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Abstract
Background  Currently, the knowledge of associations among newly recovered cases (NR), newly healed cases (NH), newly 
confirmed cases (NC), and newly dead cases (ND) can help to monitor, evaluate, predict, control, and curb the spreading of 
coronavirus disease 2019 (COVID-19). This study aimed to explore the panel associations of ND, NH, and NR with NC.
Methods  Data from China Data Lab in Harvard Dataverse with China (January 15, 2020 to January 14, 2021), the United 
States of America (the USA, January 21, 2020 to April 5, 2021), and the World (January 22, 2020 to March 20, 2021) had 
been analyzed. The main variables included in the present analysis were ND, NH, NR, and NC. Pooled regression, stacked 
within-transformed linear regression, quantile regression for panel data, random-effects negative binomial regression, and 
random-effects Poisson regression were conducted to reflect the associations of ND, NH, and NR with NC. Event study 
analyses were performed to explore how the key events influenced NC.
Results  Descriptive analyses showed that mean value of ND/NC ratio regarding China was more than those regarding the 
USA and the World. The results from tentative analysis reported the significant relationships among ND, NH, NR, and NC 
regarding China, the USA, and the World. Panel regressions confirmed associations of ND, NH, and NR with NC regard-
ing China, the USA, and the World. Panel event study showed that key events influenced NC regarding USA and the World 
more greatly than that regarding China.
Conclusion  The findings in this study confirmed the panel associations of ND, NH, and NR with NC in the three datasets. 
The efficiencies of various control strategies of COVID-19 pandemic across the globe were compared by the regression 
outcomes. Future direction of research work could explore the influencing mechanisms of the panel associations.
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Abbreviations
COVID-19	� Coronavirus disease 2019
ND	� Newly dead cases
NC	� Newly confirmed cases
NR	� Newly recovered cases
NH	� Newly healed cases
IRR	� Incidence rate ratio
CI	� Confidence interval
SD	� Standard deviation

1  Introduction

Despite travel restrictions [1] and limitations [2], corona-
virus disease 2019 (COVID-19) has rapidly spread across 
the globe as a result of multiple literature. For instance, a 
longitudinal analysis concluded the impact of COVID-19 
could migrate between vulnerable counties [3]. Another 
theoretical study demonstrated that a large-scale spatial 
transmission of COVID-19 was caused by the relatively high 
per-capita rate of transmission [4]. To tackle the spread of 
COVID-19, a growing number of countries initiated practi-
cal strategies (in-house isolation, quarantine, and promot-
ing general awareness about transmission routes) against 
further development of contagion [5]. But consequently, 
the situation rapidly deteriorated with increasing number 
of newly confirmed cases (NC) [6], especially in western 
countries. Especially, a certain empirical law of COVID-
19 spread attracted academic attention [7]. Although NC 
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between countries was reported [8], national gaps among 
newly recovered cases (NR), newly healed cases (NH), and 
newly dead cases (ND) were seldom documented in the cur-
rent academic literature. Statistical analyses with micro and 
macro data of COVID-19 pandemic can help evaluate the 
relevant control interventions.

Till now, regarding the epidemic evolution of total 
COVID-19 infections, analytical methods of control effi-
ciency of COVID-19 pandemic are limited and biased. 
Notably, trend forecast with publicly available micro epi-
demiological data has been particularly the mainstream in 
the field of COVID-19 control. For example, multiple stud-
ies forecast a trend of the COVID-19 spreading in China 
[9–11]. Moreover, the temporal dynamics of the COVID-19 
epidemic were reported in the parts of the World includ-
ing Huangshi city, China [12], South Korea [13], UK and 
Sweden [14], Pakistan [15], and Wuhan, China [16]. The 
survival duration including the average lag between NC 
and ND [17], lethal duration [18], and COVID-19 duration 
[19] were employed to reflect the evolution of COVID-19 
pandemic. But, forecast and trend methods often considered 
time change and neglect the relationships among ND, NH, 
NR, and NC. Additionally, pure mathematics underlined pre-
diction errors caused by large uncertainties [20]. However, 
those studies without regional, national, and global variables 
could not obtain correct and scientific findings.

To date, analytical tools in published studies were limited 
to reflect the associations of ND, NH, and NR with NC. 
For example, a substantial body of time series models and 
simulations employed not spatial and locational factors but 
temporal factors [21–26]. Several simulations reported time 
trend of ND, NH, NR, and NC, but provided limitations in 
studying locational differences [27–29]. Thus, time series 
studies and simulations led to partial and biased research 
outcomes. Even more importantly, panel associations of ND, 
NH, and NR with NC were not analyzed.

Furthermore, policy interventions were not considered 
in the current studies. From December 12, 2019 till now, 
a series of daily policies and regulations were released by 
the Chinese government, global organizations, and western 
countries and documented in China Data Lab [30]. With 
publicly available data of the COVID-19 pandemic for both 
the USA and Italy, a study observed that the future NC, ND, 
and NR of COVID-19 were reasonably predicted [31]. Thus, 
trend driven by policy outcomes regarding NC which indi-
rectly assessed national struggling efforts against COVID-19 
pandemic often were neglected.

The progress in COVID-19 crisis was formally charac-
terized by ND, NH, NR, and NC. Thus, this study based 
on publicly available longitudinal datasets to explore panel 
associations of ND, NH, and NR with NC. According to 
the presumptions of the panel models, pooled regression, 
stacked within-transformed linear regression, quantile 

regression for panel data, random-effects negative binomial 
regression, and random-effects Poisson regression would be 
conducted to reflect the associations of interest regarding 
China, the USA, and the World. Subsequently, panel event 
study was performed to reflect the trends of NC. Conse-
quently, the endemic control performance would be further 
analyzed, assessed, and compared on the basis of the empiri-
cal outcomes.

2 � Statistical Strategies

2.1 � Data Sources and Selection

Daily cases in China included the numbers of NH, NC, 
and ND at the province-level unit available from January 
15, 2020 to January 14, 2021 [32]. Daily cases in the USA 
included the numbers of ND and NC at the state-level unit 
available from January 21, 2020 to April 5, 2021 [33]. Daily 
cases in the World (outside Antarctica, China, the USA, and 
MS Zaandam) included ND, NR, and NC at the country-
level unit available from January 22, 2020 to March 20, 
2021 [34]. The dataset of China contained information on 
31 province-level units. The dataset of the USA contained 
information on 51 states. The dataset of the World contained 
information on 192 countries and regions. The geographical 
divisions could be found in Appendix. There was no data 
cleaning performed on the raw data available at Harvard 
dataverse.

2.2 � Front‑and‑Back Plots

Before designing statistical strategies, the relationships 
between NC and ND, between NH and NC, and between 
NH and ND regarding China, the relationship between ND 
and NC regarding USA, and the relationships between NC 
and ND, between NC and NR, and between ND and NR 
regarding the World were depicted by front-and-back plots 
in Figs. 1, 2, 3, 4, 5, 6 and 7 [35]. Due to sparse distribution 
in Figs. 1, 2, 3 and asymptotic normality in Figs. 4, 5, 6 and 
7, several linear and nonlinear panel regression models were 
considered as potential analytical methods when normality 
assumptions were violated.

2.3 � Tentative Analyses

Tentative analysis on the relationships between ND, NH, 
NR, and NC was performed by a one-stop solution for robust 
inference with multiway clustering (Stata package vcem-
way) [36]. In the sample, the identification code and day 
were identified as the clustered variables of interest. Thus, 
this study extended the ordinary least squares regression 
to incorporate random effects at the individual level. The 
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Fig. 1   Relationship between ND and NC regarding China

Fig. 2   Relationship between NH and NC regarding China

Fig. 3   Relationship between ND and NH regarding China

Fig. 4   Relationship between ND and NC regarding the USA

Fig. 5   Relationship between ND and NC regarding the World

Fig. 6   Relationship between NR and NC regarding the World
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following analyses estimated the resulting random effects 
model and adjusted its standard errors for two-way cluster-
ing in identification code and day. As compared with the sta-
tistical outcomes from the ordinary least squares regression, 
two-way clustering can lead to more conservative inferences 
than one-way clustering approaches.

2.4 � Panel Analyses

The main associations of interest in this study were panel 
associations of ND and NH with NC regarding China, panel 
associations between ND and NC regarding the USA, and 
panel associations of ND and NR with NC regarding the 
World. In the pooled regression analysis, the regions of 
China (Central China, Western China, Northeast China, and 
East China), the USA (New England, Mid-Atlantic Region, 
the South Region, Mid-West Region, the Southwest Region, 
and the West Region), and the World (Africa, Asia, Europe, 
North America, Oceania, and South America) were also 
considered as covariates.

The count data of ND, NH, NR, and NC tended to follow 
the Poisson or negative binomial distributions. In this large 
sample, the distributions approached to normal distributions 
approximately. Regarding the associations, the feasible panel 
models could be linear and nonlinear models. When NR, 
NH, NC, and ND were considered as count data, random-
effects negative binomial regression and random-effects 
Poisson regression could be employed to reflect the asso-
ciations of interest in nonlinear models. When ND, NH, NR, 
and NC were considered as continuous variables, pooled 
regression, stacked within-transformed linear regression, 
and quantile regression for panel data could be employed to 
explore the associations of interest in linear models.

Regarding China, the panel associations of ND and NH 
with NC could be found by using the regression model (1):

Regarding the USA, the panel associations between ND 
and NC could be found by using the regression model (2):

Regarding the World, the panel associations of ND and 
NR with NC could be found by using the regression model 
(3):

Here, β0 was constant. β1 and β2 were coefficients. μ1, μ2, 
and μ3 were random errors. If optimized iterations were not 
concave, the possible calculations of chosen methods were 
deleted.

Regarding cubic or quadratic equations, this study aimed 
to explore the associations of interest rather than dynamic 
system analysis. Thus, it was unnecessary to conduct regres-
sions with squared terms or interactions.

Pooled regressions are usually carried out to analyze 
available time series of cross-sections. The main advantage 
of pooled regression is the ability to measure different fac-
tors at the region level and aggregate results at the national 
level. The main disadvantages of pooled regression are over-
estimating and underestimating the impact in the regions.

Stacked within-transformed linear regression analysis was 
performed by Stata program xtstackreg [37]. Regarding the 
suitability and applicability, stacked within-transformed 
linear regression accommodated fixed-effects estimation, 
applied a degrees-of-freedom adjustment, and allowed for 
factor-variables in dependent variables. When regressing 
regarding China, the USA, and the World, all region-level 
units entered into regressions. After regression calculation, 
parts of the geographical covariates were left in the regres-
sion outcomes. The main advantage of stacked within-trans-
formed linear regression is the ability to generate predictions 
from a “stacked” ensemble of models, including LASSO 
regression, k-nearest neighbors, random forest, and gradient 
boosting. This technique produces superior estimates with 
larger samples.

Quantile regression for panel data was performed by Stata 
program qregpd with Nelder–Mead optimization [38]. Like-
wise, quantile regression for panel data addresses a funda-
mental problem posed by alternative fixed-effect quantile 
estimators: inclusion of individual fixed effects alters the 
interpretation of the estimated coefficient on the treatment 
variable. Compared to the standard mean regression mod-
els, quantile regression models are more robust and flex-
ible, which can help to account for unobserved heteroge-
neity and heterogeneous covariates effects. According to 
Powell (2015), a quantile regression estimator can be used 
to evaluate impacts of exogenous and endogenous treatment 
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Fig. 7   Relationship between ND and NR regarding the World
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variables on an outcome distribution among the sample with 
small T [39]. Simultaneously, random-effects negative bino-
mial regression and random-effects Poisson regressions were 
conducted.

2.5 � Panel Event Study

This study included panel models for the associations of 
interest and prediction models for the effects of key events. 
A panel event study implemented by the program “eventdd” 
in Stata [40] was employed to analyze how the key events 
influenced NC. With a difference-in-difference style model, 
a series of lag and lead coefficients and confidence inter-
vals (CIs) were estimated and plotted. In the context, three 
key events were adopted as treatments regarding China, the 
USA, and the World (outside Antarctica, China, the USA, 
and MS Zaandam), respectively. On February 5, 2020, China 
released tax exemption and loan policies to beef up coro-
navirus containment (http://​en.​nhc.​gov.​cn/​2020-​02/​06/c_​
76511.​htm). Coronavirus Guidelines for America was issued 
on March 16, 2020 in the USA (https://​www.​white​house.​
gov/​brief​ings-​state​ments/​coron​avirus-​guide​lines-​ameri​ca/). 
On March 11, 2020, WHO characterized COVID-19 as a 
pandemic (https://​www.​who.​int/​emerg​encies/​disea​ses/​novel-​
coron​avirus-​2019/​events-​as-​they-​happen).

All analyses were performed with Stata (Version 14 and 
16, Stata Corporation, College Station, TX, USA).

3 � Results

3.1 � Descriptive Analyses

Table 1 showed descriptive statistics for number of ND, 
NR, NH, and NC. Overall, there were 11,346 observations, 
22,491 observations, and 81,408 observations of COVID-
19 cases included during 366-day regarding China, 441-
day regarding the USA, and 424-day regarding the World, 
respectively. Thus, the mean values of ND/NC, NR/NC, 
NH/NC, and NR/ND could reflect the control efficiency 

of COVID-19 pandemic. The mean values of ND/NC 
ratio regarding China, the USA, and the World were 0.032 
(standard deviation (SD) = 0.416), 0.025 (SD = 0.019), and 
0.026 (SD = 0.035), respectively. The mean value of NH/
NC ratio regarding China were 2.975 (SD = 28.501), while 
mean value of NR/NC ratio regarding the World was 0.630 
(SD = 0.320). The mean value of NH/ND ratio regarding 
China was 92.533(SD = 190.425), while mean value of NR/
ND ratio regarding the World was 60.435 (SD = 151.284).

3.2 � Tentative Analyses

In Table 2, NC was significantly predicted by ND and NH 
regarding China. Simultaneously, NC was significantly pre-
dicted by ND regarding the USA. NC was significantly pre-
dicted by ND and NR regarding the World.

3.3 � Pooled Analyses

In Table 3, several important findings were obtained. In 
China, NH (coefficient = 0.761, 95% confidence interval 
(CI): 0.701, 0.821; p < 0.001), ND (coefficient = 4.327, 
95% CI 3.503, 5.151; p < 0.001), Central China (coeffi-
cient = 0.540, 95% CI 0.403, 0.677; p < 0.001), East China 
(coefficient = 0.734, 95% CI 0.392, 1.076; p < 0.001), 
Northeast China (coefficient = 0.406, 95% CI 0.044, 0.768; 
p = 0.029), and Western China (coefficient = 0.204, 95% CI 
0.081, 0.326; p = 0.002) had significantly positive associa-
tions with NC.

In the USA, ND (coefficient = 46.696, 95% CI 31.329, 
62.06335; p < 0.001) and the West Region (coeffi-
cient = 55,697.1, 95% CI 4366.306, 107,027.9; p = 0.034) 
had significantly positive associations with NC, while 
Mid-Atlantic Region (coefficient = − 173,041.9, 95% CI 
− 331,226.9, − 14,856.86; p = 0.033) had significantly nega-
tive association with NC.

Regarding the World, NR (coefficient = 0.775, 95% CI 
0.534, 1.016; p < 0.001), ND (coefficient = 14.537, 95% CI 
3.668, 25.407; p = 0.009), Africa (coefficient = 5708.15, 
95% CI − 774.809, 12,191.11; p = 0.084), and Europe 

Table 1   Descriptive statistics of COVID-19ND, NC, and NR/NH cases

Status Days Observations Groups Mean Standard Deviation Minimum Maximum

China Provinces NC 366 11,346 31 7.751 1292.399 − 68,149 68,149
ND 366 11,346 31 0.408 85.725 − 4512 4512
NH 366 11,346 31 7.257 1201.593 − 63,633 63,635

The USA States NC 441 22,491 51 190,167.5 377,173.4 0 3,682,946
ND 441 22,491 51 4053.384 7410.224 0 59,761

The World Countries NR 424 81,408 192 151,272 694,941.2 0 1.20e+07
NC 424 81,408 192 4003.126 16,491.61 0 292,752
ND 424 81,408 192 110,795.8 604,092.7 0 1.11e+07

http://en.nhc.gov.cn/2020-02/06/c_76511.htm
http://en.nhc.gov.cn/2020-02/06/c_76511.htm
https://www.whitehouse.gov/briefings-statements/coronavirus-guidelines-america/
https://www.whitehouse.gov/briefings-statements/coronavirus-guidelines-america/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
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(coefficient = 45,411.11, 95% CI 7164.803, 83,657.41; 
p = 0.020) had significantly positive associations with NC.

3.4 � Panel Regressions

Before conducting random-effects Poisson regression and 
random-effects negative binomial regression, the 66 values 

of NC (< 0) were treated as missing values. The results from 
the estimation presented in Table 4 indicated that ND and 
regions had significant effects on NC regarding China.

The results from the estimation presented in Table 5 
indicated that ND had significant effects on NC in stacked 
within-transformed linear regression, quantile regression 
for panel data, random-effects Poisson regression, and 

Table 2   Robust inference on 
NC coefficients (standardized 
errors)

N number of observations
*p < 0.10, **p < 0.05, and ***p < 0.01

China The USA The World

ND 4.327*** (0.460) 55.359*** (5.836) 16.847** (7.163)
NR 0.725 *** (0.148)
NH 0.761*** (0.034)
Constant 0.459 (0.938) − 34,222.72 (44,680.19) 3465.593 (11,353.570)
σu 0 121,713.44 88,327.022
σe 166.948 109,692.49 130,359.990
ρ 0 0.552 0.315
R square
 Within 0.9833 0.8730 0.9330
 Between 0.9999 0.7011 0.9635
 Overall 0.9834 0.7735 0.9474
 Groups 31 51 189
 N 11,346 22,491 80,136

Table 3   Pooled regressions on 
NC regarding China, the USA, 
and the World, coefficients 
(standardized errors)

N number of observations
*p < 0.10, **p < 0.05, ***p < 0.01

China The USA The World

NH 0.761*** (0.029)
NR 0.775*** (0.122)
ND 4.327*** (0.403) 46.696*** (7.651) 14.537*** (5.510)
Central China 0.540*** (0.067)
East China 0.734*** (0.167)
Northeast China 0.406** (0.177)
Western China 0.204*** (0.060)
Mid-West Region 20,342.730 (29,289.890)
Mid-Atlantic Region − 173,041.900** (78,755.480)
New England − 48,221.420 (33,839.030)
South Region 39,905.910 (31,684.070)
Southwest Region 66,525.850 (51,955.920)
West Region 55,697.100** (25,556.030)
Africa 5708.15* (3286.4)
Asia 5597.012 (5547.308)
Europe 45,411.11** (19,388.16)
North America − 30,936.51 (22,541.11)
Oceania 44.037 (135.633)
South America − 51,708.54 (38,046.72)
R square 0.9834 0.8508 0.9520
N 11,346 22,491 80,136
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random-effects negative binomial regression regarding the 
USA. Moreover, regions had significant effects on NC in 
random-effects Poisson regression regarding the USA.

The results from the estimation presented in Table 6 
indicated that ND and NR had significant effects on NC in 
stacked within-transformed linear regression and random-
effects Poisson regression regarding the World. Moreover, 
regions had significant effects on NC in random-effects Pois-
son regression regarding the World.

3.5 � Panel Event Study

Figure 8a–e reported NC trend following the key event 
regarding China Total, Central China, East China, North-
east China, and Western China. Figure 9a–g reported NC 
trend following the key event regarding the USA Total, 
Mid-West Region, Mid-Atlantic Region, New England, the 
South Region, the Southwest Region, and the West Region. 
Figure 10a–g reported NC trend following the key event 
regarding the World Total, Africa, Asia, Europe, North 
America, Oceania, and South America. Notably, point esti-
mation curves regarding China were nearly straight, while 
the curves of point estimations and 95% CIs regarding the 
USA and the World were choppy and changeable with wave 
crests. Simultaneously, the differences between upper and 
lower limits regarding China approached to constants in the 
gross, while the differences between upper and lower limits 
regarding the USA and the World were changeable.

R squares regarding China Total, Central China, East 
China, Northeast China, and Western China were 0.9841, 

0.9864, 0.9933, 0.9917, and 0.9895, respectively. R squares 
regarding the USA Total, Mid-West Region, Mid-Atlantic 
Region, New England, the South Region, the Southwest 
Region, and the West Region were 0.8056, 0.9259, 0.8886, 
0.9131, 0.9654, 0.9899, and 0.9739, respectively. R squares 
regarding the World Total, Africa, Asia, Europe, North 
America, Oceania, and South America were 0.9488, 0.9984, 
0.9934, 0.8921, 0.9958, 0.9861, and 0.9992, respectively.

Exponential rise of NC was plotted in the Figs. 9a–g and 
10a, d. In the figures, the dates of turning points of NC were 
depicted. Thus, this study was effective to reflect effects of 
key events on NC of the COVID-19.

4 � Discussion

4.1 � Main Outcomes

This study employed publicly available daily datasets includ-
ing the samples of China, the USA, and the World (outside 
Antarctica, China, the USA, and MS Zaandam) and obtained 
the associations of ND, NR, and NH with NC regarding 
China, the USA, and the World, respectively. In panel event 
study, curve lines showed key events influenced NC regard-
ing the USA and the World significantly, while straight line 
showed key events nearly had no significant influence on 
NC regarding China.

Congruent with a prior study [41], this study confirmed 
the effects of control measures. Regression outcomes 
provided coarse estimates of controlling performance 

Table 4   Regressions on NC in China’s province-level sample

SE standardized errors, IRR incidence rate ratio, 95% CI 95% confidence interval, N number of observations
*p < 0.10, **p < 0.05, ***p < 0.01

Stacked within-transformed 
linear regression

Random-effects Poisson regression Random-effects negative binomial regression

Coefficient (SE) IRR (95% CI) IRR (95% CI)

NH 0.761*** (0.029) 0.9999801 (0.9998661, 1.000094) 1.001162*** (1.00097, 1.001353)
ND 4.327*** (0.403) 1.001599* (0.9999862, 1.003215) 0.98516*** (0.9825326, 0.9877943)
Central China 36.46152*** (9.09499, 146.1731) 0.0302182*** (0.0269784, 0.033847)
East China 7.014822*** (4.82188, 10.20509) 0.104624*** (0.0981832, 0.1114873)
Northeast China 4.020119*** (1.739002, 9.293469) 0.065412*** (0.0565445, 0.07567)
Western China 2.578395*** (1.526414, 4.355385) 0.0511991*** (0.0468615, 0.0559382)
/lnalpha 0.0455876 (− 174.0498, 174.141)
Alpha 1.046643 (2.58e−76, 4.25e+75)
/ln_r − 0.7272596 (− 1.188863, − 0.2656564)
/ln_s 2.078229 (1.257295, 2.899163)
r 0.4832314 (0.3045675, 0.7667025)
s 7.990303 (3.515897, 18.15893)
Western China 1.187*** (0.124)
N 11,346 11,280 11,280
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Table 5   Panel regressions on NC in the sample of the USA (N = 22,491)

NB regression negative binomial regression, IRR incidence rate ratio, 95% CI 95% confidence interval, N number of observations
*p < 0.10, **p < 0.05, ***p < 0.01

Stacked within-transformed 
linear regression

Quantile regression for 
panel data

Random-effects Poisson regression Random-effects negative 
binomial regression

Coefficient 95% CI Coefficient 95% CI IRR 95% CI IRR 95% CI

ND 55.399*** 43.748, 67.049 52.182* 44.638, 
59.726

1.000078*** 1.000044, 1.000113 1.000071*** 1.000071, 
1.000072

Mid-West Region − 146,132.8 − 346,832.2, 
54,566.49

115,936.5*** 86,205.9, 155,920.6

Mid-Atlantic 
Region

70,616.88*** 41,226.98, 120,958.3

New England 40,201.06*** 20,368.76, 
79,343.31

South Region 132,256.6*** 98,248.92, 
178,035.6

Southwest Region 112,052.2*** 64,793.88, 
193,778.9

West Region 59,030.17*** 34,186.97, 101,926.6
/lnalpha 11.44237 − 58.80172, 

81.68646
− 1.00736 − 159.3829, 

157.3682
Alpha 93,187.37 2.90e−26, 

2.99e+35
0.3651817 6.04e−70, 2.21e+68

/ln_r 0.0841999 − 0.2618117, 
0.4302116

/ln_s 10.7737 10.33666, 
11.21074

r 1.087846 0.7696559, 
1.537583

s 47,748.22 30,842.7, 
73,919.99

Table 6   Regression on NC in 
the World sample

IRR incidence rate ratio, 95% CI 95% confidence interval, N number of observations
*p < 0.10, **p < 0.05, ***p < 0.01

Stacked within-transformed linear regres-
sion

Random-effects Poisson regression

Coefficient 95% CI IRR 95% CI

ND 16.87534** 2.663998, 31.08668 1.000027*** 1.000013, 1.00004
NR 0.7248077*** 0.4321259, 1.01749 0.9999999** 0.9999997, 1.00000
Africa 11,725.53 − 81,099.9, 104,551 35,024.1*** 14,553.94, 84,285.63
Asia 87,631.48*** 59,470.78, 129,126.9
Europe 121,250.7*** 81,578, 180,217
North America 31,700.67*** 16,041.34, 62,646.44
Oceania 2132.171*** 414.2913, 10,973.32
South America 154,141.3*** 83,733.69, 283,751.1
/lnalpha 0.9214848 − 68.96149, 70.80446
Alpha 2.513019 1.12e−30, 5.62e+30
N 80,136 80,136
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(a) Effect on NC regarding China Total.

(b) Effect on NC regarding Central China.
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(c) Effect on NC regarding East China.

(d) Effect on NC regarding Northeast China.
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(e) Effect on NC regarding Western China.
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Fig. 8   a Effect on NC regarding China total. b Effect on NC regarding Central China. c Effect on NC regarding East China. d Effect on NC 
regarding Northeast China. e Effect on NC regarding Western China
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(a) Effect on NC regarding USA Total.

(b) Effect on NC regarding Mid-West Region.
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(c) Effect on NC regarding Mid-Atlantic Region.

(d) Effect on NC regarding New England.
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(e) Effect on NC regarding South Region.

(f) Effect on NC regarding Southwest Region.
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(g) Effect on NC regarding West Region.
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comparisons of COVID-19 pandemic. This study was in 
line with early simulation outcomes which found that their 
NH rates were the approximately linear increasing func-
tions and the ND rates were the small constants [42]. This 
could partially explained by an early study which indicated 
that socio-economic determinants and city sizes had high 
impacts on the change of COVID-19 transmission in China 
[43]. Because of mean value of NH/NC ratio (China) > mean 
value of NR/NC ratio (the World) and mean value of NH/
ND ratio (China) > mean value of NR/ND ratio (the World), 
the practical performance of COVID-19 controlling in China 
was seemly better than that in the other countries. Some 
Chinese scholars agreed with this judgment [44, 45].

With regard to methodologies, the findings in panel event 
study were in line with prior studies. For example, an explor-
atory data analysis with visualizations had been made to 
understand the number of NR, NC, and ND in China [46]. 
An 82-day (January 21 to April 12, 2020) forecast infec-
tions for COVID-19 death indicated that forecast placed the 
COVID-19 peak in the USA around July 14, 2020 [47]. This 
study was in line with another study which revealed that the 
effect of NC on ND was heterogeneous across provinces 
in China [48]. Furthermore, the spread of COVID-19 up 
to February 5, 2020 the number of NC showed a trend of 
“rapid increase before slowing down” [49]. Another forecast 
showed that the cumulative number of cases for Italy, UK 
and the USA corresponded to the diminishing average daily 
rate, from April 22 to May 22, 2020 [50].

Changes of COVID-19 ND, NH, NR, and NC in various 
regions could be influenced by life style, environmental fac-
tors, regulations, and progressing stages. Regarding life style, 
change in social distancing [51], increase of space–time clus-
ters [52], and different sets of neighborhood characteristics 
[53] could be identified as risk factors for ND and NC dur-
ing the COVID-19 pandemic. As to environmental factors, a 
study indicated temperature and the columnar density of total 
atmospheric ozone had a strong association with the tendency 
of COVID-19 spreading in almost all states in the USA [54]. 
As for regulations mainly including mobility restrictions and 
other non-pharmacological interventions, ill-prepared work 
[55], facemask shortage [56], poor traveller screening [57], 
forgone care [58], and population migration [59] could lead 
to ineffective prevention and controlling COVID-19. Regard-
ing progressing stages, changes of COVID-19 ND, NH, NR, 
and NC might be caused by COVID-19 epidemic progressing 
laws differentially in various countries. Theoretically, various 
phases of COVID-19 epidemic documented four phases in 61 

most affected countries [60], three or four phases in Wuhan 
City, Hubei Province and China [61], and five stages in China's 
non-Hubei provinces [62].

There were small curves in the point estimation regarding 
China and wide range of trajectories regarding the USA. This 
could be partially explained by several studies. For example, a 
study showed rapid nucleation and diffusion in January 2020 
followed by rapid NC decrease in February in China, while 
the USA showed a wide range of trajectories, with an abrupt 
transition from slow NC increase in January and February, 
to rapid geographic dispersion shortly before mobility reduc-
tions occurred in March [63]. Regarding the epidemic trends 
of national and state regional administrative units, a study from 
July 27, 2020, to January 22, 2021 indicated the turning point 
of the early epidemic in the USA was predicted to occur in 
September [64]. Another model inferred that the inflection 
point of the epidemic across China would be mid-February, 
and the end of the epidemic would be in late March [65].

4.2 � Strengths and Weaknesses

Regarding data sources, this study employed three datasets. 
The current study had a large sample size which increased 
the precision of the study. Additionally, more than 1-year 
period could provide reliable results regarding epidemic 
control and daily changes in the prevalence of COVID-19 
conditions. Regarding statistical methods, this study adopted 
several advanced panel regression methods. Especially, the 
event study with difference in difference was used to ana-
lyze the role of key events. Compared with the other studies 
[66–69], the results from this study were significantly more 
accurate, realistic, appropriate, and suitable for long-time 
series outbreak data. Another advantage of this study was 
under the consideration of key events.

There were several limitations. First, several variables 
including demographics, financial support, and international 
aids were not taken into account. Statistically, a study in 
South Korea found that sex, region, and infection reasons 
affected on both NR and ND [13]. Second, this study did 
not adopt newly designed methods conceived by the author 
to analyze the law of spread and transmission of COVID-
19. Changes in case definitions affected inferences on the 
transmission dynamics of COVID-19 allowed detection of 
more cases as knowledge increased in China [70]. Finally, 
this study did consider one key event rather than varying 
treatment time and duration [71].

5 � Conclusion

Using panel analysis and data collected in China province-
level units, the USA state-level units, and the World country-
level units (outside Antarctica, China, the USA, and MS 

Fig. 9   a Effect on NC regarding USA total. b Effect on NC regard-
ing Mid-West Region. c Effect on NC regarding Mid-Atlantic Region. 
d Effect on NC regarding New England. e Effect on NC regarding 
South Region. f Effect on NC regarding Southwest Region. g Effect 
on NC regarding West Region

◂
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(a) Effect on NC regarding the World Total.

(b) Effect on NC regarding Africa.
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(c) Effect on NC regarding Asia.

(d) Effect on NC regarding Europe.
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(e) Effect on NC regarding North America.

(f) Effect on NC regarding Oceania.
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(g) Effect on NC regarding South America.
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Zaandam), regressions confirmed the positive panel associa-
tions between NH, ND, and NC regarding China, between 
ND and NC regarding the USA, between NR, ND, and NC 
regarding the World. Panel event study showed key events 
influenced NC regarding the World and the USA more force-
ful and unsteady as compared to that regarding China. Future 
work on the basis of the current study should be performed 
on the influencing mechanism of the panel associations.

Appendix: Geographical Divisions

The main five regions in China are Central China (Hubei, 
Shaanxi, Anhui, Jiangxi, Henan, and Hunan), Western China 
(Neimenggu, Guangxi, Chongqing, Sichuan, Guizhou, 
Yunan, Xizang, Shanxi, Gansu, Qinghai, Ningxia, and Xin-
jiang), Northeast China (Liaoning, Jilin, and Heilongjiang), 
and East China (Beijing, Tianjin, Hebei, Shanghai, Jiangsu, 
Zhejiang, Fujian, Shandong, Guangdong, and Hainan).

According to official definition, the USA was divided 
into six regions: New England (Connecticut, Maine, Mas-
sachusetts, New Hampshire, Rhode Island, and Vermont), 
Mid–Atlantic Region (Delaware, Maryland, New Jersey, 
New York, Pennsylvania, and Washington D.C.), The South 
Region (Alabama, Arkansas, Florida, Georgia, Kentucky, 
Louisiana, Mississippi, North Carolina, South Carolina, 
Tennessee, Virginia, and West Virginia), Mid-West Region 
(Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Mis-
souri, Nebraska, North Dakota, Ohio, South Dakota, and 
Wisconsin), The Southwest Region (Arizona, New Mexico, 
Oklahoma, and Texas), and The West Region (Alaska, Colo-
rado, California, Hawaii, Idaho, Montana, Nevada, Oregon, 
Utah, and Wyoming).

The World (outside Antarctica, China, the USA, and MS 
Zaandam) includes Africa (Algeria, Angola, Benin, Botswana, 
Burkina Faso, Burundi, Cabo Verde, Cameroon, Central Afri-
can Republic, Chad, Comoros, Congo (Brazzaville), Congo 
(Kinshasa), Ivory Coast, Djibouti, Egypt, Equatorial Guinea, 
Eritrea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, 
Guinea-Bissau, Kenya, Lesotho, Liberia, Libya, Madagascar, 
Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, 
Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, 
Senegal, Seychelles, Sierra Leone, Somalia, South Africa, 
South Sudan, Sudan, Tanzania, Togo, Tunisia, Uganda, Zam-
bia, and Zimbabwe), Asia (Afghanistan, Armenia, Azerbai-
jan, Bahrain, Bangladesh, Bhutan, Brunei, Burma, Cambodia, 
Cyprus, Diamond Princess, Georgia, India, Indonesia, Iran, 
Iraq, Israel, Japan, Jordan, Kazakhstan, Korea, South, Kuwait, 

Kyrgyzstan, Laos, Lebanon, Malaysia, Maldives, Mongolia, 
Nepal, Oman, Pakistan, Philippines, Qatar, Saudi Arabia, 
Singapore, Sri Lanka, Syria, Taiwan, Tajikistan, Thailand, 
Timor-Leste, Turkey, United Arab Emirates, Uzbekistan, 
Vietnam, and Yemen), Europe (Albania, Andorra, Austria, 
Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croa-
tia, Czechia, Denmark, Estonia, Finland, France, Germany, 
Greece, Holy See, Hungary, Iceland, Ireland, Italy, Kosovo, 
Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Mol-
dova, Monaco, Montenegro, Netherlands, North Macedonia, 
Norway, Poland, Portugal, Romania, Russia, San Marino, Ser-
bia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, 
United Kingdom, and West Bank and Gaza), North America 
(Antigua and Barbuda, Bahamas, Barbados, Belize, Canada, 
Costa Rica, Cuba, Dominica, Dominican Republic, El Salva-
dor, Grenada, Guatemala, Haiti, Honduras, Jamaica, Mexico, 
Nicaragua, Panama, Saint Kitts and Nevis, Saint Lucia, Saint 
Vincent and the Grenadines, and Trinidad and Tobago), Oce-
ania (Australia, Fiji, Marshall Islands, Micronesia, New Zea-
land, Papua New Guinea, Samoa, Solomon Islands, Vanuatu), 
and South America (Argentina, Bolivia, Brazil, Chile, Colom-
bia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, 
and Venezuela).
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