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Jinxin Lyu,3 Ziyu Zhou,1,2,3 Ying Yan,1,2,3 and Yuxiang Zhang3

SUMMARY

In most economically underdeveloped areas, scattered farming and human‒livestock cohabitation are
common. However, production of bioaerosols and their potential harm in these areas have not been pre-
viously researched. In this study, bioaerosol characteristics were analyzed in scattered farming areas in
rural Northwest China. The highest bacteria, fungi, and Enterobacteria concentrations were 125609 G
467 CFU/m3, 25175 G 10305 CFU/m3, and 4167 G 592 CFU/m3, respectively. Most bioaerosols had par-
ticle sizes >3.3 mm. A total of 71 bacterial genera and 16 fungal genera of potential pathogens were iden-
tified, including zoonotic potential pathogenic genera. Moreover, our findings showed that the scattered
farming pattern of human‒animal cohabitation can affect the indoor air environment in the surrounding
area, leading to chronic respiratory diseases in the occupants. Therefore, relevant government depart-
ments and farmers should enhance their awareness of bioaerosol risks and consider measures that may
be taken to reduce them.

INTRODUCTION

During livestock farming, bioaerosols can be released during livestock activity, composting treatment of livestock manure, and by microor-

ganisms attached to feed and bedding through the weathering and erosion process by combining with air, water, and dust particles.1–3 Pre-

vious papers have found that livestock and poultry enclosures and manure composting areas produce elevated bioaerosol concentrations

with potentially pathogenic bacteria, which can easily cause serious zoonotic diseases through respiratory irritation and pose a potential

threat to human and animal health if not properly managed.4–6 Studies have shown that even a small amount of bacterial aerosol production

from the breeding environment can cause airborne infections, causing clinical signs or invisible infections in organisms6 and posing a signif-

icant potential threat to both farmers and livestock.7 In addition, bioaerosols can cause growth retardation, immune deficiency, and organ

dysfunction.8,9 Release of bacterial aerosols into the external environment can also result in environmental pollution.10 Therefore, the distri-

bution characteristics and health risks of bioaerosols in large-scale livestock and poultry breeding and fecal disposal areas have attracted

considerable attention.

China has extensive livestock and poultry breeding, which is mostly concentrated in the rural areas of Northwest China. The livestock and

poultry breeding industry is not only an important pillar industry in rural areas of Northwest China, but also an advantageous characteristic

industry.11 The number of rural farms in China is currently decreasing, with a gradual shift to a farming system based on large-scale farming.12

However, a large number of scattered livestock and poultry farming patterns still exist in the rural areas of Northwest China, where China’s

economy ismore backward. Under the influence of the traditional lifestyle of the older generation, the current scattered farmingmodel in rural

areas of Northwest China is mainly based on human‒animal cohabitation and is characterized by small investment, small scale, small produc-

tion, low demand for farming technology, and livestock enclosures being located in close proximity to the indoor living areas of villagers.13–15

The number of livestock and poultry raised is generally not less than 2 and notmore than 50, and the aim is not to obtain a large profit through

breeding, but mainly to meet the needs of family members.16 There are several unscientific livestock and poultry farming practices in rural

areas of Northwest China that lead to high bioaerosol emissions, such as irregular manure cleaning, poor pen ventilation, rough pen cleaning,

and irregular storage of livestock and poultry feed which leads to mold and deterioration.6,13,17 In some instances, the human living environ-

ment and livestock enclosures are interspersed, and the nearest enclosures are located<5m from the residential living area, which can impact

the indoor environment in the case of irregular management.18,19 In addition, animal feces contain numerous intestinal bacteria. Enterobac-

teria is often used as an important indicator of food quality and health safety, and inadvertent infection may cause diseases such as arthritis,
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urethritis, and meningitis, among others, which can seriously affect the health of a patient.20–22 Enterobacteria can accelerate cellular senes-

cence, activate in-vivo inflammation, and damage mitochondria, thereby accelerating the aging process.23 Furthermore, Enterobacteria lysis

produces endotoxins, which are also a major source of serious health effects.24

Currently, there is minimal concern regarding the potential hazards that may be caused by bioaerosols generated during scattered

livestock andpoultry farming in rural areas,mainly due to fixed traditional farming concepts coupledwith a lack of relevant professional knowl-

edge and management guidance.25,26 Older generations in rural areas have been following this traditional scattered, human-animal cohab-

itation mode of farming, which has not been taken seriously due to the habitual belief that it does not pose potential risks to human health.

This has led to a lack of awareness of the potential hazards of livestock farming among future generations and has created enormous prob-

lems, the most important of which are environmental pollution and health hazards, which are gradually showing an increasing trend.27,28

Recently, pollution from farming has become the most important surface source of pollution in rural areas,29 and local environmental protec-

tion departments receive numerous pollution complaints each year. It is imperative to raise awareness on the characteristics of pollution from

farming to help change long-standing traditional practices, acquire conservation expertise, and develop evidence-based control measures to

limit pollution.

Based on this, this study selected Ulanqab, Ordos, and Hohhot in Inner Mongolia and Xi’an, Shaanxi Province, China, as typical rural

livestock farming areas, this study investigated bioaerosol concentration characteristics in different seasons, the particle size distribution,

and themicrobial composition under common rural livestock farming patterns. The aimwas to elucidate the possible effects of rural scattered

livestock farming on the living environment of villagers and the potential risks, and provide a scientific basis for point source information of

potential pathogenic bacteria that may occur in rural areas and corresponding control measures.

RESULTS

Airborne culturable bacteria, fungi, and Enterobacteria concentrations during rural scattered farming

Figure 1 and Table S1 illustrate the concentration characteristics of bacteria, fungi, and Enterobacteria in bioaerosols in the rural scattered

farming areas. The bioaerosol concentrations in the scattered farming areas were mostly greater than the background concentrations, with

the exception of a few points. Bacterial concentrations in bioaerosols were higher than fungal concentrations at the same sampling locations.

Among all sampling sites in autumn, the highest bacteria, fungi, and Enterobacteria concentrations were found in A-ER, A-HU, and A-ER at

125609 G 467 CFU/m3, 25175 G 10305 CFU/m3, and 4167 G 592 CFU/m3, respectively; the lowest concentrations were found in A-WU*,

A-ER*, and A-ER* at 2387G 1098 CFU/m3, 849G 172 CFU/m3, and 107G 12 CFU/m3, respectively (see Figure 2 for sampling point details).

At other sampling points, the bacterial concentrations were: A-HU: 70123 G 25538 CFU/m3; A-WU: 4862 G 8 CFU/m3; A-ER*: 9568 G 3824

CFU/m3; and A-XI: 56875G 4047 CFU/m3. The fungal concentrations were: A-WU: 2588G 548 CFU/m3; A-WU*: 1503G 1049 CFU/m3; A-ER:

2105 G 10 CFU/m3; and A-XI: 6460 G 2849 CFU/m3. The Enterobacteria concentrations were: A-HU: 529 G 171 CFU/m3; A-WU: 795 G 87

Figure 1. Bioaerosol concentrations in rural scattered farming areas

(A) Bacteria, (B) fungi, and (C) Enterobacteria concentrations (CFU/m3) in bioaerosols in rural scattered farming areas, and background concentrations in different

villages. A: autumn; W: winter.
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CFU/m3; A-WU*: 297 G 33 CFU/m3; and A-XI: 1290 G 244 CFU/m3. For all sampling sites in winter, the bacteria, fungi, and Enterobacteria

concentrations were 2828G 425 CFU/m3, 731G 436 CFU/m3, and 110G 49 CFU/m3, respectively, at the W-HU site, and 322G 36 CFU/m3,

92 G 26 CFU/m3, and 18 G 6 CFU/m3, respectively, at the W-ER site.

Measurements of the bioaerosol concentrations in indoor environments where people reside showed that the bacteria, fungi, and Enter-

obacteria concentrations were higher in the case of scattered farming in the yard, i.e., 5476G 591 CFU/m3, 3384G 1789 CFU/m3, and 441G

59 CFU/m3, respectively, than in the absence of scattered farming in the yard, i.e., 2712 G 514 CFU/m3, 819 G 123 CFU/m3, and 24 G

0 CFU/m3, respectively.

Particle size distribution of airborne bacteria, fungi, and Enterobacteria in rural scattered farming areas

The impact of bioaerosol particles on human and livestock health varies depending on the particle size; the smaller the bioaerosol particle

size, the deeper they enter the body of human and livestock. The particle size distribution of total bacteria, fungi, and Enterobacteria in bio-

aerosols from different sampling sites is shown in Figure 3. The particle size distribution of bioaerosols during rural scattered farming of

different livestock types varied substantially.

The particle size distribution of bacteria in bioaerosols detected near pig, cattle, sheep, and chicken breeding sites was mainly >3.3 mm.

Bacterial bioaerosol particle sizes of 0.65–2.1 mm were detected only at the cattle sites (A-WU), i.e., up to 85%.

For fungi, theparticle sizedistributionsof bioaerosols near sheepandchickenenclosureswere similar,withbothbeingdominatedbyparticles

>3.3 mm. The particle size distributions near pig and cattle enclosureswere also similar, bothmainly concentrated in the size range of 2.1–4.7 mm.

The proportions of fungal bioaerosols with particle size distributions in the range of 2.1–4.7 mmwere as high as 82%, particularly at the A-HU site.

The particle size distribution of Enterobacteria was mainlyR7.1 mm near sheep rearing enclosures and 2.1–4.7 mm near cattle and pig en-

closures. The particle size distribution in chicken enclosures was relatively small, mainly concentrated in the range from 0.65 to 1.1 mm, ac-

counting for approximately 78%; thus, close attention to risk prevention and control measures is needed to avert infection.

Pathogenic bacteria and fungi in bioaerosols in rural scattered farming areas

The dominant bacterial genera at the A-HU, A-WU, A-WU*, A-ER, and A-ER* sites wereCorynebacterium, and those at theW-HU,W-ER, and

A-XI sites were Turicibacter, Christensenellaceae, and Lactobacillus, respectively. For fungi, the dominant genera were Cladosporium at the

A-HU, W-HU, A-WU, and A-WU* sites, and Alternaria at the A-ER* and W-ER sites. Acaulium and Bjerkandera were the dominant fungal

genera at the A-ER and A-XI sites, respectively.

A total of 71 potentially pathogenic bacterial species were identified (Figure 4). The pathogenic bacterial strains with relatively high levels

compared to other strains present at each sampling site included Corynebacterium, Lactobacillus, Acinetobacter, Bifidobacterium, Staphy-

lococcus, Sphingomonas, and Flavobacterium. The relative abundance of pathogenic bacteria in the A-HU, W-HU, A-WU, A-WU*, A-ER,

A-ER*, W-ER, and A-XI sites was 3.29%, 4.12%, 7.15%, 12.44%, 15.78%, 8.01%, 3.00%, and 9.01%, respectively.

Sixteen potentially pathogenic fungal genera were identified (Figure 5). The pathogenic fungal species with a relatively high abundance at

each site includedCladosporium, Alternaria,Aspergillus, Penicillium, Trichosporon, Verticillium, and Talaromyces. The relative abundance of

Figure 2. Study site locations and basic information on sampling sites

ll
OPEN ACCESS

iScience 26, 108378, December 15, 2023 3

iScience
Article



pathogenic fungi at the A-HU, W-HU, A-WU, A-WU*, A-ER, A-ER*, W-ER, and A-XI sites was 23.00%, 9.48%, 33.07%, 44.96%, 5.03%, 18.22%,

8.56%, and 7.58%, respectively.

This study found that environmental conditions (Table 1) had a substantial impact on the pathogenic bacterial genera in bioaerosols.

Redundancy analysis (RDA) was used to investigate the effects of environmental parameters such as air temperature, relative humidity, par-

ticulate matter concentration, and wind speed on the concentration of potentially pathogenic bacteria (Figure 6). Staphylococcus, Coryne-

bacterium, and Penicillium showed strong positive correlations with temperature, relative humidity, and particulatematter concentration, and

significant negative correlations with wind speed and atmospheric pressure (Figures 6A and 6B).

The present study also confirmed the high similarity of species composition between indoor residential environments and rural dispersed

breeding areas by NMDS analysis (Figure 7). After obtaining the species composition similarity, the number of shared genera was quantified

and the proportion of potentially pathogenic bacteria in the shared genera for the human indoor environment and the rural scattered farming

areas was calculated (Figure 8). The number of shared bacterial genera (Figure 8A) was significantly lower in the absence of scattered farming

in the yard than in its presence, and that in winter was greater than that in autumn at the same points. The presence or absence of scattered

farming in the yard had no significant effect on the number of shared fungal genera (Figure 8B). Moreover, this study found that the number of

common fungal genera was less than that of bacteria at all points, and the number of potentially pathogenic fungal genera was also less than

that of bacteria.

DISCUSSION

Scattered livestock and poultry farming, as a traditional and basic industry in rural China, has always existed in the daily lives of villagers. It is

only with the proposal of comprehensive rural environmental improvement and the occurrence of disease transmission incidents caused by

airborne pathogenicmicroorganisms that people have gained a better understandingof the hazards thatmay arise in the process of scattered

livestock and poultry farming in rural areas.

It has been shown that source characteristics of rural scattered farming are important factors influencing the concentration distribution

characteristics and species composition of bioaerosols. In this study, the source tracing method (Figure 9) was used to analyze the sources

of bioaerosols in rural scattered farming areas.30 For bacterial bioaerosols, livestock manure and background air were important sources,

accounting for 34.3% and 14.5%, respectively, similar to that reported in previous studies.31–33 If livestock manure is not effectively

managed, the numerous pathogenic microorganisms, parasitic eggs, and flies contained in it may increase the risk of diseases in humans

and livestock.5,34 Moreover, if manure is not treated adequately quickly, it leads to its accumulation and presence as a water, soil, and air

pollutant.33,35

Some papers have argued that most of the fungal bioaerosols in rural scattered farming areas originate from the external environment,

such as the soil outside enclosures.36 This is similar to the results of the present study, which found that fungal bioaerosols originated from

background concentrations through source tracing method, and that livestock manure may have accounted for 27.3% and 2.9%,

respectively.

Figure 3. Particle size distribution of total bacteria, fungi, and Enterobacteria in bioaerosols at different sampling locations

A: autumn; W: winter.
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Another important factor affecting the bioaerosol concentration characteristics and airborne microbial species composition in rural scat-

tered farming areas is the environmental conditions, such as meteorological conditions, livestock activity status, livestock housing environ-

ment, bedding material replacement cycle, and farming scale.4,13,37

This study found that temperature affected the bioaerosol concentration. In the same village, the bacteria, fungi, and Enterobacteria con-

centrations were lower in winter than in autumn, which may have been because temperature affected the metabolic activity of these organ-

isms so that their growth and reproduction were somewhat inhibited.38,39 The bacteria, fungi and, Enterobacteria concentrations in rural

livestock breeding areas in winter in Hohhot (W-HU) decreased by 95.97%, 97.10%, and 79.17%, respectively, compared to those in autumn.

The bacteria, fungi, and Enterobacteria concentrations in rural livestock breeding areas in winter in Erdos (W-ER) also decreased compared to

those in autumn, i.e., by 99.74%, 95.62%, and 99.58%, respectively. The influence of other environmental factors on bioaerosol characteristics

was also shown. Thus, attention should be given to the effect of weather conditions with high temperature, humidity, and particulate matter

concentration on Staphylococcus.40–42 Staphylococcus infection may cause acute or chronic infectious diseases in poultry, with common clin-

ical manifestations of skin blisters and abscesses.43–45

Moreover, this study found that the livestock species is another important factor that causes large differences in bioaerosol concentrations.

This study conducted field studies concurrently at the A-ER and A-ER* sites in Erdos, where sheep and chickens were reared at relatively

similar scales, and found considerable differences in bioaerosol concentrations, similar to previous results.46 Not only does the livestock

type have an effect, but some scholars have found a relationship between the livestock age and bioaerosol concentration.47,48

At site A-ER, unlike other sites, rural scattered farming is carried out indoors with a high number and density of farms and with

ruminant sheep; ruminants can excrete numerous microorganisms in their stomachs, and animals can emit approximately 105 biological

droplets per sneeze, all of which can form bioaerosols.49,50 Combined with the fact that the site is in an indoor environment with poor air

circulation, high bacteria and Enterobacteria concentrations were detected, i.e., 125609 G 467 CFU/m3 and 4167 G 592 CFU/m3,

respectively.

In addition, the fungi concentration at the A-ER site was only 2105 G 10 CFU/m3, which may have been due to the timely change of

bedding in this breeding area, reducing bioaerosol formation, as fungi are associated with organic material decomposition. This has also

been demonstrated in studies where bedding materials can accumulate manure, are the best carrier for fungal attachment and growth,

and are an important source of fungal bioaerosols in animal housing.51,52

Figure 4. Distribution of potentially pathogenic bacteria in bioaerosols in rural scattered farming areas, ranked at the level of the top 25 bacterial

genera in terms of relative abundance

A: autumn; W: winter.
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Bioaerosol particles sized from 2.1 to 4.7 mmcan enter the human trachea and bronchus, and those with a particle size ranging from 0.65 to

2.1 mm can freely enter human alveoli and cause human respiratory infections, posing a threat to human health.53–56

Analysis of the particle size distribution characteristics showed that most of the bacterial and fungal bioaerosol particle size distributions

were dominated by those sized >3.3 mm, which is similar to that reported in previous studies.6,15,57 This parameter can be influenced by

various factors, such as the mode of aerosolization and hygroscopicity of the particles, animal activity, ventilation, and bedding mate-

rials.50,58,59 Larger cell particles may form clumps of cells that can avoid detection by the immune system of the host, and large cell clumps

are also favorable for evading phagocytosis.60

One study found that results from stables were similar to those detected in cattle yards (A-WU) in this study. Stables had the highest pro-

portion of 0.65–2.1 mm size bacterial aerosols.13 At the A-WU site, the particle size distribution of 0.65–1.1 mm accounted for up to 83%, which

may have been mainly related to the weather conditions on the sampling day, whereby minor rainfall at the sampling time can cause rapid

deposition of large-size bioaerosols, resulting in a high percentage of particles sized from 0.65 to 1.1 mm.61 Unlike the present study, however,

some researchers have found that airborne fungi comprise a low percentage of particulate matter (<4.7 mm) in pig barns, similar to the envi-

ronment in which humans live and work.44

In addition, the percentageof respirable particle sizewas higher in autumn than in winter, whichmay have beenmainly due to the effects of

humidity and wind speed on particle size. Based on the measured meteorological data (Table 1), it was found that in autumn, with high

humidity and low wind speeds, large particles with high moisture content were less susceptible to being blown up by wind speeds. Whereas,

in winter, with low humidity and high wind speed, large-size particles with low water content are easily blown up by the carrying effect of the

wind, and thus a relatively high percentage of large-size particles are detected.62 Finer particles are more likely to enter deeper into the

human respiratory tract and pose a health risk,54,63 which may cause some degree of pulmonary effects on farmers.7

In addition to the concentration and particle size distribution,microbial community composition is also an important feature of bioaerosols

in rural scattered farming areas.17 This study found zoonotic pathogens including Bacillus, Campylobacter, Alternaria, Aspergillus, and Peni-

cillium.64–66 Among these, Bacillus causes cutaneous, abdominal, or gastrointestinal anthrax in humans and livestock.64 Campylobacter

causes reproductive and intestinal infections in livestock and poultry, and may also cause abortion and infertile fetuses in cattle and sheep;

it can also infect humans, causing miscarriage, premature births, septicemia, and similar symptoms.67,68 It has been demonstrated that do-

mestic animals serve as the largest potential reservoir of zoonotic viral diseases.69 The relative abundance of zoonotic pathogens at the A-HU,

W-HU, A-WU, A-WU*, A-ER, A-ER*, W-ER, and A-XI sites was 4.85%, 3.58%, 5.96%, 10.07%, 2.72%, 5.23%, 4.87%, and 2.44%, respectively.

Figure 5. Distribution of all potentially pathogenic fungi in rural scattered farming areas aerosol in order of relative abundance

A: autumn; W: winter.
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In addition to zoonotic pathogens, other disease-causing bacteria that have been detected at the top of the relative abundance list can

also cause serious health effects. Corynebacterium can parasitize the human nasal cavity, throat, conjunctiva, and skin, and is generally non-

pathogenic and mostly conditionally pathogenic.70 Cladosporium is a mycobacterium capable of producing conidia, which can cause wide-

spread allergic reactions in patients with asthma or similar respiratory diseases, and long-term exposure may lead to immune system degen-

eration.71,72 Regarding epidemiological results, it has been shown that children living or attending school near farms are at increased risk of

developing asthma.4 Infection by Aspergillus usually occurs in immunocompromised hosts, but sometimes affects immunocompetent pop-

ulations, especially patients with acute illnesses who are treated in intensive care units (ICUs), and less commonly in patients with chronic

illnesses.73

At the same sites (Figure 8), this phenomenon of higher numbers of shared genera in winter than in autumn may be mainly due to insuf-

ficient indoor ventilation in winter.74,75 This suggested that scattered farming in the yard can affect the indoor environment of residents. How-

ever, the lack of significant effect on the number of shared fungal genera is due to the fact that fungi are usually associated with the decom-

position of organic matter and the atmosphere contains a large number of naturally occurring fungi.76 Nevertheless, it is recommended that

livestock farming areas should be located at least 200 m from residential areas.77

Agricultural activities or livestock rearing may be associated with higher indoor bioaerosol concentrations in rural areas.78 Rural indoor

bioaerosol concentrations were similar to those found in dormitory environments and urban courtyards.79,80 This study was conducted in rural

areas of Northwest China, where the majority of residents were elderly with poor health and preschool children with imperfect immune sys-

tems. These individuals have limited abilities to prevent and control potentially pathogenic bacteria. This was combined with the unreason-

able planning of breeding areas,most of whichwere chosen to be very close to residential areas (<100m), whichmay have resulted in elevated

levels of potentially pathogenic microorganisms in the residential indoor environments of residents as they adhere to the clothes of workers,

the soles of their shoes, the tools they use, or are carried indoors by air currents. This could lead to elevated health hazards for the elderly and

children living indoors.6,13,34 These genera pose a much greater risk of allergies and respiratory diseases in the elderly and children than in

adults.81–84

This study shows that scattered livestock farming in rural areas does pose a potential health risk to the population, and that this potential

risk can be further exacerbated if reasonable and effective controls are not put in place. Notably, operators in England are required to carry

out targeted preventative measures if the farming area is within 100 m of a sensitive human receptor (such as a home or workplace).4

Currently, the quantitative microbial risk assessment method is used for bioaerosol risk assessment.54 Respiratory exposure is only one

route, and the risk of dermal exposure is also possible; the risk of these exposures is dose-dependent and not limited to the respiration

rate.85 Some elderly people or children may be exposed via dermal contact for longer time periods, and the exposure risk may be indirectly

increased by the increased frequency of child interactions, resulting in increased concentrations of pathogenic microorganisms deposited on

the upper and lower extremities of the accompanying elderly person, as well as on the inside of the arm. This, combined with differences in

physical fitness, may lead to a more complex risk assessment that requires more in-depth studies.

Conclusions and prospects

Based on our study of bioaerosol characteristics in scattered farming areas in rural Northwest China, the following conclusions were drawn.

1. The indoor living environment under human‒livestock cohabitation was affected by air transmission or by pathogens carried by peo-

ple. Bacteria, fungi, and Enterobacteria concentrations in the indoor living environment with scattered farming in the yard were 5476G

591 CFU/m3, 3384 G 1789 CFU/m3, and 441 G 59 CFU/m3, respectively; those in the indoor living environment without scattered

farming in the yard were 2712 G 514 CFU/m3, 819 G 123 CFU/m3, and 24 G 0 CFU/m3, respectively.

2. Bioaerosols with a small particle size (<3.3 mm) and carrying a variety of pathogenic microorganisms (87 species) from rural scattered

farming areas posed a potential health risk to residents in economically disadvantaged and poorly housed rural areas in Northwest

China, particularly the elderly and children.

Table 1. Meteorological parameters measured during sampling

Sampling point Sample ID T (�C) RH (%) BP (kPa) WS (m/s) TSP (mg/m3)

Hohhot A-HU 22.88 49.15 89.22 1.65 97.09

W-HU 4.34 33.80 89.88 2.00 1044.62

Ulanqab A-WU 24.44 67.80 86.19 2.03 106.50

A-WU* 24.56 67.03 83.46 0.93 94.60

Ordos A-ER 23.18 58.50 86.09 0.01 1816.36

A-ER* 21.32 60.35 86.08 4.30 103.26

W-ER �7.57 41.50 87.16 2.35 241.49

Xi’an A-XI 30.76 44.70 91.91 0.50 143.08

A: autumn; W: winter.
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Having obtained the above conclusions from the analysis, we provide the following outlook for future research.

a. At present, the lack of data on pathogenic microorganisms in rural scattered farming environments hinders comprehensive risk assess-

ment, and risk assessment methods applicable to bioaerosols in rural scattered farming areas should be established as a matter of

urgency in future research.

b. In the future, it is important to increase awareness among farmers regarding the potential risks associated with bioaerosols released

during the process of rural scattered farming. Relevant governmental departments should strengthen their educational efforts

regarding the management of rural decentralized farming, so that farmers can communicate more with each other, exchange ideas,

and share good experiences. These efforts will help tomitigate the potential impacts of bioaerosols on human and livestock health and

reduce environmental pollution in rural areas.

Limitation of the study

Although the above findings were obtained from a field study in a scattered farming area in rural China, the study still has some shortcomings.

They are mainly in the assessment methods, including the number of sample sites selected, the location covered by the sampling sites, and

the time of sampling site selection.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

Figure 6. Influences of potentially pathogenic bacterial genera in bioaerosols from rural scattered farming areas

Influencing factors of potentially pathogenic (A) bacterial and (B) fungal genera in bioaerosols from rural scattered farming areas, and the relatively top-ranked

genera selected for RDA analysis. A: autumn; W: winter.

Figure 7. NMDS-based analysis of bioaerosol variability in rural scattered farming areas

Variability of (A) bacteria and (B) fungi in bioaerosols in rural scattered farming areas based on NMDS analysis.
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Figure 9. Sources of bacteria and fungi in bioaerosols in rural scattered farming areas
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yunping Han

(yphan@rcees.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Raw reads were deposited into the NCBI Sequence Read Archive database (Accession Number: SUB13041698) and are publicly avail-

able as of the date of publication.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
� This paper does not report original code.

METHOD DETAILS

Study sites

This studywas conducted in rural areas of four cities in two provinces inNorthwest China: Erdos, Hohhot, andUlanchab in InnerMongolia, and

Xi’an in Shaanxi Province. Figure 2 shows the specific location and type of livestock farming in the surveyed areas, and the abbreviations used

for sampling points. Field surveys were conducted in autumn (September) and winter (December), 2022, to reflect the seasonal effects on the

bioaerosol characteristics generated by livestock and poultry farming patterns in rural Northwest China. This study also measured microbial

profiles in dwellings in agricultural areas during different seasons to assess the potential impact of rural livestock production processes on

indoor environments. Finally, a site less influenced by external environmental factors was selected tomeasure the background concentrations

in the village.

Meteorological parameters were determined during sample collection using portable instruments. Temperature, relative humidity and

barometric pressure were monitored using a temperature and humidity monitor (LTP-202, Longtuo Instruments, China), wind speed was

monitored using a portable anemometer (PH-1, Longtuo Instruments, China), and particulate matter concentration was monitored using a

particulate matter sampler (JCH-120F, JuChuang, Qingdao, China). The detailed monitoring results are shown in Table 1.

Bioaerosol collection

Total culturable bacteria, fungi, and Enterobacteria were collected using an aerodynamic cut size of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65-mm diam-

eter Anderson six-stage impingement sampler (228–9530 K, SKC Gulf Coast Inc. USA) at a flow rate of 28.3 L/min for 3 min to allow airborne

microorganisms for culture.86,87 Total bacteria and fungi were collected using nutrient and Sabouraud mediums, respectively, and incubated

at 36G 1�C for 24–48 h and then at 20�C for 48–72 h.63,88 In addition to total bacteria and fungi, the study focused on Enterobacteria, which

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Bacteria Rural environmental conditions N/A

Fungi Rural environmental conditions N/A

Chemicals, peptides, and recombinant proteins

MO-BIO Power Soil DNA Isolation Kit Shenzhen Anbisheng Technology Co. N/A

Deposited data

original sequence NCBI Sequence Read Archive database SUB13041698

Software and algorithms

PRIMER 7.0 Han, Y.P. (2020) N/A

R The R Project for Statistical

Computing

https://github.com/danknights/

sourcetracker/
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increase with human age and are consistently observed in patients withmetabolic diseases.23 Enterobacteria were collected usingMcConkey

medium and incubated at 36 G 1�C for 24–48 h.86,89 Three replicate samplings were performed at each livestock breeding site and micro-

organisms were collected simultaneously at all sites. Finally, the results of the six-stage Andersen impactor were processed using the positive

pore correction method.90 A total of 864 culturable samples were obtained.

A particulate sampler (JCH-120F, JuChuang, Qingdao, China) was used to collect total suspended particulate matter (TSPs) at a flow rate

of 100 L/min. The sampling time was set to 8 h; TSPs were collected on the surface of a quartz membrane (90-mm diameter).91 Cross-contam-

ination was avoided by strict control of the environment and handling procedures during preparation, collection and preservation.92 A total of

13 TSP samples were collected, including 8 samples from livestock breeding areas and 5 samples from living rooms. The collected quartz

membranes were weighed and calculated to obtain the TSP concentration at the sampling sites.93 Subsequently, the quartz membranes

were cut and cleaned with sterile deionized water. A mixture of small enriched membranes with each sample was centrifuged at 200 3 g

for 3 h at 4�C and re-enriched using 0.22-mm super polyethersulfone (PES) membranes for microbiological analysis.94

Microbial analysis

DNAextractionwas performedon themicrobial enrichments that had undergone PES enrichment using anMO-BIOPower Soil DNA Isolation

Kit. The DNA purity and mass concentration were measured by microspectrophotometry.95 Bacterial and fungal amplifications were per-

formed in three replicates using primers 338F/806R and 0817F/1196R, respectively; the bacterial amplification regions were the V3 and V4

regions of 16S rRNA, and the fungal amplification region was the ITS1 region of 18S rRNA.96–98 High-throughput sequencing was performed

using the Illumina Miseq PE300 platform (Illumina, San Diego, USA).

Statistical analysis

Heatmaps show the species classification of bacteria and fungi among the dominant potentially pathogenic bacteria in bioaerosol samples

from livestock and poultry farming areas. Non-parametric multidimensional statistical analysis (NMDS) retains the rank order of differences

between sample pairs based on the rank of the sample two-by-two distance, with a greater distance between sample pairs indicating greater

variability.

Source tracking of aerosols in livestock farming areas was performed using the source tracker in R (https://github.com/danknights/

sourcetracker/), a statistical method based on Bayes’ theorem for analyzing potential aerosol sources.30

QUANTIFICATION AND STATISTICAL ANALYSIS

Appropriate statistical analyses were chosen depending on the experimental setting, number of replicates and type of data. In this study,

heatmaps were constructed and NMDS analyses were performed using PRIMER 7.0 software.86 Source tracking of aerosols in livestock

farming areas was performed using the source tracker in R.30 For the NMDS two-dimensional analyses, it is usually considered to have

some explanatory significance when stairstress <0.2; when stairstress <0.1, it can be considered to be a good ordering; and when stairstress

<0.05, it is well represented.
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