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Abstract

Longitudinal fMRI studies hold great promise for the study of neurodegenerative diseases, 

development and aging, but realizing their full potential depends on extracting accurate fMRI-

based measures of brain function and organization in individual subjects over time. This is 
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especially true for studies of rare, heterogeneous and/or rapidly progressing neurodegenerative 

diseases. These often involve small samples with heterogeneous functional features, making 

traditional group-difference analyses of limited utility. One such disease is amyotrophic lateral 

sclerosis (ALS), a severe disease resulting in extreme loss of motor function and eventual 

death. Here, we use an advanced individualized task fMRI analysis approach to analyze a rich 

longitudinal dataset containing 190 hand clench fMRI scans from 16 ALS patients (78 scans) 

and 22 age-matched healthy controls (112 scans) Specifically, we adopt our cortical surface-

based spatial Bayesian general linear model (GLM), which has high power and precision to 

detect activations in individual subjects, and propose a novel longitudinal extension to leverage 

information shared across visits. We perform all analyses in native surface space to preserve 

individua anatomical and functional features. Using mixed-effects models to subsequently study 

the relationship between size of activation and ALS disease progression, we observe for the 

first time an inverted U-shaped trajectory o motor activations: at relatively mild motor disability 

we observe enlarging activations, while at higher levels of motor disability we observe severely 

diminished activation, reflecting progression toward complete loss of motor function. We further 

observe distinct trajectories depending on clinical progression rate, with faster progressors 

exhibiting more extreme changes at an earlier stage of disability. These differential trajectories 

suggest that initial hyper-activation is likely attributable to loss of inhibitory neurons, rather 

than functional compensation as earlier assumed. These findings substantially advance scientific 

understanding of the ALS disease process. This study also provides the first real-world example 

of how surface-based spatial Bayesian analysis of task fMRI can further scientific understanding 

of neurodegenerative disease and other phenomena. The surface-based spatial Bayesian GLM is 

implemented in the BayesfMRI R package
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1. Introduction

Longitudinal fMRI studies are a powerful tool for examining functional brain changes 

occurring within individuals in the context of neurodegenerative diseases, development and 

normal aging (Telzer et al., 2018). Longitudinal studies can account for measures reflective 

of heterogeneity between and across participants over time (e.g., disease burden) (Kassubek 

et al., 2014; Lawrence et al., 2017) and are key for the development of biomarkers (Turner 

and Modo, 2010), an area of ongoing interest and development in neuroimaging research 

(Woo et al., 2017).

To utilize longitudinal fMRI datasets to their full potential, it is critical to develop and 

employ statistical methods for accurate individual-level analysis, rather than traditional 

group-average and group-difference analysis. This is particularly true for longitudinal 

studies of rare, heterogeneous and/or rapidly progressing neurodegenerative diseases —

which are often difficult and expensive to acquire —as they typically involve small numbers 

of participants whose functional brain features may vary markedly across subjects and over 

time. Individualized analytical methods would facilitate the use of such studies to understand 
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the dynamics of neurodegeneration, to develop neuroimaging biomarkers, and to ultimately 

translate research findings to monitor disease progression and evaluate treatment efficacy 

clinically. Individualized analyses are also less likely than group-average analyses to require 

spatially warping participants’ brains to a standard template. Such warping or normalization 

can induce errors and inaccuracies, particularly in individuals with neurodegenerative 

disease and even in normal aging (Eloyan et al., 2014; Kolinger et al., 2021).

Individual-level estimates of activation based on conventional task fMRI analysis methods 

have unfortunately been found to exhibit poor reliability (Elliott et al., 2020), in part due 

to sub-optimal statistical approaches (Monti, 2011). By far the most popular method for 

task fMRI analysis is the classical general linear model (GLM) (Worsley and Friston, 

1995). In this massive univariate approach, at the first level a separate linear model is fit 

at every voxel relating the observed BOLD activity to the expected response to each task 

or stimulus. At the second level, participant-level estimates are pooled to produce group 

average estimates of activation or differences between groups or conditions. Historically, 

the classical GLM has been considered sufficient in group-average fMRI studies, where the 

focus is on estimation of robust effects that are common across most participants (Mumford 

and Nichols, 2009). However, effects that are unique to individuals or states are likely to 

be washed out in a group analysis (Gupta et al., 2010; Stern et al., 2009), and the classical 

GLM has been shown to have low estimation efficiency and power for subject-level analysis 

(Mejia et al., 2020). Additionally, many task fMRI analyses are performed in volumetric 

space, which has a number of drawbacks, including smoothing across tissue classes and 

distal cortical areas representing distinct functional regions (Brodoehl et al., 2020).

Here, we adopt and extend our advanced individualized fMRI analysis approach, the 

cortical surface-based spatial Bayesian GLM (Mejia et al., 2020), to better understand 

the longitudinal disease process in amyotrophic lateral sclerosis (ALS), a rare, rapidly 

progressing and heteroegenous neurodegenerative disease. This approach avoids data 

smoothing, leverages spatial dependencies along the cortical surface, and avoids the need for 

multiplicity correction —and the resulting loss of power —in identifying areas of activation. 

It yields substantially more accurate and powerful activations in individual subjects (Mejia 

et al., 2020). We propose a novel longitudinal model extension, which leverages information 

shared across multiple visits. Our analyses are performed entirely in native space to preserve 

the unique anatomical and functional features of each participant (Gray et al., 2012; 

Kolinger et al., 2021), using the size of activations above a certain effect size as a summary 

measure that can be used in subsequent longitudinal analysis.

Specifically, we analyze a rich longitudinal study including 78 motor task fMRI scans from 

16 ALS participants and 112 scans from 22 age-matched healthy control (HC) participants. 

Most ALS participants were enrolled soon following clinical diagnosis, and follow-up scans 

occurred roughly every 3 months for as long as participants were willing and able to 

participate in the study. This study is unique in terms of the high frequency and long 

duration of sampling, providing an opportunity to understand how disease progression 

evolves dynamically in different individuals. We apply our longitudinal surface-based spatial 

Bayesian GLM to each participant’s data and extract summary measures of activation at 

each visit. We then analyze these summary measures using a series of longitudinal mixed 
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effects models to study the relationship between brain activation and functional disability in 

ALS over time.

Previous studies have documented ALS-related motor disruptions using a variety of 

measures, including task activation (Konrad et al., 2002; 2006; Poujois et al., 2013; 

Schoenfeld et al., 2005; Stoppel et al., 2014), functional connectivity (Jelsone-Swain et 

al., 2010; Menke et al., 2018), cortical thickness (Agosta et al., 2012; Verstraete et al., 2010), 

and structural connectivity (Chapman et al., 2014; Douaud et al., 2011; Menke et al., 2012; 

Müller et al., 2016). Task activation studies specifically have observed hyper-activation in 

patients with ALS during motor tasks (Konrad et al., 2002; Poujois et al., 2013; Schoenfeld 

et al., 2005). However, since these studies have been based on more limited sampling 

designs (Menke et al., 2018) and employed group-average analysis approaches, they provide 

limited insight into the heterogeneous and typically rapid disease process characterizing 

ALS.

Our longitudinal analyses reveal an inverted U-shaped trajectory of motor activation 

associated with disease progression in ALS, with hyper-activation initially occurring at 

relatively low levels of motor disability, followed by dramatic loss of activation occurring 

at with more severe motor disability. To our knowledge, this is the first time this inverted 

U-shaped trajectory has been observed in ALS. Further, we observe systematic differences 

by clinical progression rate, with fast progressors exhibiting more extreme hyper-activation 

and more severe loss of activation earlier in the disease process. Despite the long-standing 

interest in spatial Bayesian techniques for task fMRI analysis (Friston and Penny, 2003, 

2007; Woolrich et al., 2009), to our knowledge this is the first study of neurodegenerative 

disease that has employed a surface-based spatial Bayesian GLM, and illustrates the 

power of this approach to extract new scientific insights, especially when applied to rich 

longitudinal fMRI studies.

2. Materials and methods

2.1. Participants

ALS participants were recruited through the University of Michigan ALS clinic and had 

been diagnosed as having probable or definite ALS per the El Escorial Criteria (Brooks, 

1994). The project was approved by the University of Michigan Institutional Review 

Board (HUM00000219). All participants gave written informed consent before participation. 

Healthy controls were recruited from the local community through community advertising 

and were balanced on age. Participants underwent magnetic resonance imaging (MRI) at 

multiple research visits. For convenience for the ALS participants, research visits were 

scheduled to coincide with clinical visits. Visits were scheduled at roughly 3-month intervals 

while minimizing travel burden to participants with ALS. Participants with ALS continued 

into the study until they could no longer tolerate the MRI session, decided on their own 

accord to no longer participate, or passed away. The sample used for analysis included 190 

scanning visits from 16 ALS participants (78 visits) and 22 HC participants (112 visits). 

ALS patient demographics are given in Table 1. The number of visits per participant ranged 

from 3 to 10 (median = 4.5, mean = 5). Participants’ visit timing is shown in Supplementary 

Fig. A1. Healthy control participant demographics are given in Supplementary Table A1.
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At the time of each scanning visit, ALS participants had function assessed with the ALS 

Functional Rating Scale (revised) (ALSFRS-R), a standard instrument that is widely used 

in clinical care and clinical research (Rooney et al., 2017). ALSFRS-R scores range from 

48 (no impairment) to 0 (total impairment). Fig. 1 displays ALSFRS-R trajectories for each 

ALS participant in the study, and Supplementary Table A2 shows ALSFRS-R scores at the 

first and last visit for each participant. All but two participants had ALSFRS-R scores over 

35 at the first visit, indicating a relatively mild disease state. Fig. 1 shows that many ALS 

participants experienced wide range of disability levels through the course of the study.

2.2. MRI data collection

MRI data were collected on a GE 3T Excite 2 scanner (General Electric, Milwaukee, 

Wisconsin). A high-resolution T1-weighted image was acquired (3D SPGR, IR 500ms, 15° 

flip angle, TR = 9.036ms, TE = 1.84ms, 256×256 ×160 matrix, 1.102×1.102 ×1.2 mm 

resolution). For image coregistration, we also collected a lower resolution T1-weighted 

image (85° flip angle, TR = 250ms, TE = 5.70ms, 256 ×160 matrix, 3mm slice thickness and 

no skip) at the same spatial locations as the functional time-series data. Blood oxygenation 

level dependent (BOLD) data were collected using a reverse-spiral k-space trajectory 

sequence (Noll, 2002), and reconstructed off-line using a gradient descent algorithm (Noll et 

al., 2004).

BOLD fMRI data were collected for 4 tasks: right hand finger tapping, right first clenching, 

left hand finger tapping, and left fist clenching. All tasks used a paced-block design, in 

which a visual target appeared every 1.5 seconds for the participant to execute the given 

task. This visual cue appeared 20 times in each block, followed by 15 seconds of a fixation 

cross-hair. A block design was used for robustness and less sensitivity to variation in 

the hemodynamic response across individuals (Liu et al., 2001; Shan et al., 2013). Task 

difficulty was matched on hand-strength. Just prior to the scan, participants had their hand 

strength measured 3 times with a dynanometer (Jamar Hydraulic Hand Dynanometer, Model 

SD081028935). In the scanner, participants squeezed a resistive hand exerciser (Sammons-

Preston Model 56573) set to approximately 10% of their mean measured hand strength. The 

task was practiced outside the scanner to ensure participant compliance. The block-rest cycle 

was repeated for a total of 6 times. Each BOLD time-series run was limited to a single 

task, resulting in 4 separate runs. BOLD data were collected with a T2* -weighted gradient-

echo, spiral-readout sequence (90° flip angle, TR = 2s, TE = 30ms, 64×64 matrix, 3 mm 

slice thickness and no skip, 220mm field-of-view, sequential and ascending acquisition, 40 

slices). The first four T2* volumes at the beginning of the time-series sequence were excited 

but not recorded to allow for magnetization equilibrium. We limit analyses to the right hand 

first clenching task, since clenching is simpler to execute than the more complex finger 

tapping sequence (index-to-thumb followed by middle-to-thumb) and more participants were 

able to complete the right hand tasks.

2.3. Image processing

We constructed a custom pipeline to process the BOLD time series to the cortical surface 

for statistical analysis. The goal of this pipeline was to produce surface BOLD time-series 
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data registered to a participant-specific template to allow for longitudinal modeling of 

co-registered visits for a given participant, while respecting participant-specific cortical 

anatomy for more accurate spatial dependence modeling in the Bayesian analysis described 

in Section 2.4 below.

First, the BOLD data were slice-time corrected, realigned, and registered to the N4 non-

uniformity corrected T1-weighted structural scan. A participant template was created based 

on the bias field corrected T1-weighted images of all sessions using iterative rigid body 

registration through Advanced Normalization Tools (ANTs)(Avants et al., 2011). For each 

participant, this template was processed through FreeSurfer (Fischl, 2012) to result in a 

model of the pial surface and a corresponding spherical surface. No data smoothing was 

performed, since the spatial Bayesian model implicitly smooths task activation maps at 

an optimal level (see Section 2.4.1 and Supplementary Section C for more information). 

For additional details on BOLD and surface processing, including registration, bias field 

correction, and surface projection, see Supplementary Section B.

A participant-specific sensorimotor mask consisting of four FreeSurfer sensorimotor areas 

was constructed to limit the location of statistical estimation. To reduce computational load 

of Bayesian model estimation without significant loss of spatial resolution, we resampled 

the pial surfaces, BOLD data, and masks to 10,000 vertices per hemisphere. After applying 

the sensorimotor masks, we are left with approximately 1500 vertices per hemisphere. 

Supplementary Fig. C4 displays the resampled pial surfaces and mask for each hemisphere 

for one individual with ALS.

We identified and removed highly noisy volumes and sessions based on a data-driven 

scrubbing technique (Mejia et al., 2017), resulting in exclusion of six sessions in total (see 

Supplementary Section B for details). Prior to model fitting, we centered and scaled the 

BOLD data to units of local percent signal change. We also regressed nuisance signals from 

the fMRI data and design matrix, including the six rigid body realignment parameters, their 

first derivatives, and linear and quadratic trends. This was done prior to model fitting, since 

the computational complexity of model fitting in our spatial Bayesian model increases with 

each additional design matrix column.

2.4. Statistical analysis

The block design for right hand clenching was convolved with a canonical hemodynamic 

response function (HRF), a double gamma-variant function (Shan et al., 2013). We also 

included the temporal derivative of the task stimulus function to allow for differences in 

HRF onset timing across the brain, participants and visits (Supplementary Fig. B3). No 

prewhitening was performed, since inspection of the residuals revealed little to no temporal 

dependence, likely due to the relatively long TR and inclusion of the HRF derivative.

We fit a longitudinal spatial Bayesian GLM, described next, to produce estimates of 

activation amplitude and areas of activation for each participant and each visit. The model 

was fit within each hemisphere’s cortical surface separately. Areas of activation were based 

on the joint posterior distribution of activation amplitude, while controlling the family-wise 
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error rate (FWER) at a significance level of α = 0.05. We computed the total size of 

activation by summing the surface area associated with each vertex identified as activated.

For comparison, we also fit a classical “massive univariate ” GLM, including identifying 

areas of activation by performing a t-test at every location. We corrected for multiplicity 

within each hemisphere using Bonferroni correction to control the FWER and the 

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to control the false 

discovery rate (FDR). Note that while Bonferroni correction is often considered 

overconservative in traditional whole brain analysis, here we are performing a much smaller 

number of tests (approximately 1500 per hemisphere). A significance level of α = 0.05 was 

used, as in the spatial Bayesian GLM.

2.4.1. Longitudinal spatial Bayesian modeling—We adapted the spatial Bayesian 

GLM proposed by Mejia et al. (2020) for analysis of task fMRI on the cortical surface. 

The original model was designed for single-subject, single-session analysis. We proposed 

a novel longitudinal extension to allow for subject- and visit-specific estimation and areas 

of activation, while leveraging information shared across visits. The details of this model 

are described in Supplementary Section C. Briefly, the spatial Bayesian GLM leverages 

similarities in activation patterns across the cortex, resulting in smoother, more accurate 

estimates and areas of activation compared with a massive univariate approach (Mejia et 

al., 2020). The smoothness (spatial correlation range) of the spatial prior associated with 

the latent fields for each task is estimated through the model, so that the optimal degree 

of smoothing is applied to each field via the prior. In addition, the Bayesian model has 

high power to identify areas of activation. Instead of the traditional approach of hypothesis 

testing followed by multiple comparisons, this model utilizes the joint posterior distribution 

of activation to identify a single set of locations that have high probability of being activated, 

achieving FWER control.

The high statistical power of the spatial Bayesian GLM may result in a phenomenon 

where large areas of low effect size are deemed significantly activated (Cremers et al., 

2017). Therefore, a scientifically relevant effect size, γ, is often specified to avoid detecting 

irrelevant activations. For example, an effect size of γ = 1% can be adopted to identify only 

locations that exhibit > 1% local signal change due to the task. An effect size of γ = 0% 

would correspond to the traditional hypothesis testing framework used in the classical GLM. 

Here, we consider three effect sizes: γ = 0%, 1% and 2%.

Model fitting was performed in using the BayesfMRI R package (version 1.8) (https://

github.com/mandymejia/BayesfMRI/).

2.4.2. Relating size of activation to disability—To examine the relationship 

between size of motor activation and ALS disability, we fit a series of random intercept 

models for each effect size γ and each hemisphere (left/right). To avoid the undue influence 

of temporal outliers on the regression fit, we limited ALS participant data to a 2-year 

window of maximal change in ALSFRS-R. This resulted in removal of the first visit for 

participant A14 (Fig. 1). Additionally, participant A04 had a very slow disease trajectory 

compared with the typical survival time in ALS (Fig. 1) and many visits spanning a long 
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duration (Fig. A1). Since this atypical ALS case is not representative of the population, 

this participant’s data was excluded from model fitting. Robustness checks including subject 

A04 and including all visits from all subjects are given in Supplementary Section F. The 

results of those checks show that our findings are robust to these exclusions. We controlled 

for participant sex and age at first scan in each model described below, since these have been 

shown to be related to disease progression in ALS (Murdock et al., 2021).

In lieu of time since symptom onset, given the heterogeneity of the rate of disease 

progression, we constructed three predictors related to disability in ALS, adopting from 

Rooney et al. (2017) : Total Disability Dij
tot , Hand Motor Disability Dij

ℎand  and Other 

Disability Dij
otℎ . For participant i at visit j,

Dij
tot = 1 − ALSF RSij

48 , Dij
ℎand = 1 − ALSF RSij

ℎand

12 ,

 and Dij
otℎ = 1 − ALSF RSij

otℎer

36 ,
(1)

where ALSFRSij is the total ALSFRS-R score; ALSF RSij
ℎand is the sum of three ALSFRS-

R item scores for tasks related primarily to hand function: handwriting, cutting (with or 

without gastronomy), and dressing/hygiene; ALSF RSij
otℎer is the sum of the nine remaining 

ALSFRS components (speech, salivation, swallowing, turning in bed and adjusting bed 

clothes, walking, climbing stairs, dyspnea, orthopniea, and respiratory insufficiency). The 

denominator of each term is the maximum possible score. Thus, Dij
tot, Dij

ℎand and Dij
otℎ each 

range from 0 (no disability) to 1 (total disability).

Let A ij be the size of the area of activation above a given effect size for participant i at visit 

j. The total disability random intercept model for the ALS group is

Aij = β0 + b0i + β1agei + β2sexi + f Dij
tot + ϵij, ϵij ∼ N 0, σ2 , (2)

where β0 represents the average size of activation when Total Disability is zero; b0i 

represents the random deviation for subject i; and the spline function f(⋅) allows for a 

non-linear relationship between Total Disability and activation size (see Supplementary 

Section B for more information about the construction of the spline). The hand motor 

disability model for the ALS group is

Aij = β0 + b0i + β1agei + β2sexi + f Dij
ℎand + β3Dij

otℎ + ϵij, ϵij ∼ N 0, σ2 , (3)

where β0 represents the average size of activation when Hand Motor Disability and 

Other Disability are both zero; b0i represents the random deviation for subject i; β3 

represents the average change in size of activation associated with a 1-unit increase in 

Other Disability. The spline function f(⋅) allows for a non-linear relationship between 

Hand Motor Disability and activation size. This model form, including the choice of a 

non-linear spline for Hand Motor Disability, was determined by a series of likelihood ratio 

tests (LRTs) (Supplementary Section B). Alternative model formulations were substantially 
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worse in terms of predictive accuracy and Akaike information criterion (AIC) (Akaike, 

1998). This suggests that the non-linear relationship between Hand Motor Disability and 

size of activation is not a spurious result of over-fitting, but rather is statistically significant 

based on the evidence in the data. Note that these models incorporate both longitudinal data 

sources on participants with ALS: brain activation (fMRI) and disability (ALSFRS-R).

To investigate the role of disease progression on the relationship between size of activation 

in disability in ALS, we divided subjects into three groups of progressors based on their 

progression rate (Ellis et al., 1999): fast, moderate and slow (see Table 2). Only one 

participant (A04) was classified as a slow progressor. We therefore limited this analysis 

to a comparison of fast (5 participants) and moderate (10 participants) progressors. The 

model in equati 3 was re-estimated within both groups.

We fit a separate model for HC participants, as they did not complete the ALSFRS-R. To 

avoid undue influence of individuals with an unusually high number of visits (Fig. A1), we 

excluded any visits occurring over 2 years (730 days) post-enrollment. Time in study was 

considered as a predictor but was found to be insignificant based on a LRT. Therefore, we 

adopted the following model for HC participants:

Aij = β0 + b0i + β1agei + β2sexi + ϵij, ϵij ∼ N 0, σ2 . (4)

where β0 represents the mean size of activation across HC participants and b0i represents the 

random deviation for participant i. The models in equations (2) to (4) were fit in R using the 

lmer function from the lme4 package, version 1.1–23 (Bates et al., 2015).

3. Results

We first assessed the reliability of the areas of activation produced by the longitudinal spatial 

Bayesian GLM in healthy controls, compared with the classical GLM. See Supplementary 

Section E for details. We observed that the Bayesian GLM produced noticeably smoother 

estimates and much larger areas of activation at a given effect size, while maintaining 

FWER control. We also analyzed the longitudinal stability of HC participants’ areas of 

activation, which should not change substantially over time, and found that the Bayesian 

GLM produced more stable results. For the subsequent analysis, we therefore adopted the 

Bayesian GLM.

Fig. 2 displays longitudinal estimates and areas of activation for one HC and ALS 

participant. In the HC participant, the area of peak contralateral activation intensity was 

fairly consistent across visits. However, in the ALS participant, the peak intensified from 

visits 4 to 5 then shrunk markedly from visits 5 to 6. These patterns are reflected by the 

areas of activation, particularly > 1% or > 2% signal change. Similar patterns of increasing-

then-decreasing activation over time were observed consistently in ALS participants. The 

participant shown, A26, was observed in Fig. 1 to show a rapid functional decline over 

their final three visits (the ones displayed in Fig. 2). We next examined this non-linear 

relationship between functional disability in ALS and size of motor activation.
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Fig. 3 displays coefficient curves for the random intercept model given in Eqn. 2 

relating Total Disability in ALS to size of activation during right hand clenching. Each 

line represents the estimated relationship between disability and size of contralateral or 

ipsilateral activation at a given effect size. The colored dots on the left represent the 

corresponding mean activation in HCs, based on the model in Eqn. 4. The relationship 

is decreasing overall, but with marked non-linear features, most notably an increase in size 

of activation at moderate levels of disability. This suggests two distinct phenomena: a period 

of hyper-activation accompanied by an overall long-term decline in size of activation. To 

better understand the drivers of these two distinct abnormal activation patterns, we then 

concurrently examined the relationship between size of activation and two separate measures 

of disability: Hand Motor Disability and Other Disability.

Fig. 4 displays coefficient curves estimating the relationship between size of activation and 

these two separate disability measures, based on the random intercept model given in Eqn. 

3. Each line represents the estimated relationship between the predictor shown on the x-axis 

and size of activation at a given effect size, holding the other predictor constant at zero. The 

relationship between size of activation and Hand Motor Disability exhibits a clear inverted 

U-shaped relationship: at moderate levels of disability, there is a sharp increase over the 

normal size of activation in HCs, but with further disability there is a rapid decline to 

abnormally low levels. Considering only measures of disability not associated with hand 

function (Other Disability), there is a purely declining relationship between disability and 

size of activation. This suggests that hyper-activation during hand clenching is specifically 

associated with declining hand motor function.

Fig. 4 shows two additional effects. First, the size of activation when Hand Motor Disability 
or Other Disability reach higher levels is nearly zero at effect sizes of 1% and 2% in 

both hemispheres, suggesting near complete loss of neuronal activation as the processes 

of neurodegeneration associated with ALS disease progression continues. Second, ALS 

participants with very low levels of disability (Hand Motor Disability and Other Disability 
both equalling 0) exhibited slightly elevated contralateral and ipsilateral activation at effect 

sizes of 1% and 2%, relative to HCs. This suggests that patterns of hyper-activation may 

occur very early in the ALS disease process, even prior to the onset of measurable disability.

Fig. 5 displays results stratified by progression rate. The overall relationships with Hand 
Motor Disability are consistent with the inverted U-shaped trajectories observed in Fig. 4. 

However, compared with moderate progressors, fast progressors exhibit three noteworthy 

differences: first, they tend to have greater baseline size of activation (when Hand Motor 
Disability is near zero); second, they tend to peak higher; third, for 0% effect size, 

they tend to peak at an milder level of Hand Motor Disability. Corresponding plots for 

ipsilateral activation show similar patterns (see Supplementary Sec. F). Supplementary Fig. 

F12 displays the relationship between size of activation and Other Disability for fast and 

moderate progressors. Fast progressors also exhibit greater enlargement of activation at 

low levels of Other Disability and decline faster as a function of disability. Since fast 

progressors experience a given level of disability earlier following symptom onset, these 

findings suggest that the neuronal manifestations of fast-progressing disability may outpace 

or even precede clinical disability.
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4. Discussion

Using a rich longitudinal task fMRI dataset and an advanced cortical surface spatial 

Bayesian modeling approach, in this study we observed complex longitudinal trajectories 

of neurodegeneration related to disability in ALS. Below, we discuss these findings 

in the context of previous literature and suggest directions for future research into 

neurodegeneration in ALS. We also discuss the importance of analysis and processing 

choices for longitudinal modeling and other settings where accurate individual-level brain 

measures are needed, including biomarker discovery. Finally, we note several limitations of 

this study.

4.1. Complex trajectories of motor activation

We observed three consistent patterns of change in motor activations. First, we observed 

increased motor activation elicited by a simple hand clench task associated with mild hand 

motor disability. Second, as patients experience further disability, we observed a sharp 

reduction in the size of activation. Third, we also observed reduced activation associated 

with other aspects of disability. These latter two observations suggest major neuronal 

degeneration at more advanced levels of disability.

These effects are most clearly observed contralaterally, but ipsilateral activations exhibit 

similar patterns through the disease process. Note that some level of ipsilateral activation 

is expected in lateral motor tasks (Konrad et al., 2002), as we observe in HCs and in ALS 

subjects with very low levels of disability.

We also observed that, compared with moderate progressors, fast progressors had increased 

hyper-activation occurring at an earlier stage of hand motor disability. These findings 

indicate that certain patterns of neurodegeneration may precede or outpace the rate of 

clinical disability. This builds on the finding of Douaud et al. (2011), who observed 

differential functional connectivity patterns in ALS, in which individuals with slower 

progression rates more closely resembled HCs.

These findings substantially advance prior understanding of motor neurodegeneration in 

ALS. Such discoveries were made possible by our rich longitudinal study that followed ALS 

participants over the course of disease progression, from mild to more advanced disability. 

Following participants until they were no longer able to undergo scanning enabled us to 

discover a late decline in activation following the initial increase associated with milder 

disability. While increased motor activation in ALS has been noted in previous studies 

(Konrad et al., 2002; Poujois et al., 2013; Schoenfeld et al., 2005), to our knowledge this 

subsequent decline has not been observed in prior literature. This, along with the decline we 

observed associated with non-hand disability, likely reflects the drastic motor neuron loss 

known to occur in ALS (Subramaniam, 2019).

4.2. Does increased activation reflect compensation or loss of inhibition?

Our observation of increased motor activation associated with mild hand disability is 

consistent with several studies over the past two decades using fMRI to reveal motor 

cortex changes in ALS. However, we observe more complex longitudinal trajectories, which 
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suggest that the initial hyper-activation may not be fully attributable to compensation, as 

suggested by earlier work. Previously, Konrad et al. (2002), Schoenfeld et al. (2005) and 

Poujois et al. (2013) observed enlarged activations during motor tasks. Poujois et al. (2013) 

related this to disease progression rate but with cross-sectional data. Such hyper-activation 

has been typically interpreted as a compensatory process enabling the patient to complete 

the task in ALS (Konrad et al., 2002; Schoenfeld et al., 2005), building from findings 

in healthy aging (Fitzhugh et al., 2019; Park et al., 2003). In ALS, however, increased 

activation could alternatively be attributed to diminished inhibitory signaling within the 

brain (Poujois et al., 2013), which is known to occur in ALS.

Our findings point to loss of inhibition as a likely contributor to the hyper-activation 

associated with mild disability. First, we observe similar patterns of early hyper-activation 

ipsilaterally, which is more suggestive of loss of inhibition. Second and perhaps more 

notably, the differential trajectories observed across fast and moderate progressors conflict 

with a pure compensation model, since these two groups are experiencing hyper-activation 

at different levels of motor ability. Instead, through the lens of loss of inhibition, the earlier 

and more extreme hyper-activation observed in fast progressors may simply reflect more 

extreme and rapid neurodegeneration of inhibitory pathways at this stage of the disease 

process in fast progressors. It is possible that such an initial loss of inhibition, followed by 

later hypo-activation with additional disease burden, are part of a single process of motor 

neuron loss in ALS (Subramaniam, 2019).

Prior studies employing other neuroimaging modalities can also shed light on this 

question. Transcranial magnetic stimulation (TMS) has been used to probe inter-hemispheric 

communication, specifically early intracortical inhibition (ICI). (Zanette et al., 2002) 

observed that abnormal ICI developed early in the ALS disease process and continued 

to further degrade with disease progression. Magnetic resonance spectroscopy (MRS) 

has revealed decreased endogenous gamma-Aminobutyric acid (GABA) (Foerster et al., 

2013; Lloyd et al., 2000), a principal inhibitory neurotransmitter, in individuals with ALS. 

Although another study of GABA by Blicher et al. (2019) did not see such a change, it was 

based on a small sample and voxel size, which may have led to insufficient statistical power. 

Studies of functional connectivity have produced somewhat conflicting findings, reporting 

both increased and decreased connectivity (Jelsone-Swain et al., 2010; Mohammadi et al., 

2009; Verstraete et al., 2010). Douaud et al. (2011) suggested a possible explanation for this. 

Using functional and structural connectivity, they observed initial loss of inter-hemispheric 

inhibition giving rise to increased trans-hemispheric connectivity. This eventually wanes 

due to loss of the neurons responsible for the random fluctuations producing functional 

connectivity, with connectivity greatly diminishing and eventually falling below baseline 

as the patient progresses. This is consistent with our findings of an inverted U-shaped 

activation trajectory. In sum, there is strong prior evidence for loss of inhibition in ALS from 

studies employing TMS, MRS, and connectivity.

4.3. Producing accurate individual‐level measures of brain function

Our discoveries were facilitated by a sophisticated analysis approach designed to provide 

accurate and reliable individual-level measures of task activation, in contrast with 
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conventional task fMRI analysis methods that tend to exhibit poor reliability in individuals 

(Elliott et al., 2020). This is important for longitudinal studies, as well as other settings 

where robust and reliable individual-level measures are needed. Two key aspects of our 

approach were: 1) performing analysis in subject-specific surface space and 2) adopting a 

novel longitudinal surface-based spatial Bayesian GLM.

4.3.1. Performing analysis in subject surface space—We constructed subject-

specific surface templates, enabling us to preserve anatomical features and avoid potential 

normalization issues in individuals with neurodegenerative disease. Eloyan et al. (2014) 

gave a striking example of such issues in multiple sclerosis: they found that standard 

normalization methods resulted in a large proportion of white matter lesions being relocated 

outside of white matter. Even if subjects are aligned anatomically, they may not align 

functionally due to individual differences, reducing the utility of voxel-level comparisons in 

standard space (Dubois and Adolphs, 2016). Issues of misalignment and distortion can be 

mitigated by performing analyses in subject space. Performing surface-based analysis also 

helped enhance specificity by avoiding blurring across tissue classes or distinct areas of the 

cortex (Brodoehl et al., 2020).

Subject-space analyses require aggregating and comparing subject-level results in a different 

way than traditional voxel-wise comparisons. In our analysis, we used size of activation as 

the basis for examining disease trajectories and group differences, facilitated by the robust 

areas of activation produced by the spatial Bayesian GLM. Several alternatives are possible: 

Gupta et al. (2010) used spatial properties of activation patterns for predictive modeling, 

while Stern et al. (2009) used topographical analysis. Both approaches outperformed voxel-

wise group-difference analysis in terms of discovering disease effects. Notably, Stern et 

al. (2009) found HCs to exhibit high spatial heterogeneity in activation, suggesting that 

performing analysis in subject space may be beneficial more generally.

4.3.2. The advantages of longitudinal spatial bayesian modeling—Surface-

based spatial Bayesian modeling of task activation has been previously validated and shown 

to produce more accurate and robust activations by leveraging spatial dependencies (Mejia 

et al., 2020). We proposed a novel longitudinal extension, which we validated by examining 

the stability of results for HC participants over time (see Supplementary Section E). This 

extension has important advantages over the single-session model. By pooling information 

across sessions to estimate model parameters, it produces more accurate estimates and areas 

of activation and reduces longitudinal noise, enhancing subsequent longitudinal analysis. 

This modeling framework can be extended to non-longitudinal contexts, such as cross-

sectional studies with multiple sessions per subject or small group studies.

4.4. The next frontier: Biomarker discovery

Motor cortex changes hold potential as a possible biomarker for ALS disease diagnosis and 

progression. Brain signatures may signal early loss of inhibition, even in pre-symptomatic 

disease, that might serve as a biomarker for ALS diagnosis. Changes (structural and 

functional connectivity) due to the ALS disease process (Lee et al., 2017) have been 

observed in pre-symptomatic carriers of C9orf72 (a genetic defect linked to ALS (Renton 
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et al., 2011). Our findings suggest the possibility of very early hyper-activation above a 

scientifically meaningful effect size. Future work should assess hyper-activation and loss of 

inhibition as potential biomarkers for pre-clinical ALS. Declining motor activation following 

a period of over-activation may also serve as a marker of a change to a later phase of disease 

progression.

Clinical trials employing clinical outcome measures are typically lengthy and expensive. 

Development of a brain biomarker of ALS reflecting enhanced understanding of 

pathophysiology would have major implications for clinical trials and therapies (Gordon 

et al., 2010) by making them more efficient and effective (Turner et al., 2013). For example, 

a trial of a drug targeting abnormal cortical excitability could employ such a biomarker 

to select only subjects that are in early phases of motor neurodegeneration. Perhaps more 

importantly, such a biomarker could also be used to monitor and guide treatment, by 

escalating drug dosage until suppression of hyper-excitability is achieved or decline in 

activation over time is arrested. Vitally, a biomarker that is sensitive to cortical changes 

could produce evidence of drug intervention efficacy prior to manifestation in measurable 

clinical decline (Turner et al., 2009).

4.5. Study limitations

As with other rare neurological diseases, neuroimaging studies of ALS are difficult to 

execute. Given the rarity and typically short survival time characterizing ALS, sample sizes 

tend to be smaller, especially for single-site studies. While consortia studies are taking 

place, these are currently focused on structural and resting state investigation (Bharti et al., 

2020). While the sample size in our study is a limitation, a literature search suggests that 

our study is one of the largest, if not the largest (Castelnovo et al., 2020; Trojsi et al., 

2020), longitudinal studies investigating BOLD activation in ALS. We sought to mitigate the 

negative impacts of small sample size by employing a sophisticated analysis approach, thus 

avoiding the power issues associated with a classical massive univariate analysis.

Three additional limitations of our sample are important to note. First, three of our ALS 

subjects were enrolled over 4 years since first symptom onset. However, these were 

otherwise not unusual in terms of overall disease progression rate or disability levels 

during their scanning sessions. Since disease progression in ALS is highly heterogeneous 

and we used disability and disease progression rates as predictors rather than time since 

symptom onset, we elected to include these subjects in our analysis. Second, while four 

ALS participants had CBS scores indicating possible frontotemporal dementia (FTD), three 

of the four were close to the cutoff for FTD. Future work should focus on collecting larger 

longitudinal neuroimaging studies of ALS, including consortia studies, to increase sample 

sizes and make it possible to investigate possible interactions between ALS and FTD. Third, 

we did not test for C9orf72 repeat expansion, since unfortunately this genetic test was not 

widely available at the time of data collection.

One limitation common to neuroimaging studies of ALS is the requirement that ALS 

participants must be capable of lying in a supine position for some length of time during 

MRI scanning. While this constraint can be lessened by allowing the individual to take 

breaks and sit up as needed, it still imposes a bias on neuroimaging studies of ALS (van der 
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Burgh et al., 2020), since they are limited to only those that can tolerate the MRI. A seated-

position MRI would allow patients with more disability to participate, but these systems 

have greatly reduced magnetic field strengths of 0.25T (G-scan; Esaote SpA, Genoa, Italy) 

or 0.60T (FONAR Melville, New York, USA). To mitigate this source of bias, we examine 

cortical activation as a function of physical disability, as opposed to time since symptom 

onset, which helps account for the bias toward subjects with lower disease burden. Even so, 

our study is limited in terms of the range of disease severity we were able to observe.

In our analysis, we only considered activation within the motor mask (Supplementary Fig. 

C4), so activation in other areas cannot be observed. It is conceivable that the enlarged 

areas of activation we observe in ALS may expand beyond the mask used in this study, 

resulting in possible underestimation of size of activation for some subjects. Additionally, 

our analysis did not include subcortical or cerebellar areas. Future work should focus on 

analyzing longitudinal trajectories of motor activation in ALS across the entire cortex and 

within relevant subcortical and cerebellar regions. Our analysis also did not consider atrophy 

over the course of ALS disease progression. Atrophy may help to partly explain the dramatic 

drop in motor activation occurring with high disability but would not explain increased 

activation at lower levels of disability. Future research should aim to development models to 

incorporate atrophy.

Finally, we employed a two-stage statistical approach: in the first stage we fit a longitudinal 

spatial Bayesian GLM on the data from each participant, based on which we estimated 

the size of activation at each visit; in the second stage we fit a series of group-level linear 

mixed-effects models, where we studied the relationship between size of activation and 

disease progression. Besides computational considerations, in our analysis there are two 

other reasons to employ a two-stage approach. First, the unit of analysis in our second-stage 

mixed effects models is the entire brain, rather than individual vertices, so designing a 

hierarchical model to identify the group-level covariate effects of interest would not be 

trivial. Second, we performed all analyses in subjects’ native space to preserve the unique 

cortical anatomy of each participant. This is particularly important here because of the 

negative impacts of neurodegeneration on inter-subject registration. Therefore, subjects are 

not spatially aligned and cannot be jointly analyzed vertex-wise in a single hierarchical 

model. We note that our two-stage approach is analogous to traditional two-stage modeling 

in task fMRI, where subject-level estimates produced at the first-level GLM become the 

response variable in a second-level group model (Holmes, 1988). Mumford and Nichols 

(2009) showed that this approach produces unbiased second-level coefficient estimates, 

which are also efficient if errors are homogeneous at the first level. This is because the 

estimation error of first-level effects is absorbed into the error variance in the second-level 

model. In the same way, our linear mixed-effects models account for estimation error 

in the size of activation produced from the spatial Bayesian GLMs and therefore should 

produce unbiased estimates of group-level covariate effects. If we assume homogeneous 

error variance in the size of activation estimates across subjects, then our covariate effect 

estimates will also be efficient. Future research should focus on formally quantifying and 

accounting for uncertainty in second-level analysis of the size of activation produced from 

first-level GLMs, particularly in the case of heterogeneous errors.
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5. Conclusion

In this paper, we adopted a sophisticated longitudinal surface-based Bayesian analysis 

approach to analyze a rich longitudinal fMRI study of ALS. In this study, individuals with 

ALS and matched healthy controls were observed regularly for 1–2 years or longer. Our 

analyses revealed a complex trajectory of cortical activation during a simple motor hand 

clench task: activation initially spreads within contralateral and ipsilateral motor areas, but 

with additional disease burden activations sharply diminish and eventually nearly disappear. 

We observed systematic differences based on clinical progression rate, with fast progressors 

exhibiting more extreme effects earlier in the disease process. The nuances of these findings 

suggest that initial hyper-activation—observed in earlier studies but assumed to be due to 

functional compensation—is likely due to a loss of inhibitory signals forming part of a larger 

process of neuronal decay and death. These discoveries were made possible by pairing a rich 

longitudinal fMRI dataset with a surface-based spatial Bayesian modeling approach capable 

of identifying activations in individuals over time with high accuracy and power. Our study 

establishes that this advanced statistical approach furthers the study of neurodegenerative 

disease and is promising for the study of other time-varying processes such as development 

and aging. The surface-based spatial Bayesian GLM is implemented in a user-friendly R 

package, BayesfMRI.
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Fig. 1. ALSFRS-R disease trajectories over time.
ALS Functional Rating Scale (revised) (ALSFRS-R) scores range from 48 (no impairment) 

to 0 (total impairment). Each line represents an individual participant with ALS. Note 

that for many participants, the first two visits occurred in quick succession and appear 

over-lapping on the plot. These clinical trajectories illustrate the wide heterogeneity of the 

disease process, with some patients exhibiting rapid clinical progression (e.g., A08, A21, 

A23, A25, A34) while others exhibit very slow progression (e.g., A04).
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Fig. 2. Estimates and areas of activation during hand clenching in one HC and one ALS 
participant.
Areas of activation show binary maps of significance at three nested effect sizes, γ = 0% 

(red plus orange plus yellow), 1% (orange plus yellow), and 2% (yellow). Top panel: The 

HC participant shows relatively stable patterns of activation over time. Bottom panel: The 

ALS participant shows noticeable changes between visits 4, 5 and 6 (their final three visits 

during the study). Between visits 4 and 5, the size of peak activation appears to increase 

somewhat, while between visits 5 and 6 the area peak activation virtually disappears. 
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Similar patterns are observed in other ALS participants and appear to reflect dynamics 

of neurodegeneration in ALS.
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Fig. 3. Relationship of total ALS disability to the size of contralateral and ipsilateral activation in 
response to right hand clenching.
Values are based on the mixed effects model given in Eqn. (3) . The colored dots on the 

left-hand side of each plot represent the mean size of activation for HC participants, based 

on the random intercept model given in Eqn. (4), with error bars showing one standard error 

around the mean.
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Fig. 4. Relationship between the size of activation and hand motor disability and other disability 
in ALS.
Values are based on the mixed effects model given in Eqn. (3) . The predictor variables are 

Hand Motor Disability and Other Disability. The range of the x-axes represent up to the 

90th quantile of each predictor. Shaded bands show one standard error around the mean. 

The colored dots on the left-hand side of each plot represent the mean size of activation 

for HC participants, based on the random intercept model given in Eqn. (4), with error 

bars showing one standard error around the mean. The curves shown in panel (a) reveal an 
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inverted-U-shaped relationship between size of activation and Hand Motor Disability; panel 

(b) shows decreasing size of activation associated with other aspects of disability.
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Fig. 5. Relationship between activation size and hand motor disability by ALS progression rate.
(a) Disability progression rate of ALS subjects and classification. (b) Coefficient curves for 

the size of contralateral activation in response to right hand clenching, based on the model 

in Eqn. 3 stratified by progression rate. Shaded bands show one standard error around the 

mean. Different panels correspond to the effect sizes 0%, 1% and 2% signal change. The 

overall shape is consistent with Fig. 4. However, fast progressors tend to peak higher and 

have higher baseline size of activation than moderate progressors. Furthermore, for the 0% 

effect size, the fast progressors tend to peak at an earlier stage of hand motor disability. 

Corresponding plots for ipsilateral activation are given in the Supplementary Materials and 

show similar patterns.
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Table 1

ALS patient demographics.

ID Sex Onset Age MSO Onset Region CBS Dom. Hand

A04 M 58.4 4.0 LL 17 R

A06 M 51.9 18.8 LH NA R

A08 M 64.0 7.5 LH, RH NA R

A11 M 56.7 13.3 bulbar 9 R

A14 M 54.2 11.2 RH 18 R

A18 F 58.6 32.6 all limbs 9 R

A19 F 66.9 10.0 bulbar 14 R

A21 M 65.9 10.6 LL, RL 9 R

A23 M 55.6 12.8 bulbar 6 R

A25 M 53.6 12.1 bulbar 13 R

A26 M 56.3 23.5 bulbar, limb 17 R

A30 M 58.2 
*

60.9 
* LL 12 R

A31 F 61.2 55.4 bulbar 12 R

A32 M 42.5 55.4 LH, RH 13 R

A33 F 54.0 15.7 LH 16 R

A34 M 54.8 14.4 LH 18 R

MSO = months between patient-reported onset of symptoms and the first scan.

*
Patient A30 progressed from primary lateral sclerosis (PLS) to ALS; MSO based on clinical note indicating symptom onset date related to ALS. 

LH = left hand, RH = right hand, LL = left leg, RL = right leg. CBS = Cognitive Behavioral Screen. NA indicates CBS was not collected for 
that subject. Maximum possible score of 20, scores below 17 may suggest cognitive impairment, and scores below 10 suggest probable ALS with 
frontotemporal dementia (FTD). Scores are from date of first scan, except A04 (taken at 6th scan), A18, A 23, A26, A32, and A34 (2nd scan); 
Dom. Hand = dominant hand, as measured by the Edinburg Inventory.

Neuroimage. Author manuscript; available in PMC 2022 October 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mejia et al. Page 29

Table 2

Progression Rate Groups.

Progression Rate Progression Rate Range ALS Participants

Slow < 0.1 per month A04

Moderate 0.1 to 0.69 per month All other ALS participants

Fast ≥ 0.7 per month A08, A21, A23, A25, A34

Progression rate was calculated as the average decrease in ALSFRS-R score (from the maximum value of 48, representing no disability) per month 
from disease onset to the last visit of each subject. The five fast progressors are those seen as exhibiting early decline in Fig. 1.
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