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ABSTRACT Coccidiosis, caused by parasites of the
genus Eimeria, is one of the most widespread and
economically detrimental diseases in the global poultry
industry. Because themerozoite stage ofEimeria tenella
is immunologically vulnerable, motile, and functionally
important for the parasites, the proteins expressed in
these stages are considered to be potentially immuno-
protective antigens, especially the secreted antigens and
surface antigens. Here, we detected a previously un-
identified MIC2-associated protein (Et-M2AP) from E.
tenella and determined its localization. An immunoflu-
orescence assay revealed that Et-M2AP was distributed
in the apical part of second generation merozoites and
sporozoites. In addition, an expression profile analysis
revealed that the transcriptional level of Et-M2AP is
significantly higher in the merozoite stage. To assess the
potential of Et-M2AP protein as a coccidiosis vaccine,
we expressed recombinant Et-M2AP (rEt-M2AP) and
compared the immune protective efficacy of rEt-M2AP
with 3 surface antigens that are highly expressed by
merozoites (rEt-SAG23, rEt-SAG16, and rEt-SAG2
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proteins). The immune protective efficacy of these
vaccine candidates was assessed based on survival rate,
lesion score, BW gain, relative BW gain, and oocyst
output. The results show that the survival rate was 90%,
which are significantly higher than those in the chal-
lenge control group. The BW gain rate was 42%
(P , 0.001) in rEt-M2AP–immunized chickens, which
are significantly higher than those in the challenge
control group and rEt-SAG23, rEt-SAG16, and rEt-
SAG2 proteins–immunized chickens. In addition,
chickens immunized with rEt-M2AP (88% oocyst
output decrease rate, P , 0.001) had the least oocyst
output, compared with those immunized with rEt-
SAG16 (59.2% oocyst output decrease rate,
P , 0.001), rEt-SAG23 (22% oocyst output decrease
rate), and rEt-SAG2 (1.36% oocyst output decrease
rate). These results demonstrate that rEt-M2AP
provided effective protection against challenge with E.
tenella, suggesting that rEt-M2AP is a promising
candidate antigen gene for development as a coccidiosis
vaccine.
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INTRODUCTION

Eimeria species, protozoan parasites that can infect
chickens, cause a considerable disease burden world-
wide (Clark et al., 2017). Eimeria tenella is highly
pathogenic and is one of the most prevalent species
of Eimeria infecting chickens (Witcombe and Smith,
2014). E. tenella infection can result in severe lesions
of the caeca, BW loss, hemorrhagic diarrhea, and
death (Witcombe and Smith, 2014; Song et al.,
2017). Efforts to control Eimeria infection have pre-
dominantly relied on anticoccidial drugs. However,
the rise of drug resistance and public pressure for re-
strictions on chemicals used in foodborne animal con-
tinues to drive the development of anticoccidial
vaccines (Williams, 2002; Blake and Tomley, 2014;
Dong et al., 2016). Therefore, there is an urgent need
to develop a safe and effective vaccine against avian
coccidiosis (Blake et al., 2017; Lin et al., 2017;
Venkatas and Adeleke, 2019).

E. tenella is an obligate intracellular apicomplexan
parasite, which contains secretory organelles such as
rhoptries, micronemes, and dense granules. These
secretory organelles produce a large number of secretory
proteins that mediate parasite invasion and survival
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(Lebrun et al., 2014). The surface antigens (SAG) and
secreted proteins from these secretory organelles func-
tion in attachment and invasion during host–parasite
interaction, so they are recognized as potential vaccine
antigens (Zhao et al., 2020). In addition, the extracel-
lular stages of E. tenella merozoites are immunologically
vulnerable, motile, and functionally important for the
parasite life cycle (Rafiqi et al., 2018). Thus, screening
antigens that are highly expressed in the merozoite stage
(especially surface antigens and secreted antigens) is
a reasonable approach for anticoccidial vaccine
development (Clark et al., 2016).

Several recent studies have investigated the potential
of merozoite proteins for development into a coccidiosis
subunit vaccine. Profilin is a conserved surface antigen
of both merozoites and sporozoites that can induce
cell-mediated immunity against live Eimeria stages
(Tang et al., 2018). Profilin also induced protective
immunity against E. tenella in chickens (Lillehoj et al.,
2017), both when used as an anticoccidial vaccine candi-
date and when applied as an adjuvant (Gowen et al.,
2006; Lee et al., 2011; Lillehoj et al., 2017; Bussi�ere
et al., 2018). EtSAG4 is specifically expressed in the
second-generation merozoite stage of E. tenella
(Tabar�es et al., 2004), and it was able to protect chickens
against an E. tenella challenge; thus, EtSAG4might be a
candidate gene for use in a vaccine against coccidiosis
(Tabar�es et al., 2004; Zhao et al., 2020). In the past
few decades, numerous microneme proteins such as
MIC1, MIC2, and MIC4 have also been evaluated;
however, all of these proteins only partially protected
against coccidiosis (Du et al., 2005; Subramanian
et al., 2008; Chen et al., 2018; Yan et al., 2018).

Here, we expressed a total of 4 E. tenella antigens, 1
secreted antigen and 3 surface antigens, all of which
are highly expressed during the merozoite stage of this
parasite. The protective efficacy of each antigen was
evaluated via subsequent challenge with E. tenella.
MATERIALS AND METHODS

Ethics Statement

Animal experiments in this study was approved by the
Beijing Administration Committee of Laboratory
Animals and performed in accordance with the China
Agricultural University Institutional Animal Care and
Use Committee guidelines (approval number: AW05(7)
069102-2).
Parasites and Animals

E. tenella was maintained and propagated in the Key
Laboratory of Animal Parasitology (Beijing City,
China) using 2-wk-old specific pathogen free chickens.
The oocysts were collected and purified as previously
described (Long et al., 1976). Sporozoites andmerozoites
were also purified as previously described (Hu et al.,
2018). The chickens and BALB/c mice were purchased
from Merial Animal Health Co., Ltd. (Beijing, China),
raised in a coccidia-free environment, and provided
with sterilized food and clean water ad libitum.

Bioinformatic Analysis

The nucleotide sequences and amino acid sequences of
Et-M2AP, Et-SAG23, Et-SAG16, and Et-SAG2
were downloaded from ToxoDB (ETH_00006930,
ETH_00008670, ETH_00013140, and ETH_00034890,
respectively) (https://toxodb.org/toxo/). The amino
acid sequence alignment was performed using the Basic
Local Alignment Search Tool in National Center for
Biotechnology Information (https://blast.ncbi.nlm.nih.
gov/Blast.cgi). Transcriptional level data for Et-M2AP,
Et-SAG23, Et-SAG16, and Et-SAG2 were obtained
from the ToxoDB uploaded by Walker et al (Walker
et al., 2015). The signal peptide was analyzed using the
SignalP 4.0 server (http://www.cbs.dtu.dk/services/
SignalP/).

Cloning, Expression, and Purification of
Et-M2AP

The full coding sequence of Et-M2AP without the
signal peptide sequence was amplified from merozoites
cDNA. The plasmid pET28a (1) was linearized by
PCR.The two fragments were ligated using seamless clon-
ing (Vazyme Biotech, Co., Ltd., Nanjing) and
transformed into Escherichia coli Transetta (DE3) cells
(TransGen, Beijing). The recombinant Et-M2AP
protein (rEt-M2AP) was expressed and purified using a
Ni21 affinity column following the manufacturer’s
protocol. The amplification, expression, and purification
procedures used for rEt-SAG23, rEt-SAG2, and rEt-
SAG16 were the same as those previously used for rEt-
M2AP.

Sera

Negative sera were obtained from coccidia-free specific
pathogen free chickens. Positive sera against E. tenella
were collected from SFP chickens that were artificially
infected with E. tenella. Briefly, each chicken was immu-
nized with 2000 E. tenella oocysts orally and immunized
again 2 wk later. Polyclonal antibody against rEt-M2AP
was produced as previously described (Li et al., 2016).
Briefly, BALB/c mice were immunized subcutaneously
with rEt-M2AP emulsified in Freund’s complete
adjuvant (Sigma, St Louis, MO) with 3 boosters. The
final vaccination was used Freund’s incomplete adjuvant
(Sigma, St Louis, MO). After final vaccination, the titers
of polyclonal antibodies were examined by ELISA using
rEt-M2AP as the antigen and purified using HiTrap
Protein A affinity chromatography (Bio-Rad).

Immunoblotting and Immunofluorescence
Assay

Purified rEt-M2AP, rEt-SAG23, rEt-SAG16, and rEt-
SAG2 proteins were separated via 12% SDS-PAGE and
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transferred onto a nitrocellulose membrane (Millipore).
The membrane was incubated with chicken serum
against E. tenella (1:500) and horseradish peroxidase–
conjugated goat anti-chicken IgY (Bio-Rad) for 1 h at
37�C. The membrane was then reacted with chemilumi-
nescence reagents (CoWin Biotech Co., Ltd., Beijing)
to observe the protein bands. Healthy (preimmune)
mouse serum was used as a control.
The immunofluorescence assay was performed as

previously described with several improvements (Liu
et al., 2018). Briefly, the purified sporozoites and
merozoites were adhered to coverslips precoated with
poly-lysine, fixed with 4% (w/v) paraformaldehyde, and
permeabilized with 0.1% Triton. The coverslips were
then blocked with 3% BSA and incubated with primary
mouse anti-Et-M2AP (1:200) for 1 h at 37�C. After
washing, the coverslips were treated with fluorescein iso-
thiocyanate- orCy3-conjugated antibodies used for label-
ing (Sigma) and Hoechst 33,258 (Sigma). The images
were obtained using a Leica confocal microscope system
(TCS SP52; Leica, Germany).
Evaluation of Protective Efficacy

To evaluate the efficacy of the 4 recombinant proteins
(rEt-M2AP, rEt-SAG23, rEt-SAG16, and rEt-SAG2),
animal experiments were performed (Figure 1). Seven-
day-old chickens were divided indiscriminately into 6
groups, each comprising 10 birds (n 5 10). These six
groups included 4 recombinant protein (rEt-M2AP,
rEt-SAG23, rEt-SAG16, rEt-SAG2)–immunized group,
challenged group, and unchallenged group. All chickens
were fed with a coccidia-free diet and water in sufficient
supply.Different groups of chickenswere kept in different
cages. The cages were kept at a constant temperature in
isolators. Each chicken in the test groups was intramus-
cularly injected with 50 mg purified recombinant protein,
whereas those in the challenged group and the unchal-
lenged group were inoculated with PBS. One week later,
a booster immunization was administered via an
intramuscular injection into the leg of the same amount
of antigen used in the first immunization. Seven d after
the booster immunization, the chickens in the test and
challenged groups were challenged with 1 ! 104 sporu-
lated E. tenella oocysts. Those in the unchallenged group
weremock-challengedwithPBS.The protective effects of
each of the 4 recombinant proteins were evaluated based
onBWgain, survival rate, lesion score, and oocyst output
Figure 1. Schematic outline of the experimental design.
decrease rate. The cecum lesion score was assessed as per
the method of Johnson and Reid (Johnson and Reid,
1970). The McMaster’s counting technique was used to
count the oocyst output. Total feces of each group were
collected, mixed, and weighed from the sixth to tenth
day after challenge. Three samples were randomly
selected to calculate the oocysts per gram per sample.
The average amount of oocyst output per chicken was
calculated. Oocyst output decrease rates were calculated
as follows: (oocyst output from positive control chickens -
oocyst output from vaccinated chickens) ! 100/oocyst
output from positive control chickens. BW gain of
chickens in each group was determined by the BW of
chickens at the end of experiment (day 31) subtracting
the BW at the time of challenge (day 21). BW gain of
chickens was calculated as follows: weight at the time of
slaughter2 weight at the time of challenge. The relative
BW gain rate was calculated as follows: (weight gain of
the experimental group ! 100)/weight gain of the
unchallenged group. Three independent experiments
were performed.

Statistical Analysis

Graphs were created by GraphPad Prism (San Diego,
CA). Graphs present the means, and the error bars show
the standard errors of means. All data were analyzed
with SPSS statistical package (IBM SPSS Statistics
19) using 1-way ANOVA Duncan test. All P-values of
,0.05 were considered to be significant.
RESULTS

Selection and Characterization of 4
Merozoite Antigens

Prior research on other vaccines suggests that surface
antigens and secreted proteins make good vaccine
candidates. Here, we selected 4 antigens, specifically 1
secreted antigen (ETH_00006930) and 3 surface
antigens (Et-SAG16,Et-SAG23, andEt-SAG2) to access
their potential utility as vaccine candidates. Sequence
alignment revealed that ETH_00006930 shared homol-
ogy with M2AP from Toxoplasma gondii, so it was
renamed Et-M2AP. Transcriptional level data for Et-
M2AP, Et-SAG23, Et-SAG16, and Et-SAG2 were
obtained from the ToxoDB and showed highly expressed
at the merozoite stage (Figure 2A). Because Et-M2AP
had not been previously identified in E. tenella, localiza-
tion studieswere performedon it.Weapplied an immuno-
fluorescence method using mouse anti-rEt-M2AP
antibody and found that endogenous Et-M2AP was
distributed in the apical parts of E. tenella merozoites
and sporozoites (Figure 2B).
Cloning and Expression of the 4 Merozoite
Proteins

The cDNA encoding the 4 candidate merozoite genes
(Et-M2AP, Et-SAG23, Et-SAG16, and Et-SAG2) were



Figure 2. Characterization of 4 merozoiteantigens. (A) The transcription levels of Et-M2AP, Et-SAG23, Et-SAG16, and Et-SAG2 proteins in
merozoites and gametocytes as obtained from ToxoDB. (B) PCR amplification of Et-M2AP, Et-SAG23, Et-SAG16, and Et-SAG2 genes. (C) Immu-
nofluorescence using mouse anti–rEt-M2AP serum was performed to investigate the location of Et-M2AP in sporozoites and merozoites. Scale bars:
10 mm. Labeling of Et-SAG and Et-SAG16 (red) served as a parasite surface marker.
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1,026 bp, 810 bp, 804 bp, and 759 bp in length
(Figure 2C), corresponding to 342, 270, 268, and 253
amino acid residues, respectively. The respective
predicted molecular masses of these proteins were
w38 kDa, w30 kDa, w30 kDa, and w28 kDa. There
was a signal peptide cleavage site in the Et-M2AP
sequence, which indicates that Et-M2AP is a secretory
protein. The predicted molecular weight of Et-M2AP
without the signal peptide was w34 kDa. The four
recombinant proteins (rEt-M2AP, rEt-SAG23, rEt-
SAG16, and rEt-SAG2) were expressed in E. coli, and
the sizes of the resulting products were found to be
w40 kDa,w36 kDa,w36 kDa, andw34 kDa (including
a His-tag), respectively, which are similar to their
predicted sizes (Figure 3A).
Western Blot Analysis of the 4 Recombinant
Merozoite Proteins

The four recombinant proteins (rEt-M2AP, rEt-
SAG23, rEt-SAG16, and rEt-SAG2) were successfully
identified by a Western blot performed with anti-E.
tenella chicken serum, using healthy chicken serum as
a control. As shown in Figure 3B, the anti-E. tenella
chicken serum identified a specific band for each of the
4 recombinant proteins. No specific band was detected
by the healthy chicken control serum.
Recombinant Et-M2AP Induced Effective
Protection Against E. tenella

To analyze the immune protection provided by rEt-
M2AP, rEt-SAG23, rEt-SAG16, and rEt-SAG2 against
E. tenella, challenge experiments were performed and
various markers of disease severity were assessed. The
survival rate of the immunized groups were improved
compared with the control group (Figure 4A). Vaccina-
tion with rEt-M2AP, rEt-SAG23, rEt-SAG16, or rEt-
SAG2 resulted in an average BW gain of 25.12 g
(P , 0.001), 17.6 g (P , 0.001), 23.5 g (P . 0.05), or
11.9 g (P , 0.001), respectively, and a corresponding
relative BW gain rate of 42% (P , 0.001), 30%
(P , 0.001), 26% (P . 0.05), and 20% (P , 0.001)
compared with unchallenged chickens. The average
BW of the challenged unvaccinated control group
decreased (227 g), and the corresponding relative BW
was decreased 45.5%. Therefore, the BW of the chickens
immunized with rEt-M2AP, rEt-SAG23, or rEt-SAG2
were significantly higher (P , 0.001) than those of the
control group chickens (Figures 4B–4C). In addition,
compared with the birds in the control challenged group,
chickens vaccinated with rEt-SAG16 (P , 0.05) had
significantly lower cecum lesion scores, whereas those
immunized with rEt-M2AP, rEt-SAG23 (P . 0.05), or
rEt-SAG2 (P . 0.05) did not (Figure 4D). The oocyst
output was evaluated using McMaster’s counting



Figure 3. SDS-PAGE and Western blotting analysis. (A) Purifica-
tion of recombinant proteins. SDS-PAGE gel: Lane 1, purified rEt-
M2AP protein; Lane 2, purified rEt-SAG23 protein; Lane 3, purified
rEt-SAG2 protein; Lane 4, purified rEt-SAG16 protein. (B) Western
blotting analysis of recombinant proteins.
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technique. The resulting data show that the oocyst
output of the groups immunized with rEt-M2AP (88%
oocyst output decrease rate, P , 0.001) or rEt-SAG16
(59.2% oocyst output decrease rate, P , 0.001) were
significantly lower than that of the control challenge
group, whereas the oocyst output decrease rates were
only 22 and 1.36% in the rEt-SAG23-and rEt-SAG2-
immunized groups, respectively (Figures 4E–4F).
DISCUSSION

E. tenella is an obligate intracellular protozoan
parasite belonging to the phylum Apicomplexa, and it
has unique secretory organelles (micronemes, rhoptries,
and dense granules) to produce proteins for the invasion
process (Carruthers and Boothroyd, 2007; Lebrun et al.,
2014). Micronemes are small vesicles that cluster in the
apical portion of the parasite and rapidly secrete a large
number of proteins when initial contact is made between
the parasite and the host cell (Li et al., 2015). The
microneme proteins act as major cellular adhesion fac-
tors for host cells and participate in parasite recognition,
reorientation, and entry; thus, they are reasonable
vaccine candidates (Peng et al., 2009; Liu et al., 2010;
Li et al., 2015; Pinzan et al., 2015; Zhang et al., 2015).
As Et-M2AP was a previously unexplored protein in
E. tenella, we first performed localization studies on it.
Endogenous Et-M2AP was observed to localize in the
apical portion of merozoites and sporozoites, which is
consistent with the known distribution characteristics
of other microneme proteins (Li et al., 2015; Yang
et al., 2015).

Our strategy for vaccines is to block parasite infection
by disturbing the invasion and development of E. tenella
merozoite stage. The secreted proteins and surface
antigens are recognized as good candidates based on
the general characteristics. Thus, 1 secreted protein
(Et-M2AP) and 3 surface antigens (Et-SAG23, Et-
SAG16, and Et-SAG2) that are highly expressed at the
merozoite stage were selected in our study. Here, we suc-
cessfully obtained recombinant Et-M2AP, Et-SAG23,
Et-SAG16, and Et-SAG2 proteins and assessed the
immune protective effect of each when administered as
a vaccine against E. tenella. Our results show that
vaccination with rEt-M2AP improved the survival rate
and BW gain of chickens challenged with E. tenella.
Meanwhile, the oocyst output was significantly lower
in birds vaccinated with rEt-M2AP than in control-
challenged chickens. Together, these findings suggest
that vaccination with rEt-M2AP provided effective pro-
tection against E. tenella. There was also a significant
reduction in the oocyst output of the rEt-SAG16–immu-
nized chickens; however, the BW gain indicators in these
birds are not good. Weight loss in E. tenella–infected
chickens is common because the invasion and reproduc-
tion of parasites causes intestinal damage. Therefore, the
inability of rEt-SAG16 to prevent infection-induced
reductions in weight gain suggests that it could not
effectively prevent the invasion and reproduction of E.
tenella parasites. Otherwise, the protective immunity
of rEt-SAG23 and rEt-SAG2 proteins was not satisfac-
tory comparing with rEt-M2AP. The groups immunized
with rEt-SAG23 and rEt-SAG2 protein showed
significantly increased BW. However, vaccination with
rEt-SAG23 and rEt-SAG2 was not effective in oocyst
shedding and cecum lesion, which suggests that rEt-
SAG23 and rEt-SAG2 did not protect the chicken
from Eimeria infection, or did it prevent transmission
between chickens.

Over the past few decades, numerous microneme
proteins such as MIC1, MIC2, and MIC4 have also been
evaluated; however, all of them protected only partially
against coccidiosis (Du et al., 2005; Subramanian et al.,
2008; Chen et al., 2018; Yan et al., 2018). Profilin
(3-1E) is a conserved surface antigen of both merozoites
and sporozoites, and it can also act as an anticoccidial
adjuvant (Lee et al., 2010, 2012; Zhang et al., 2012). Pro-
filin is able to induce cell-mediated protective immunity
against Eimeria species (Lillehoj et al., 2017; Tang



Figure 4. Protective efficacy against Eimeria tenella infection of the 4 merozoite antigens. (A–F) The effects of vaccination with 4 merozoite
antigens on survival rate (A), cecum lesion score (B), BW gain (C), relative BW gain (D), oocyst output (E), and oocyst decrease rate (F). Three
independent experiments were performed. All data were analyzed with ANOVA: **P , 0.01, and ***P , 0.001.
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et al., 2018). Compared with profilin, the oocyst output of
rEt-M2AP–immunized chickens were lower (Ma et al.,
2013). The relative BW gain rates were 79.3 and 64.4%
in Bacillus subtilis expressing E. tenella 3-1E protein
(B.S-pBS-H1-3-1E) and Lactococcus lactis expressing
E. tenella 3-1E protein (L. lactis pTX8048-3-1E), respec-
tively (Ma et al., 2013; Lin et al., 2015). The relative BW
gain rate of rEt-M2AP in the present study was 42%. It is
worth noting that different E. tenella strains have
different levels of virulence; our challenge dose resulted
in a weight loss of 46% in the unimmunized control group
and a mortality rate of 60%, whereas the previous study
using B. subtilis and L. lactis expressing E. tenella 3-1E
protein reported weight gain rates of 64.5 and 43.83%
in the respective unimmunized control groups. Thus,
compared with unimmunized chickens, the rEt-M2AP–
immunized chickens in our study had a weight gain
of w88%, whereas the chickens immunized with
B.S-pBS-H1-3-1E and L. lactis pTX8048-3-1E in the
other study had weight gains of w15 and 21%, respec-
tively. EtSAG4 is specifically expressed in the second-
generation merozoite stage of E. tenella (Tabar�es et al.,
2004), and it is recognized as a competent vaccine candi-
date gene against coccidiosis (Tabar�es et al., 2004; Zhao
et al., 2020). Here, the oocyst reduction rate of chickens
vaccinated with the rEtSAG4 protein was 75.5%, which
is lower than that of rEt-M2AP–immunized chickens.
Similarly, the relative BW gain was also lower in
rEtSAG4 protein–immunized chickens as compared
with the challenge control (Zhao et al., 2020).

In summary, we identified 4 merozoite proteins,
including a microneme antigen and 3 surface antigens,
and assessed their immunoprotective effects when
administered as vaccines. The resulting data indicate
that rEt-M2AP has potential for use as an effective
vaccine candidate against E. tenella infection, and rEt-
SAG23, rEt-SAG16, and rEt-SAG2 proteins were not
suitable for vaccine candidate.
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