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Abstract
The understanding of algal phylogeny is being impeded by an unknown number of events

of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis.

Through these events, previously heterotrophic eukaryotes developed photosynthesis and

acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in

the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two loca-

tions (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain

nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plas-

tid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from

a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a pri-

mary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-

encoded and one plastid-encoded subunits. These properties of ACCase provide the poten-

tial to inform on the phylogenetic relationships of hosts and their plastids, allowing different

hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicom-

plexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally

been grouped together as Chromalveolata, forming the red lineage. However, recent

genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhi-

zaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and

cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO),

Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for

which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase

strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with

the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase

based, phylogenetic relationships suggest that the plastidial homomeric ACCase was

acquired by the Haptophyta, Cryptophyta and SAR, before the photosynthetic Rhizaria

acquired their green plastid. Additionally, plastidial ACCase was derived by HGT from an

ancestor or relative of the Prasinophyceae and not by duplication of cytosolic ACCase.
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Introduction
Entering into an endosymbiotic relationship, in the form of an internal mutualist, offers the
evolutionary advantage of gaining access to new biochemical pathways, resulting in increased
competitiveness [1]. These endosymbiotic relationships provide many advantages and have
shaped the world we know to a high degree. For example, the endosymbiosis between cnidari-
ans and dinoflagellates has allowed corals to use the photosynthetic capacity of the endosymbi-
ont to obtain additional energy. Of even greater importance were the more permanent primary
endosymbiotic events which led to the evolution of mitochondria and chloroplasts (plastids) as
organelles through the endosymbiosis of an alpha-proteobacterium and a cyanobacterium,
respectively, enabling eukaryotes to prosper in an oxygen enriched atmosphere and to assimi-
late inorganic carbon through oxygenic photosynthesis [1]. Further endosymbiotic events
involved the secondary endosymbiosis of a primary plastid containing photosynthetic eukary-
ote by a heterotrophic eukaryotic organism, leading to a diversification of photosynthesizing
organisms containing secondary plastids [2]. The successful complete incorporation of an
endosymbiont as an organelle requires the transfer of genes from the endosymbiont genome to
the genome of the host, called endosymbiotic gene transfer. Furthermore, additional genes can
be acquired through horizontal gene transfer from another organism or through gene duplica-
tion within an organism. This acquisition of genes by different methods from a variety of
sources complicates the analysis of the evolutionary history of organisms and their genes. Ace-
tyl-CoA carboxylase (ACCase) is such a gene with a complicated history that has not been
investigated previously.

ACCase is a key enzyme involved in the highly conserved fatty acid synthesis pathway. Two
forms of ACCase exist, the multi-subunit, prokaryotic, heteromeric form and the multi-
domain, eukaryotic, homomeric form. The heteromeric form of ACCase is found in the cytosol
of all prokaryotes (Table 1). In non-photosynthetic eukaryotes, the fatty acid de novo synthesis
occurs in the cytosol and is facilitated by the nucleus encoded, homomeric ACCase (cytosolic
ACCase) (Table 1). The de novo synthesis of fatty acids in organisms containing a plastid
occurs in the plastid instead of the cytosol [2]. The plastids of organisms that arose from the
primary endosymbiotic event (green and red algae, and plants) contain heteromeric ACCase,
derived from the bacterial ancestor of the plastid (Table 1). Interestingly, there are two excep-
tions to this, the green algal group Prasinophyceae and certain plants (mainly the true grasses
Poaceae), which contain a nucleus encoded homomeric ACCase in their plastids (plastidial
ACCase) (Table 1, [2]). In contrast to the heteromeric ACCase containing primary plastids, all
investigated organisms with secondary or tertiary plastids of eukaryotic origin contain a
nucleus encoded, homomeric ACCase in their plastid (Table 1, [2]). In the following manu-
script, cytosolic ACCase refers to nucleus encoded, homomeric ACCase expressed in the

Table 1. Gene and enzyme location of heteromeric and homomeric ACCases in prokaryotes, eukaryotes and plastid-containing eukaryotes
(based on [2]).

Heteromeric ACCase Homomeric ACCase

Gene location Enzyme
location

Gene
location

Enzyme
location

Prokaryotes Nucleoid Cytosol - -

Non-plastid containing eukaryotes - - Nucleus Cytosol

Eukaryotes containing a plastid derived from primary
endosymbiosis

Nucleus & plastidial
genome

Plastid Nucleus Cytosol

Eukaryotes containing a plastid derived from secondary or tertiary
endosymbiosis

- - Nucleus Cytosol &
Plastid

doi:10.1371/journal.pone.0131099.t001
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cytosol, while plastidial ACCase refers to nucleus encoded, homomeric ACCase expressed in
the plastid.

The plastidial heteromeric form of ACCase is clearly derived from the original cyanobacter-
ial endosymbiont. Conversely, the origin of the plastid targeted homomeric form of ACCase in
algae with secondary plastids is currently unknown. The three possible hypotheses on how the
plastidial homomeric ACCase was acquired are: 1) endosymbiotic gene transfer from the cyto-
solic ACCase of the endosymbiont, 2) duplicated of the cytosolic ACCase from the host, 3) hor-
izontal gene transfer from another organism. The first step in assessing these hypotheses is to
place them into context with algal phylogeny.

Eukaryotic life is currently divided into six major supergroups, including Opisthokonta,
Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata and Excavata [3,4], of which the last
four contain photosynthetic members. Endosymbiotic events were a driving factor in the evo-
lution and diversification of photosynthetic organisms, especially algae [5]. From a parsimoni-
ous point of view, endosymbiotic events that successfully give rise to organelles are considered
to be rare due to their complexity [6]. However, the observed algal diversity is difficult to
explain in the most parsimonious way, and plastid diversity points to at least five endosymbi-
otic events, not including possible multiple endosymbiotic events in Dinoflagellata.

The Archaeplastida include the Viridiplantae (land plants and green algae), the Rhodophyta
(red algae) and the Glaucocystophyta (a small group of freshwater microalgae) [7], all contain-
ing plastids surrounded by two envelope membranes. There is strong evidence that the plastids
of these three groups evolved from a single primary endosymbiotic event involving a cyanobac-
terium [6]. Even though the primary endosymbiosis of a cyanobacterium is considered to only
have occurred once, there is an euglyphid testate amoeba which has recently (in an evolution-
ary sense) taken up a cyanobacterium in what seems to be an independent primary endosymbi-
otic event (reviewed in [8]). In secondary endosymbiosis, a heterotrophic eukaryote took up a
photosynthetic eukaryote containing a plastid derived from primary endosymbiosis. At least
three secondary endosymbiotic events gave rise to a large number of highly diverse organisms
with plastids derived either from a red or green alga. The supergroup Chromalveolata, first pro-
posed by Cavalier-Smith [9], is composed of the red lineage joining the former kingdom Chro-
mista (containing the Cryptophyta, Haptophyta and Stramenopiles) and infrakingdom
Alveolata (comprising of Apicomplexa, Chromerida, Ciliophora and Dinoflagellata). In con-
trast, Chlorarachniophyta (Rhizaria) and Euglophyta (Excavata) have taken up their plastids in
two independent endosymbiotic events from an ancestral core Chlorophyta (Ulvophyceae-Tre-
buxiophyceae-Chlorophyceae) and a Prasinophyceae, respectively [10,11]. This is supported
by the former host organisms of Rhizaria and Excavata not being closely related, while there is
a close phylogenetic relationship between all Chromalveolata [8,12]. If the plastidial homo-
meric ACCase shows a close relationship with the cytosolic homomeric ACCase of the host
organism, it was likely derived from a gene duplication event. Conversely, a close relationship
to the cytosolic ACCase of the endosymbiont suggests endosymbiotic gene transfer. Lastly, if
there is no relationship to either, the gene was most likely derived through horizontal gene
transfer.

Recently, the support for the Chromalveolata grouping has been waning [6]. While there is
strong evidence that all Chromalveolates contain a red plastid from a secondary endosymbiotic
event with a red alga, it is still controversial how many endosymbiotic events occurred [8,13].
Newer phylogenetic analyses group the Stramenopiles and Alveolata together with the Rhizaria
(abbreviated as SAR), with Haptophyta as a sister group and the Cryptophyta being more
closely related to the Viridiplantae [14]. This provides additional evidence against the mono-
phyly of the Chromalveolata. In this case, a close relationship of the cytosolic homomeric
ACCase sequences between the SAR species would support this grouping. Furthermore, a close
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relationship of the plastidial homomeric ACCase in the SAR species would support the acquisi-
tion and loss of a red plastid before the divergence of the Rhizaria. To further complicate mat-
ters, genes that are phylogenetically related to green algae have been found in diatoms
(Stramenopile) [15], Chromera velia (Chromerida) [16] and numerous species of Strameno-
pile, Haptophyta and Cryptophyta [17,18]. However, a hypothesis that the red lineage con-
tained an ancestral cryptic plastid of green origin has largely been refuted [12,19]. The
presence of green algal genes in the Chromalveolata are mostly explained by either sample bias
[19,20] or horizontal gene transfer [6] and their presence cannot be taken as proof for endo-
symbiotic gene transfer. Nevertheless, the single origin of Chromalveolata cannot explain all
the findings of recent phylogenetic studies and less parsimonious solutions, including second-
ary and tertiary endosymbiosis, are invoked to explain the inconsistencies. For example, a sin-
gle secondary endosymbiotic event was proposed, where an ancestral Cryptophyte took up a
red alga, followed by a tertiary event that led to the Haptophytes, Stramenopiles and Alveolata
[6]. This hypothesis also offers an explanation for the occurrence of heterotrophic members in
the Chromalveolata, avoiding assumptions of multiple plastid losses [13].

In the present study, ACCase sequences were isolated from Isochyris aff. galbana (Hapto-
phyta), Chromera velia (Chromerida) and Nannochloropsis oculata (Eustigmatophyceae), rep-
resenting three taxonomic groups for which ACCase sequences were not yet well represented.
These new sequences were incorporated with publicly available ACCase sequences to exhaus-
tively examine the phylogeny of the plastidial and cytosolic form of homomeric ACCase and to
integrate these findings with our current taxonomic understanding of algae. Phylogenetic anal-
yses based on cytosolic ACCase were used to add information to the relationship of the hosts,
while information of the plastidial ACCase aids to further unravel the origin of genes encoding
enzymes targeted at plastids derived from secondary/tertiary endosymbiosis.

Material and Methods
The sequencing and annotation of the acetyl-coA carboxylase genes for Isochrysis aff. galbana,
Chromera velia and Nannochloropsis oculata used in this study has been described previously
[21]. Sequence data for these sequences can be found in the GenBank data library under acces-
sion numbers: KF673096 to KF673101. The phylogenetic analysis was performed on amino
acid sequences. Sequences not produced for this study were obtained from NCBI (www.ncbi.
nlm.nih.gov) and JGI (genome.jgi-psf.org). Several partial ACCase sequences were excluded
from the alignment (notably plastidial ACCase from Emiliania huxleyi and Symbiodinium
Clade C and all sequences from Ectocarpus siliculosus). Accession numbers for the sequences
used can be found in the supplemental material (S1 Table).

Sequences were aligned with MUSCLE (version 3.6; [22]) in Geneious Pro. GBlocks (version
0.91b; molevol.cmima.csic.es/castresana/Gblocks.html; [23,24]) was used to eliminate diver-
gent regions and poorly aligned positions using standard settings. The resulting dimensions
(number of taxa x number of amino acid positions) for the alignments were 55 x 564. The
amino acid alignments are available on request. Models were tested and chosen with ProtTest
(version 3.2; darwin.uvigo.es/software/prottest3; [25]) to find the best fitting model with AIC,
using a maximum-likelihood (ML) starting tree. The most suitable model was LG+G+F. Bayes-
ian inference (BI) and ML analyses were performed.

ML trees were performed in PhyML (version 3.0; www.atgc-montpellier.fr/phyml; [26]),
using the models mentioned above with 4 rate categories, gamma estimated from the data and
2000 bootstraps.

Bayesian trees were performed in MrBayes (version 3.2; available from mrbayes.source-
forge.net; [27]) for 2�106 generations, running 4 chains in parallel (3 heated) with a sampling
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frequency of 2,500 and a diagnostic frequency of 25,000. A four-category gamma model was
used, as suggested by ProtTest, with the alpha parameter being estimated from the data during
the run. The aa models were set to “mixed” to let Mr. Bayes determine the most suitable model,
which was WAG+G. The average standard deviation of split frequencies was used to evaluate
the convergence of the sampled chains and a 25% burn-in fraction was chosen for each
analysis.

BI trees were used for the publication. FigTree (version 1.3.1; tree.bio.ed.ac.uk/software/fig-
tree) was used to display finished trees, which were midpoint rooted.

Results and Discussion
The Chromalveolate hypothesis is still hotly debated [6,28]. The traditional view fails to explain
recent genetic evidence (e.g. the relationship of the SAR species to the exclusion of the Hapto-
phyta and Cryptophyta), and the latest phylogenetic explanations invoke additional endosym-
biotic events to explain inconsistencies [6]. In order to unravel the phylogenetic relationship of
acetyl-CoA carboxylase (ACCase) between the different taxa, a phylogenetic consensus tree for
plastidial and cytosolic ACCase was constructed using the Bayesian Inference (BI) and Maxi-
mum Likelihood (ML) methods (Fig 1). This dataset included all algal sequences of ACCase

Fig 1. Phylogenetic consensus tree (MrBayes; WAG+G) based on 55 ACCase sequences and 564 amino acids positions.Cytosolic and plastidial
ACCase are indicated. Sequences produced in this study are shown in bold. Statistical support for internal nodes was determined by Bayesian inference
posterior probabilities (first, shown as % values) and bootstrap analysis for ML (second, Model LG+G+F). Only support values�50% are shown.

doi:10.1371/journal.pone.0131099.g001
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found on Genbank and JGI (accessed March 2013), to the exclusion of all the sequences of
Ectocarpus siliculosus, the plastidial sequence of Emiliania huxleyi and the cytosolic sequence
of one Toxoplasma gondii strain, which were incomplete and missed important binding
regions. The sequence for the cytosolic ACCase of Chromera velia was also in three fragments,
but included all four important binding regions (Table 2). Of the five major nodes (A to E),
nodes B to E were strongly supported (BI = 100%, ML� 99%), while node A was strongly sup-
ported by BI (BI = 100%, ML> 50%) (Fig 1). Node A, B, C and D contain cytosolic ACCase
only, with the exception of the plastidial ACCase from plants. Conversely, node E contains
mainly plastidial ACCase. Therefore, nodes A through D show the relationship of the hosts,
while node E provides information on the origin of the plastidial ACCase.

Node A represents a major clade consisting of cytosolic ACCase of the Chromerida, Api-
complexa and Stramenopiles and a Chlorarachniophyte (Rhizaria) (Fig 1). The other two
Chromalveolate taxa, Guillardia theta (Cryptophyta) and Emiliana huxleyi (Haptophyta),
form an exception and are located outside of the five nodes. Within the SAR cluster, the rela-
tionship between the Chromerid Chromera velia and the Apicomplexan Toxoplasma gondii is
well supported, and the more distant relationship with the Rhizarian Bigelowiella natans is
identified, while the Stramenopiles form their own sub-clade. Based on these results, the pro-
posed inclusion of the Stramenopiles, Alveolata and Rhizaria as SAR is supported, while the
Cryptophyte and the Haptophyte are more distantly related [29,30]. However, ACCase-based
phylogenies do not recover the close relationship of the Cryptophyte with the Archaeaplastida.

Node E contains all plastidial sequences of ACCase, with the exception of the land plants.
Here G. theta (Cryptophyta) is nested strongly within the SAR species. In contrast to the phy-
logeny of plastidial GAPDH [31], plastidial ACCase of the haptophyte Isochrysis galbana is
more basal to the SAR species, which agrees with a recent multi-gene study based on genomic
DNA [14]. Surprisingly, the Prasinophyceae, which contain a plastid derived from a primary
endosymbiotic event, are clustering strongly with the Chromalveolates, which contain a plastid
derived from either a secondary or tertiary endosymbiotic event (Fig 1). This relationship was
also identified using multi-gene analyses in Stramenopiles, Cryptophyta, and Haptophyta
[15,17], where a strong association of certain genes with the Prasinophyceae has been found.
This is in contrast to the true grasses, where an ancestral gene duplication event resulted in the
functional expression of a homomeric, plastidial ACCase, coupled with a loss of heteromeric
ACCase [32]. A separate gene duplication event, similar to the true grasses, occurred in the
ancestor of Arabidopsis thaliana, resulting in a plastid-targeted copy of homomeric ACCase,
which is expressed alongside the heteromeric ACCase, although at very low levels [32].

The close relationship between plastidial ACCases from SAR, Cryptophyta and Prasinophy-
ceae shown here can either be explained by horizontal or endosymbiotic gene transfer, while
gene duplication can be excluded as an explanation (Fig 1). This is in contrast to the replace-
ment of the bacterial GAPDH gene found in the plastids of Archaeplastida with a eukaryotic
GAPDH gene during the secondary endosymbiotic event that lead to the Apicomplexa, Rhodo-
phyta, Dinoflagellata, Stramenopiles, and Haptophyta [33]. The replacement occurred through
duplication of the cytosolic GAPDH, as is evident from the close phylogenetic relationship
between the cytosolic and plastidial GAPDH in these taxa [33]. The presence of a cryptic green
endosymbiont in the red lineage has been refuted [12,19], which makes an endosymbiotic gene
transfer of ACCase unlikely. The strong relationship of the plastidial ACCase between the SAR
species and the Prasinophyceae can therefore be explained by horizontal gene transfer from an
unidentified organism, which could either be a Prasinophyte or an unsequenced alga related to
the Prasinophyceae. The distant relationship of the cytosolic ACCase sequences of the SAR
and Prasinophytes, in contrast, indicates that the ancestral hosts were only distantly related
(Fig 1). The phylogenetic analysis of ACCase provides additional support for a serial secondary
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endosymbiotic event that gave rise to the green plastid containing Chlorarachniophyta (Rhi-
zaria) within the SAR, This requires the loss of the red algal plastid and regain of a green plastid
in the Chlorarachniophyta (see [6,12]). Even though this is less parsimonious, having acquired
a plastid once could make subsequent acquisitions of plastids easier, similar to the case of the
dinoflagellates [34].

A further point of interest in Node E is the clustering of the plastidial ACCases of C. velia
and T. gondii and the ACCases of Symbiodinium (Fig 1). This supports the close relationship
of C. velia with the Dinoflagellata and Apicomplexa [35]. Based on the α-CT binding motif, the
Symbiodinium sequences were identified as cytosolic, however, they cluster strongly with the
plastidial sequences of the SAR. Dinoflagellates are known to have complicated genomes,
which could make it difficult to determine the localisation of the ACCase. Given the close rela-
tionship of C. velia and apicomplexan parasites, plastidial ACCase could be a potential target
for drug development. Chromera velia could therefore be used as a substitute to screen com-
pounds for the treatment of apicomplexan parasites, since it is easier to cultivate as is not
dependent on a host [35]. ACCase inhibitors, often based on commercial herbicides acting on
plastidial ACCase in the true grasses, have been investigated as potential drugs to treat apicom-
plexan infections and have shown promise in the reduction of the parasite load [36,37]. How-
ever, not all inhibitors showed the same activity [38]. The latter could be due to differences in
the presence, localization and expression of ACCase between different species of apicomplexan
parasites making a "one-size-fits-all" solution unlikely [39]. Furthermore, apicomplexan para-
sites are only dependent on de novo synthesis of FAs during their liver life stage (schizonts),
while trophozoites (blood life cycle stage) are able to access plasma TAGs to supplement their
FA needs [39,40], therefore limiting FA synthesis-based treatments to the liver life stage.

Node B is well supported and consists of the cytosolic and plastidial ACCase sequences of
land plants and the cytosolic sequences of green algae (Fig 1). Within the land plants, the two
sequences of the moss Physcomitrella patens patens form a close relationship. Furthermore, the
plastidial and cytosolic ACCases of Arabidopsis thaliana form their own sub-clade, while the
plastidial and cytosolic ACCaces of the true grasses (Triticum urartu and Aegilops tauschii) are
clearly separated from each other, as well as from the sequences of A. thaliana. This demon-
strates that the plastidial and cytosolic ACCases in land plants are paralogous within the true
grasses and also within A. thaliana. Finally, the well supported node C consists of the cytosolic
sequences of the two red algal species, while node D shows a single clade consisting of the cyto-
solic ACCase of the more ancient marine green Prasinophyceae (Fig 1).

Conclusions
ACCase-based phylogenies can be used to investigate phylogenetic relationships in the highly
diverse algae. Expanding on a previous study on the presence of homomeric ACCase in plastids
derived from secondary/tertiary endosymbiosis [2], it is demonstrated here that the plastidial
homomeric ACCase in the Chromalveolata and Rhizaria was derived from an ancestor or
unsequenced relative of the green Prasinophyceae. Why the homomeric ACCase is preferred
over the heteromeric ACCase in algae containing a plastid derived from secondary endosymbi-
osis is unclear. The case of P. chromatophora shows that in a primary endosymbiotic event, the
heteromeric ACCase is preferred. However, during secondary symbiosis, targeting a single pro-
tein (i.e. homomeric ACCase) rather than several subunit peptides (i.e. heteromeric ACCase)
to the plastid may be preferred [41]. Alternatively, there could be a general preference of
replacing genes encoding plastid targeted enzymes present in the ancestor of the endosymbiont
during secondary endosymbiosis, if other alternatives to the genes are available. This can be
seen in the cases of ACCase (present study), glyceraldehyde-3-phosphate dehydrogenase [33]
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and fructose-1,6-bisphosphate aldolase [42] in the investigated SAR species, Haptophyta and
Cryptophyta. In the case of ACCase, the plastidial ACCase sequence phylogenies cluster the
Prasinophyceae with the SAR group, Haptophyta and Cryptophyta to the exclusion of the cyto-
solic ACCase, suggesting horizontal gene transfer. Why a new gene was acquired through HGT
gene transfer, rather than gene duplication within the host remains to be elucidated.

The distinct lack of genomic data for many Phyla impedes the determination of the origin
of genes that have been acquired through horizontal gene transfer. For example, the paraphy-
letic class Prasinophyceae, which are consistently associated with Chromalveolates, are cur-
rently only represented by the order Mamiellales (Micromonas sp., Ostreococcus sp. and
Bathyoccus sp.). Information from the intervening green lineages may reveal that any seem-
ingly unique ancestral acquisition of genes in the Chromalveolata are actually independently
derived from multiple HGT events in different Chromalveolate lineages from intervening
green lineages which have not yet been sequenced [43]. As more complete genome sequences
become available, the complex picture of algal endosymbiosis will become clearer and the
uncertainty about horizontal versus endosymbiotic gene transfer will be resolved for more
genes.

Supporting Information
S1 Table. Homomeric ACCase sequence details.
(PDF)
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