5. Mediterranean Dietary Pattern Adherence

Mediterranean dietary (MD) adherence was assessed at T0, T1, T4, and T5 using the
MEDI-LITE score obtained from a previously validated questionnaire [57]. The question-
naire investigates the frequency of consumption of nine classes of food: (i) fruit, (ii) vegeta-
bles, (iii) cereal grains, (iv) legumes, (v) fish and fish products, (vi) meat and meat products,
(vii) dairy products, (viii) alcohol intake, and (ix) olive oil [57]. The score obtained from
the questionnaire ranges from 0 to 18, where the highest value corresponds to the highest
MD adherence [57]. In brief, for fruit, vegetables, cereal grains, legumes, and fish, a score
of 2 was assigned for high-frequency consumption, a score of 1 for moderate frequency
consumption, and a score of 0 for low-frequency consumption [57]. On the contrary, for
meat/meat products and dairy products, low-frequency consumption scores 2, moderate
frequency consumption scores 1, and high-frequency consumption scores 0 [57]. For alco-
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hol, the categories related to the alcohol unit (1 alcohol unit = 12 g of alcohol) were used
by giving two points to the middle category (1–2 alcohol units/d), 1 point to the lowest
category (1 alcohol unit/d), and 0 points to the highest category of consumption [57]. Last,
women who report regular use of olive oil score 2; women who report frequent use of
olive oil score 1; those who consume it occasionally score 0 [57]. The final score varies
from 0 (low adherence) to 18 (high adherence); overall, women reporting a score at or
higher than 9 will have a significantly increased possibility of being adherent to the MD, as
previously reported [57].

2.1.6. Maternal Smoking Habits

Smoking habits were investigated considering women who never smoked, quit smok-
ing before pregnancy, or during pregnancy, smoked during pregnancy or resumed smoking
after childbirth, or after lactation. The packages of cigarettes/per year were recorded.

2.1.7. Maternal Physical Activity Level

Maternal physical activity was assessed by the short form (7 items) of a validated
country-/language-specific questionnaire (International Physical Activity Questionnaire
(IPAQ—SF)) at T0 [58] (downloadable from https://sites.google.com/site/theipaq/
questionnaire_links accessed on 3 May 2022). The questionnaire provides an estimate
of the metabolic equivalent of task (MET-min) per week, which is calculated as follows:
METs = MET level x × minutes of activityx × events per week. Physical activity level is
classified according to METs into sedentary (total METs < 699), moderate (total METs
between 700 and 2519), and high (total METs > 2520) [58].

2.1.8. Maternal Feeding Attitude

The Iowa Infant Feeding Attitude Scale (IIFAS) was used to assess the maternal attitude
towards infant feeding methods [54] and to predict breastfeeding intention and exclusivity.
In brief, the IIFAS is a standardized interview questionnaire on participants’ characteristics
and habits (age, residence, education, self-assessed socioeconomic status, relationship
status, work before pregnancy, back to work after maternity leave, mode of delivery, parity,
way of feeding previous babies, planned way of feeding this newborn). The scale consists
of 17 items with a 5-point Likert scoring from 1 (strongly disagree) to 5 (strongly agree).
Items 1, 2, 4, 6, 8, 10, 11, 14, and 17 are reverse-scored.

The total score ranges from 17 to 85 with a higher score reflecting a positive attitude
toward breastfeeding [54]. In brief, scores ranging between 70 and 85 correspond to a
positive attitude toward breastfeeding; scores ranging between 49 and 69 correspond to
a neutral attitude; scores ranging between 17 and 48 correspond to a positive attitude
towards formula feeding [54].

2.1.9. Infant Dietary Habits

The validated INTERGROWTH-21st Food Frequency Questionnaire [56] was used
to collect infants’ dietary habits at 1 year of age (T3) [56]. In brief, the questionnaire
investigates (i) infants’ feeding upon discharge through the first year of life, (e.g., During
the 1st year of life, have you given your child expressed milk? How old was your child
when you stopped exclusively breastfeeding? Is your child following any special diet?);
(ii) food frequencies over the past 28 days (e.g., Did your son eat cooked cereal? Did
your son eat legumes? Did your son drink soft drinks?). Each question has the following
responses: 1–3 times/month, 1–3 times or >3 times/week, 1–3 times or >3 times/day, and
not applicable [56].

However, the INTERGROWTH-21st Food Frequency Questionnaire [56] does not take
into consideration the protein content of infant formula, which is reported to be among the
main causes influencing early excessive weight gain, including in Mediterranean European
countries [65,66]. Thus, this aspect was further and separately asked.

https://sites.google.com/site/theipaq/questionnaire_links
https://sites.google.com/site/theipaq/questionnaire_links
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2.1.10. Infant Sleeping Habits

The Infant Sleep Questionnaire (ISQ) was used to assess infant sleep (T3–T5) by
assessing sleep quality among infants in the last month of life [59]. The questionnaire
consists of 8 multiple-choice items related to the length, quality, and mode of sleep. The ISQ
can classify infant sleep problems in three ways: (i) Richman’s criteria (i.e., sleep problem
defined as settling or waking problem occurring 5 or more nights per week, plus one or
more of the following: taking more than 30 min to settle, waking 3 or more times per night,
awake for more than 20 min during the night, sleeping in parents’ bed because upset) [67];
(ii) maternal criteria (e.g., Do you think that your baby has sleeping difficulties?) using a
4-point scale (no problem, mild problem, moderate problem, or severe problem) [59]; and
(iii) via a severity score [59].

Overall, the questionnaire returns a score ranging from 0 to 38, as previously re-
ported [59].

For the Richman criteria, the ISQ cut-off of 12 or above appeared to detect more severe
sleep problems; for the maternal criteria, the ISQ cut-off of 6 or above appeared to detect a
wider range of sleep problems [59].

2.1.11. BPA and Phthalates Daily Exposure

The determinants of exposure to BPA, phthalates and their secondary metabolites
(e.g., use of plastic products, presence of synthetic material at the gym or during recre-
ational activities, presence of PVC in the home and working environments, consumption of
packaged food in plastic containers or tetra-packed food, consumption of pre-cooked food,
disposable plastic use, regular use of plastic utensils for cooking) were recorded at T1 and
T3, as previously described by our group [38]. Several questions were extrapolated from
the questionnaire designed by the “LIFE PERSUADED” project (“Phthalates and bisphenol
A biomonitoring in Italian mother-child pairs: the link between exposure and juvenile
diseases”) [38]. The questionnaire evaluates the association between demographic and
lifestyle variables potentially related to exposure to DEHP/BPA and secondary metabolites
in children and their mothers [38]. Data are expressed as the frequency of lifestyle habits
over-mentioned and listed in percentage.

2.1.12. Infant Stool Sample Collection and Microbiome Analysis

For each infant, stool samples were collected to analyze the intestinal microbiota. The
first stool sample (T0) was collected by a member of the UOC of Neonatology and Neonatal
Intensive Care, whereas subsequent samples (T1–T5) were collected by the infants’ parents
after they are accurately instructed by a member of the research team on how to collect,
store, and transport infant stool samples, according to the following inclusion criteria:
(i) absence of fever and gastroenteritis; (ii) absence of diarrhea for more than 24 h in the
previous 7 days; (iii) no antibiotic treatment of the child in the previous 7 days.

The collected samples were then anonymized by the researchers who received them,
using a progressive code and stored at −80 ◦C, until the analysis.

Subsequently, the fecal samples were shipped on dry ice and whole metagenomic
shotgun sequencing [68] was applied.

Metagenomic libraries were generated with a Nextera XT DNA Sample Prep Kit
(Illumina, San Diego, CA, USA), and sequencing was carried out on the HiSeq2500 platform
(Illumina) at a targeted depth of 5.0 Gb (100 bp paired-end reads). Shotgun metagenomics
sequencing samples were pre-processed as previously described by others [69].

2.1.13. Maternal Urinary Sample Collection and Endocrine-Disrupting Chemicals’ Analysis

Maternal urinary samples were collected at T1 and at T3 to measure the BPA levels;
metabolite of diethyl phthalate (DEP), named monoethyl phthalate (MEP); mono isobutyl-
phthalate (MIbP) as a metabolite of -n-butyl phthalate (DnBP); metabolites of DEHP, such
as mono (2-ethyl-5-hydroxylhexyl) phthalate (MEHHP) and mono (2-ethylhexyl) phthalate
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(MEHP); mono benzyl phthalate (MBzP) and metabolite of benzyl butyl phthalate (BBP)
(Table 2). In addition, creatinine concentrations were also measured.

In particular, mid-stream clean urine samples instead of first or 24 h urinary samples,
according to Lee et al. [70], were collected into polypropylene cups for urine culture, and
then, mothers were asked to store the cups in a refrigerated place until transportation.
The urine samples were then transported under refrigeration, aliquoted into phthalate-
free tubes, and stored at –80 ◦C at the Neonatal Immunology Laboratory of the UOC
Neonatology and Neonatal Intensive Care, until the analysis.

BPA and phthalates levels were measured by UHPLC-MS/MS (Shimadzu, Milan, Italy).
The UHPLC system consists of two LC 30 AD pumps, a SIL 30 AC autosampler, a

CTO 20 AC column oven, and a CBM 20 A controller, and the system is coupled online to a
triple quadrupole LCMS 8050 (Shimadzu, Kyoto, Japan) equipped with an electrospray
ionization (ESI) source. Although EDCs’ threshold levels have not been defined universally,
cut-offs derived by human biomonitoring (HBM) in urine have been suggested as reference
values for humans [71].

Creatinine levels were measured by routine methods on an Atellica® CH Analyzer
(Siemens Healthcare Diagnostics Inc., Tarrytown, NY, USA) and expressed as mol/L.

2.2. Statistical Analyses

Preliminary results of the “Alimentazione Mamma e bambino nei primi Mille giorni”—
“Mother-infant nursing in the first thousand days” (A.MA.MI) project [36] on 63 mother-
infant pairs were used to hypothesize which distribution of alpha-diversity (Shannon
index) [72] we expect in infants. In particular, in the A.MA.MI project, at six months
post-delivery, the Shannon index in infants was normally distributed, with a mean of 2 and
a standard deviation of approximately 0.5 [37].

The sample size of the LIMIT project is calculated by fixing a priori the power (90%)
and the level of statistical significance (alpha = 0.01) and estimating that the EAR (primary
endpoint of the study) can occur in 33% of children. Assuming an average difference in the
alphadiversity at T2 (six months after delivery) between EAR and AR infants of 0.25 units,
corresponding to an average effect on the risk to develop EAR (Cohen’s D of 0.5), the
sample size needed was about 272 mother pairs. A variation in the microbial community
was considered an indicator of dysbiosis and was tested for association with the EAR.

The collected sample was described using the appropriate summary measures: means
and standard deviations or median and interquartile range (IQR) for the quantitative
variables, frequency distributions for the qualitative variables in the overall global sample
in the EAR or AR children groups.

To compare the alpha-diversity (Shannon index) [72] between EAR and AR, Student’s
t-test or the Mann–Whitney U-test is used, depending on whether the data are normally
distributed. The proportion or presence/absence of specific microbial units in EAR children
vs. those with AR was also compared, with adjustments for multiple comparisons.

Furthermore, a logistic model was used to evaluate the association between the
presence of EAR at 36 months and the variation (T2–T0) in the alpha-diversity (Shan-
non index) [72], adjusting for other factors (maternal weight status before pregnancy,
weight gain during pregnancy, weight during pregnancy, gestational exposure, maternal
exposure to environmental pollutants, perinatal and postnatal exposure). The adjusted
odds ratios (ORs) and 95% confidence intervals were used as measures of effect and
precision, respectively.

Student’s t-test or the Mann–Whitney U-test, as appropriate, were used to compare
the variation (T2–T0) in the beta-diversity (Sörenses index) [73] between EAR and AR at
36 months. A logistic model was used to evaluate the association between the presence
of EAR at 36 months and the variation of beta diversity, adjusting for all other factors
described above.
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Pearson or Spearman correlation, principal coordinate and component analyses (PCA
and PCoA), and cluster analysis were used to evaluate changes in gut microbiota composi-
tion over the various time points of assessment.

Finally, generalized linear models for repeated measurements were used to evaluate
the factors influencing the variation of newborn gut microbiota alpha- and beta-diversity,
during the whole period (the first 36 months of life), considering robust standard errors in
the intra-group correlation.

3. Discussion

Obesity in childhood is associated with a wide range of serious health complications
and an increased risk of premature NCDs, including diabetes and heart disease [5,6]. The
rising prevalence of obesity worldwide represents a growing burden of NCDs and a signifi-
cant public health issue due to increasing public service health costs [74,75]. Several factors,
including environmental, dietary, lifestyle, host, and genetic ones, have been attributed to
the development of childhood obesity; however, none of them completely elucidate the
increase in the prevalence of childhood obesity, which is preceded by EAR [16]. Rolland-
Cachera et al. [13] appraised that adolescents who have experienced EAR (<5.5 years) were
more frequently affected by obesity than those who had been rebounders later (>7 years).
Thus, between 7% and 30% of 4.2 million babies born in 2019 in the EU, equivalent to
294,000–1.26 million, are expected to experience EAR.

Evidence shows a significant role in gene-environment interactions where one’s genetic
profile influences the ability to deal with the obesogenic impact of some environmental
factors [76]. Alteration in the composition of human-associated microbial communities
and metabolite profiles related to the gut microbiota can offer deep insights into the role
of the microbiome in the development of adiposity and obesity, as well as the exposure to
lifestyle, dietary, and other environmental factors [77].

Our protocol, named LIfestyle and Microbiome InTeraction (LIMIT), describes the
rationale and design of a prospective, longitudinal, observational study (LIfestyle and
Microbiome InTeraction) aiming at investigating the composition and development of
the intestinal microbiota in infants from 0 to 36 months, according to the infant growth
trajectories, the maternal and infant lifestyle, and the exposure to environmental factors.
Several studies either explored the interplay between infant adiposity rebound and obe-
sity [13,15,78] or investigated maternal and infant factors shaping the infant gut microbiota
composition [79–81]. To the best of our knowledge, our protocol is the first that has the am-
bition to identify the longitudinal interplay between infant intestinal microbiome, maternal
and infant lifestyle factors, as well as EDCs signatures in children showing EAR and in
those showing regular AR.

Indeed, LIMIT was designed to consider the following assumptions: (i) during the
perinatal period, several maternal factors such as health status, socioeconomic status,
microbiome composition, dietary habits and other lifestyle factors, pre-pregnancy weight
and weight gain during gestation, use of antibiotics and delivery mode may influence
the early stages of microbial colonization in the infant [31,82,83], besides that most of
those maternal factors have been shown to be positively associated with EAR in young
children [14,84]; (ii) during the postnatal period, several infant factors (e.g., energy intake,
type of feeding, sleep patterns, speed of growth) have been shown to be associated with
EAR [85–87]; (iii) obesity may be programmed in utero; it has been shown that the gut
microbiota can be transmitted, at least partially, from mother to child via maternal contact,
as well as by environmental contact [85], and epigenetics has also been shown to play a
key role in transmitting obesity risk to infants [87]; (iv) dysbiosis (imbalance in the gut
microbiota) has been linked to the development of obesity by multiple mechanisms. The
gut microbiota is involved in molecular crosstalk with the host, affecting digestive tract
physiology and polysaccharides digestion, which directly increases the energy harvest
of the host physiology, metabolism, and inflammatory status, promoting adipogenesis
and causing weight gain [88–91]; (v) EDCs are a class of obesogenic substances that are
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persistent in the environment and humans [92] and are also involved in the gut microbiota’s
modulation [91].

Compared to other studies, to the best of our knowledge, this is the first study to
simultaneously analyze the association between prenatal, perinatal, and postnatal factors,
infant microbiota composition, and age at AR. Indeed, the strength of the LIMIT study is
evaluating AR and child growth patterns rather than BMI in a specific early childhood
period, considering the composition of the child’s gut microbiota as a potential driver
towards increased risk of developing EAR. It is noteworthy that a high initial BMI followed
by a late AR may be followed by a subsequent normal or low body weight, while a low
initial BMI with an EAR may be associated with excessive weight gain and the development
of metabolic disease in a child’s future life [76,93]. Besides, acquiring more information
on the intestinal microbiota’s complexity, the host’s interaction, and the exposure factors
during the first 36 months of life, LIMIT allows dissecting the mechanisms that lead to the
EAR and potentially building a predictive model for the early diagnosis of obesity.

Despite the novelty of the research question, the study also reports some limitations
as it did not take into account the genetic susceptibility to obesity, which has been demon-
strated to play a predictive role in the timing of age at AR, as recently reported by Cissè
and colleagues [53].

Again, another important strength is that LIMIT analyzes the mother-infant dyad with
a holistic approach rather than a reductionist one to (i) figure out the biological pathways
during the perinatal period and the first 36 months of life that trigger obesity later in life;
(ii) uncover the interplay between maternal-infant factors, environmental exposures, and
infant gut microbiota composition to underpin the protective role vs. the unfavorable role
of AR timing; (iii) provide evidence for a personalized approach to interventions to fight
obesity before and during fetal programming. Therefore, to make the most of this approach,
the LIMIT project uses previously validated questionnaires for the collection of maternal
and infant lifestyle habits data and standardized protocols for the analysis of the infant gut
microbiota composition and the maternal urinary levels of EDCs.

However, even in this case, there are some limitations to consider. First, some factors,
including the protein content of infant formula, which is reported to be among the main
causes influencing early excessive weight gain [65,66], are not evaluated by the tool we
chose for assessing the infants’ dietary habits. For this reason, this aspect will be investi-
gated with separate questions that are not part of the validated questionnaire. Similarly,
as far as we know, since a validated questionnaire on EDC exposure assessment is not
available, the LIMIT project uses questions that were extrapolated from a large cohort
study (e.g., the LIFE PERSUADED study) [38]. Last, since EDCs and the gastrointestinal
microbiota interact via multiple mechanisms [94,95], the present research investigated
only the association between the maternal BPA and phthalates levels and the infant gut
microbiota composition, without taking into consideration how this exposure impacts the
maternal hormonal profile.

Overall, LIMIT aspires to act very early in children’ s life to lead to a good foundation
of health and the prevention of obesity, which needs an urgent public health resolution.
Indeed, health care worldwide is facing the challenge of a rising cost burden due to
the increase in obesity and NCDs. Substantial public awareness campaigns/policies for
promoting healthy lifestyles, minimizing unhealthy environmental impact, and addressing
health inequities to fight obesity should involve policymakers, private sector partners,
medical professionals, and the public at large. Besides the “one size fit all” approach
conducted till now will unlikely succeed due to the multifactorial nature of obesity; instead,
a personalized approach is recommended. LIMIT proposes a personalized life-course
approach during early life development, acknowledging that influences operating during
“the first 1000 days” window can lay the foundation for health and wellbeing throughout
the life course.
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