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Hermansky-Pudlak syndrome (HPS), a rare heterogeneous autosomal recessive disorder,
is characterized by oculocutaneous albinism (OCA) and a bleeding diathesis due to a
defect regarding melanosomes and platelet delta (δ)-granule secretion. Interestingly,
patients with HPS type 2 (HPS-2) or HPS type 10 (HPS-10) present additionally with
an immunological defect. We investigated three patients (IP1, IP2, and IP3) who suffer from
a bleeding diathesis. Platelet aggregometry showed impaired platelet function and flow
cytometry revealed a severely reduced platelet CD63 expression hinting to either a defect
of platelet delta granule secretion or a decreased number of delta granules in these
patients. However, only IP3 presents with an apparent OCA. We performed panel
sequencing and identified a homozygous deletion of exon 6 in DTNBP1 for IP3.
Western analysis confirmed the absence of the encoded protein dysbindin confirming
the diagnosis of HPS-7. Interestingly, this patient reported additionally recurrent bacterial
infections. Analysis of lymphocyte cytotoxicity showed a slightly reduced NK-
degranulation previously documented in a more severe form in patients with HPS-2 or
HPS-10. IP1 is carrier of two compound heterozygous variants in the HPS3 gene (c.65C >
G and c.1193G > A). A homozygous variant inHPS5 (c.760G > T) was identified in IP2. The
novel missense variants were classified as VUS (variant of uncertain significance) according
to ACMG guidelines. For IP1 with the compound heterozygous variants in HPS3 a
specialized ophthalmological examination showed ocular albinism. HPS3 and HPS5
encode subunits of the BLOC-2 complex and patients with HPS-3 or HPS-5 are
known to present with variable/mild hypopigmentation.

Keywords: Hermansky-Pudlak syndrome (HPS), HPS-3, HPS-5, HPS-7, BLOC-1, BLOC-2

Edited by:
Shenghui Zhang,

First Affiliated Hospital of Wenzhou
Medical University, China

Reviewed by:
Rong He,

Mayo Clinic, United States
Lluis Montoliu,

National Center for Biotechnology
(CSIC), Spain

*Correspondence:
Barbara Zieger

barbara.zieger@uniklinik-freiburg.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Experimental Pharmacology and Drug
Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 30 September 2021
Accepted: 24 December 2021
Published: 19 January 2022

Citation:
Boeckelmann D, Wolter M,

Neubauer K, Sobotta F, Lenz A,
Glonnegger H, Käsmann-Kellner B,
Mann J, Ehl S and Zieger B (2022)

Hermansky-Pudlak Syndrome:
Identification of Novel Variants in the

Genes HPS3, HPS5, and
DTNBP1 (HPS-7).

Front. Pharmacol. 12:786937.
doi: 10.3389/fphar.2021.786937

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 7869371

ORIGINAL RESEARCH
published: 19 January 2022

doi: 10.3389/fphar.2021.786937

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.786937&domain=pdf&date_stamp=2022-01-19
https://www.frontiersin.org/articles/10.3389/fphar.2021.786937/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.786937/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.786937/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.786937/full
http://creativecommons.org/licenses/by/4.0/
mailto:barbara.zieger@uniklinik-freiburg.de
https://doi.org/10.3389/fphar.2021.786937
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.786937


INTRODUCTION

Hermansky-Pudlak syndrome (HPS) which was first described by
Hermansky and Pudlak (Hermansky and Pudlak 1959) has a
prevalence of 1–9 per 1,000,000 individuals (Christensen et al.,
2017). The key characteristics of HPS include oculocutaneous
albinism (OCA) and a bleeding tendency. Typically, the patients
present with congenital nystagmus, iris transillumination,
decreased visual acuity, and reduced skin/hair pigmentation
(Gahl et al., 1998). Bleeding symptoms may manifest as
epistaxis, petechiae, extensive bruising or even serious post-
traumatic or perioperative complications. To date, 11 types of
HPS have been described (HPS-1- HPS-11) explaining some of
the clinical variability that relates to the biological functions of the
impaired protein complex (Huizing et al., 2020; Pennamen et al.,
2020). Malfunctioning of lysosome-related organelles such as
melanosomes and platelet δ-granules causes HPS, as they are
essential for granule transport (Vincent et al., 2009). Platelet δ-
granules secrete serotonin, calcium, ADP, and polyphosphate,
therefore, enhancing platelet adhesion and activation (Bowman
et al., 2019). Currently, 11 genes associated with HPS (HPS1,
AP3B1, HPS3, HPS4, HPS5, HPS6, DTNBP1, BLOC1S3,
BLOC1S6, AP3D1, and BLOC1S5) have been reported. These
genes encode either for the multi-protein complexes BLOC,
(biogenesis of lysosome-related organelles complex) or AP-3
(adaptor protein-3).

BLOC-1 comprises the gene products of DTNBP1 (HPS-7),
BLOC1S3 (HPS-8), BLOC1S6 (HPS-9), and BLOC1S5 (HPS-11)
(Huizing et al., 2020; Pennamen et al., 2020). DTNBP1 (HPS-7) is
located on chromosome 6 (6p22.3) and comprises ten exons. The
gene codes for 351 amino acid polypeptides (MW 39.5 kD). To
our knowledge, only seven patients with four different pathogenic
genetic variants in DTNBP1 (HPS-7) have been described (Li
et al., 2003; Lowe et al., 2013; Bryan et al., 2017; Lasseaux et al.,
2018; Bastida et al., 2019). These patients exhibit a characteristic
phenotype of bleeding diathesis and hypopigmentation (OCA).
For these patients signs of immunodeficiency or pulmonary
fibrosis were not reported, however, the number of patients
described with HPS-7 is very low.

BLOC-2 subunits are encoded by HPS3, HPS5, and HPS6 (Di
Pietro et al., 2004; Gautam et al., 2004). HPS3 is located on
chromosome 3 (3q24) and HPS5 on chromosome 22 (22q.12.2),
respectively. HPS3 (MW 11.7kD) encompasses 17 exons coding
for a 1,004 amino acid polypeptide. In 2001 the first patients with
HPS-3 were described (Anikster et al., 2001; Huizing et al., 2001).
HPS5 (127.4 kD) codes for a 1,129 amino acid polypeptide and
comprises 23 exons. Zhang et al. identified the first pathogenic
variant in human HPS5, which is orthologue to ru2, the gene
mutated in a HPS mimicking mouse model (Zhang et al., 2003).
Individuals with pathogenic variants in BLOC-2 seem to present a
milder HPS phenotype causing a moderate bleeding diathesis and
an OCA with variable hypopigmentation (Nurden et al., 2020).

BLOC-3 encompasses the gene products of HPS1 and HPS4
(Wei 2006). Deficiencies in these proteins are associated with a
more severe bleeding diathesis, OCA, and serious complications
such as pulmonary fibrosis and granulomatous colitis (Huizing
et al., 2020; Nurden et al., 2020).

HPS-2 and HPS-10 are caused by variants in AP3B1 and
AP3D1, respectively, which constitute the adaptor protein-3 (AP-
3) complex. Affected patients present with a bleeding diathesis,
OCA, and immunodeficiency due to impaired cytotoxic activity
of T-lymphocytes and/or natural killer (NK) cells (Fontana et al.,
2006; Ammann et al., 2016; Mohammed et al., 2018). HPS-2
patients are at risk to develop pulmonary fibrosis in childhood
(Hengst et al., 2018). One patient with HPS-2 developed
hemophagocytic lymphohistiocytosis (HLH) (Enders et al.,
2006). For patients with HPS-2, the risk to develop HLH is
lower than for patients with Griscelli or Chediak-Higashi
syndrome (Jessen et al., 2013).

Here, we report novel genetic alterations in HPS3, HPS5, and
DTNBP1 (HPS-7) in patients with a platelet delta granule
secretion defect and differently pronounced OCA.
Interestingly, we also document a mild NK cell degranulation
defect in HPS-7, potentially implicating BLOC-1 also in immune
functions.

MATERIALS AND METHODS

Patients
Index Patient 1
The six-year-old girl (ethnic origin: European) presented with
frequent epistaxis (once a month) and bruising. Previous surgery
had not been performed. Cutaneous albinism was not apparent.
After the molecular genetic analysis had identified compound
heterozygous variants in the gene HPS3, a specialized
ophthalmological examination was initiated and showed ocular
albinism (atypical albino-VEP) with normal visual acuity (no
nystagmus). The girl’s mother exhibits prolonged menstrual
bleeding. Her father and older sister did not show any
bleeding symptoms. The parents are not consanguine.

Index Patient 2
The 45-year-old woman (ethnic origin: Arabic) had a history of
extensive bruising, epistaxis, menorrhagia, postoperative bleeding
(teeth extraction, liposuction), bleeding after deliveries, joint
hemorrhages, microhematuria, and impaired wound healing/
increased scarring after surgery. She has eight children and
suffered from increased bleeding during childbirth. Therefore,
she had received red blood cell and platelet concentrates each
time. The symptoms of menorrhagia improved significantly after
therapy with tranexamic acid and desmopressin. Cutaneous
albinism was not apparent. She and her husband are
consanguine, however, her husband does not present any
bleeding symptoms. Some of their 8 children seem to exhibit
only very mild bleeding symptoms, none of them is clinically as
severely affected as their mother.We performed panel sequencing
for IP2 and two of her children (daughter and son).

Index Patient 3
The 60-year-old woman (ethnic origin: European, Portuguese
descent) presented with OCA and frequent gingival bleeding.
Furthermore, she had experienced prolonged bleeding after skin
excision and adenoma resection. She did not show signs of colitis.
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She suffers from asthma. She reported that she has always
suffered from severe respiratory infections and recurrent skin
furuncles. The patient does not have children. Her consanguine
parents are deceased. Her brother had OCA and recurring
epistaxis. At the age of 54 ears, he died due to liver cirrhosis
(caused by a hepatitis B infection) and due to internal bleeding.

Platelet Count and Platelet Aggregometry
Analysis
Platelet count was measured using an automated cell counter
(Sysmex KX-21 N, Norderstedt, Germany). Platelet-rich plasma
(PRP) and platelet-poor plasma (PPP) were obtained by
centrifugation of citrate-anticoagulated blood samples. Using
the APACT 4004 (LABiTec, Ahrensburg, Germany), platelet
aggregometry analyses were performed after stimulation with
collagen (2 and 10 μg/ml; Takeda, Linz, Austria), adenosine
diphosphate (ADP; 4 and 10 μmol/L; Sigma-Aldrich, St. Luis,
MO, United States), epinephrine (8 and 16 μmol/L; Sanofi-
Aventis, Frankfurt, Germany) and ristocetin (1.2 mg/ml;
American Biochemical and Pharmaceutical LTD., Frankfurt,
Germany).

Flow Cytometry Analyses
Flow cytometry analyses were performed using FACSCalibur
(Becton Dickinson, Heidelberg, Germany) (Lahav et al., 2002).
Diluted PRP aliquots (5 × 107 platelets/ml) were fixed and stained
with FITC-labeled monoclonal surface antibody against CD41
(GPIIb/IIIa-complex), CD42a (GPIb/IX) and CD42b (GPIb)
(Coulter, Immunotech, Marseille, France). FITC-labeled anti-
VWF (Bio-Rad AbD Serorech, Puchheim, Germany) and
Alexa Fluor 488-labeled anti-fibrinogen (Invitrogen, Waltham,
MA United States) was used to stain the platelets. In the presence
of 1.25 mM Gly-Pro-Arg-Pro (Bachem, Bubendorf, Switzerland)
diluted PRP (5 × 107 platelets/ml) was stimulated with a number
of concentrations of thrombin (0, 0.05, 0.1, 0.2, 0.5, and 1 U/ml;
Siemens Healthineers, Marburg, Germany) to conduct the CD62
and CD63 expression analyses. Additionally, the platelets were
stained with monoclonal FITC-labeled anti-CD62 (P-selectin)
and anti-CD63 antibodies (lysosomal membrane-associated
glycoprotein 3, LAMP-3; Immunotech, Marseille, France).
Data of patients and controls (day control and 20 independent
measurements from 10 controls as mean ± standard error of the
mean, SEM) were analyzed using GraphPad Prism software
(version 8, San Diego, CA, United States).

Molecular Genetic Analyses
Informed consent for molecular genetic analysis was obtained for
each patient and the investigated family members. To extract
genomic DNA from EDTA blood, we used standard procedures
and the Blood and Cell Kit by Qiagen (Qiagen GmbH, Hilden,
Germany). For index patients panel sequencing (95 genes including
all 11 HPS genes; Supplementary Material S1 gene list) was
performed using a custom-designed Nextera Rapid Enrichment
Kit (Illumina) followed by sequencing on a MiSeq (Illumina).
The average sequencing depth overall genes for the 3 patients
investigated was 98% for 20x and 91% for 100x, respectively.

SeqPilot (JSI medical systems) was used for data analyses. The
variants were exported and filtered by allele frequency and
serious consequences. We utilized supporting software
ALAMUT®(v.2.15), pathogenicity prediction (SIFT, MutTaster,
PolyPhen2, and CADD), occurrence in population and disease
databases (HGMD public version, Huizing HPS Mutation update
(Huizing et al., 2020)) in order to classify the variants. These analyses
were performed in accordance with the ACMG (American College
of Medical Genetics) guidelines (Richards et al., 2015). For
segregation analysis Sanger sequencing was conducted.

cDNA Sequencing Using Reverse
Transcripted Platelet-Derived mRNA
(for IP3)
Total RNA was isolated from washed human platelets using 2 ml
TRIzol® reagent (Thermo Fisher Scientific). Single strand cDNA
synthesis was generated with SuperScript® III Reverse
Transcriptase (Thermo Fisher Scientific). Amplification was
performed using specific primers (fw: TGCAGCAGGATTTCA
CCTCC; rev: ATCTGCTCCAGCATGTCCAC) covering the
coding region from exon 1 to exon 9 of DTNBP1.

Platelet Preparation and Immunoblotting
(for IP3)
Platelet-rich plasma (PRP) of the patients and a healthy volunteer was
obtained by centrifugation of citrate-anticoagulated whole blood (120
× g for 10min). Platelets were then isolated fromPRP by gel-filtration
using a Sepharose CL-2B (GE Healthcare Life Sciences) column,
eluted with Tyrode buffer (140mM NaCl, 2.7mM KCl, 0.42mM
NaH2PO4, 12mM NaHCO3, 5.5mM glucose, and 5mM HEPES;
pH7.4). Platelets were centrifuged at 1,200× g for 10min and lysed in
lysis buffer (5 mM Tris-HCl, pH 7,4, 50mMNaCl, 0,25mMMgCl2,
0.1%Nonidet P40, 10% glycerol including protease inhibitor cocktail;
Roche cOmplete, Merck). Protein content was determined with
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) and
adjusted to 10 µg. Denatured platelet lysates were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE, Invitrogen) and blotted onto Hybond-P polyvinylidene
difluoride membrane (PVDF, Amersham, GE Healthcare Life
Sciences). Membranes were blocked with 5% milk powder in
TBST (20mM Tris, 140mM NaCl, 0.1% Tween; pH7.6) probed
with anti-dysbindin antibody (dilution 1:2.000; Abcam) and detected
using horseradish peroxidase (HRP)-conjugated goat anti-rabbit
(dilution 1:10.000; Cell Signaling Technology) and enhanced
chemiluminescence solution (Amersham detection reagent, GE
Healthcare Life Sciences). For loading control, the same blot was
incubated with anti-GAPDH (glyceraldehyde-3-phosphate
dehydrogenase; dilution 1:300.000; Abcam) and HRP-coupled goat
anti-mouse (dilution 1:10.000; Dianova).

Analysis of NK Cell and CTL Degranulation
(for IP3)
NK cell degranulation was analyzed as described (Bryceson et al.,
2012). Briefly, fresh NK cell degranulation was assessed by
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stimulation of isolated peripheral blood mononuclear cells
(PBMCs) with K562 target cells followed by flow cytometric
analysis of CD107a surface expression. For evaluation of activated
NK cell and CTL degranulation, PBMCs were cultured in the
presence of Phytohemagglutinin (PHA) and Interleukin-2 (IL-2)
for 48 h at 37°C prior to stimulation with K562 target cells and
anti-CD3/CD28 beads.

RESULTS

Platelet Count, In-Vivo Bleeding Time, and
Platelet Function Analysis
All three index patients presented with normal platelet counts
(234 × 109/L, 173 × 109/L, and 189 × 109/L, respectively). The
in-vivo bleeding time (Ivy) was severely prolonged (IP1 and
IP3 > 15 min, IP2 > 8 min (norm < 6 min)). Platelet
aggregation was severely impaired after stimulation with
collagen (2 μg/ml) and epinephrine (8 μmol/L) for all index
patients. Impaired aggregation after stimulation with low dose
ADP (4 μmol/L) was seen in IP1 and IP2. Agglutination after
stimulation with ristocetin (1.2 mg/ml) was normal (Table 1).

Flow cytometry analysis revealed severely reduced CD63
expression for all index patients (Figure 1). All of them
showed normal values for expression of CD62, CD42a,
CD42b, CD41, fibrinogen binding, and VWF-binding (data
not shown). IP1’s sister presented with only slightly reduced
CD63 expression, while her mother`s expression was borderline
low. Flow cytometry was not performed for the father. Six of IP2`s
children presented with borderline low and two with a slightly
reduced CD63 expression.

Molecular Genetic Analysis, cDNA
Sequencing, and Immunoblotting
In IP1 two novel heterozygous missense variants in HPS3
(NM_032383.3) were identified (c.65C > G; p.Pro22Arg and
c.1193G > A; p.Cys398Tyr). Family genotyping confirmed
compound heterozygosity. Father and sister of IP1 are
heterozygous carriers of the c.65C > G variant, whereas the
mother is a carrier of the c.1193G > A variant. Since the index
patient lacked apparent cutaneous albinism we confirmed both
variants to be germline by genotyping buccal swab DNA. The
c.65C > G variant is absent from GnomAD v2.1 (https://gnomad.

broadinstitute.org/) and EVS v.0.0.30 (https://evs.gs.washington.edu/
EVS/) databases (ACMGClassification: uncertain significance [PM1,
PM2]). The variation shows a moderately conserved nucleotide
(phyloP: 4.79 [−19.0, 10.9]. In silico pathogenicity prediction (PP)
is predominantly disease causing (SIFT, tolerated; MutationTaster,
disease causing; PolyPhen2, probably damaging, CADD score 29.1).
The second variant c.1193G > A is reported once in the GnomAD
database in a heterozygous state and absent from EVS (ACMG
Classification: uncertain significance [PM1, PM2, PP3]). In silico PP
is concordant disease causing and CADD score is 29.1.

In IP2 a novel homozygous missense variant (c.760G > T;
p.Val254Phe) in HPS5 (NM_181507.1) was identified. The
patient’s husband showed wild type sequence at this
position. NGS and Sanger sequencing revealed that all of
her eight children were heterozygous carriers for this HPS5
variant as expected. The variant c.760G > T is reported six
times in the GnomAD database in a heterozygous state (all
counts in South Asian population) and absent from EVS
(ACMG Classification: uncertain significance [PM1, PM2,
PP3]). In silico PP is concordant disease causing and CADD
score is 28.1. Additionally we identified a variant
(NM_018668.5:c.1780A > G) in the gene VPS33B in a
heterozygous state. This variant was also detected in the
NGS analysis of her daughter. According to OMIM
alterations in the gene VPS33P are autosomal recessive
associated with ARC (Arthrogryposis, renal dysfunction,
and cholestasis) and α-granule deficiency.

IP3 showed a novel homozygous deletion of exon 6 in
DTNBP1 (Figure 2B). Exon 6 could not be amplified from
genomic DNA using PCR analysis. We performed cDNA
sequencing out of platelet derived mRNA and confirmed
the absence of exon 6. Interestingly, the small exon 7 was
spliced out. It seems that the spliceosome used the acceptor
splice site of exon 8. This would result in an in-frame loss of 52
amino acids in the middle of the expected protein
(p.H120_A171del). (Figure 2C). To investigate if the
aberrant mRNA is leading to detectable dysbindin we
performed Western blot analysis. Dysbindin, which is
encoded by DTNBP1, was not detectable in platelets
(Figure 2D). The antibody used recognizes the C-terminal
sequence within human dysbindin (aa 251-301). However, it
is possible that the protein will fold incorrectly and in addition
protein degradation will occur. Genetic alterations of all
patients are summarized in Table 2.

Analysis of Lymphocyte Cytotoxicity
We analyzed the degranulation capacity of NK cells and
cytotoxic T lymphocytes (CTL) from IP3 using CD107
degranulation assays. “Fresh” NK cell degranulation in
response to K562 target cell stimulation was slightly
impaired compared to more than 30 historical controls and
additional day controls in two independent experiments
(Figure 3A). Following IL-2 stimulation for 48h, the
degranulation of patient NK cells increased to normal
values. Moreover, degranulation of PHA/IL-2 blasts
following stimulation with anti-CD3/28 was in the normal
range (Figure 3B).

TABLE 1 | Platelet aggregometry analyses (LTA). Data are presented as maximal
aggregation/agglutination in % compared to normal control levels.

Stimulation IP1 [%] IP2 [%] IP3 [%] Norm [%]

Collagen (2 μg/ml) 11 26 29 >70
Collagen (10 μg/ml) 75 76 76 >70
Ristocetin (1,2 mg/ml) 84 94 89 >85
ADP (4 μmol/L) 57 68 77 >70
ADP (10 μmol/L) 86 - 77 >70
Epinephrine (8 μmol/L) 50 15 46/37 >70
Epinephrine (16 μmol/L) 71 22 44 >70

Reduced values are given in bold.
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FIGURE 1 | Platelet granule secretion stimulated with thrombin (concentrations: 0, 0.05, 0.1, 0.2, 0.5, and 1.0 U/ml) for all three index patients using flow
cytometry. Severely impaired δ-granule secretion indicated by reduced platelet CD63 expression in IP1 (A), IP2 (B), and IP3 (C) compared to the healthy controls/day
control. Data are expressed as logarithmic arbitrary units (logAU) of anti-CD63-stained unstimulated and thrombin-stimulated platelets.
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FIGURE 2 | Results for patient IP3 (HPS-7). (A) Pedigree for IP3 (II.1). Her consanguine parents and her brother are already deceased, her brother presented with
OCA and bleeding disorder. (B) Bioinformatics software SeqPilot CNV analysis indicates a homozygous deletion of exon 6 in DTNBP1. (C) Upper Panel: Schematic
representation of the normally spliced mRNA (WT) and the aberrantly spliced mRNA of IP3. Lower Panel: cDNA sequencing of platelet derived DTNBP1mRNA shows
deletion of exon 6 and 7 in IP3. (D) Dysbindin expression in gel-filtrated platelets of the patient (IP3) and a healthy volunteer performed by Western analysis:
Dysbindin is not expressed in patient’s platelets. GAPDH (37 kDa) was used as loading control (lower bands).

TABLE 2 | OCA phenotype and genetic variants identified using NGS for each patient.

ID OCA Gene Variant Protein Occurrence in
database/dbSNP

ID/MAF gnomAD (v2.1)

PP ACMG
classification

IP1 OA HPS3 c.[65C > G]; [1193G > A] p.Pro22Arg - CADD: 29.1 VUS (PM1, PM2)
MutTaster,
PolyPhen2

p.Cys398Tyr rs1360046176 CADD: 29.3 VUS (PM1,
PM2, PP3)MAF: 0,0007% SIFT, MutTaster,

PolyPhen2

IP2 n.a. HPS5 c.[760G > T]; [760G > T] p.Val254Phe rs752603589 CADD: 28.1 VUS (PM1,
PM2, PP3)MAF:0.004% SIFT, MutTaster,

PolyPhen2

IP3 OCA DTNBP1 c.(355 + 1_356–1)_(488 + 1_489–1)del; c.(355
+ 1_356–1)_(488 + 1_489–1)del

no dysbindin
expression1

- P (PVS1,
PM1, PM2)

Transcripts: HPS3 (NM_032383.3), HPS5 (NM_181507.1), DTNBP1 (NM_032122.4). Abbr.: OCA, oculocutaneous albinism; OA, ocular albinism; n.a., not apparent; PP, in silico
pathogenicity prediction; VUS, variant of uncertain significance; P, pathogenic.
1Western Blot analysis.
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DISCUSSION

We report three patients with a severely impaired δ-granule
secretion. NGS identified genetic alterations in three genes
associated with different types of HPS. For IP3 the diagnosis
of the rare HPS-7 was made after extensive investigations
(cDNA sequencing, Western blot). The patient presented with
an apparent OCA. Missense variants identified in HPS3 (IP1)
and HPS5 (IP2) have to be classified as variant of uncertain
significance (VUS), however we think it is valuable to report
the findings of these variants in our patients.

Mild Phenotype in BLOC-2 Deficiencies
For IP1 (HPS-3) two compound heterozygous missense
variants in HPS3 with predominantly and concordant
disease-causing prediction were identified. Both variants
are classified as VUS according to ACMG guidelines. The
patient presented without cutaneous albinism, however,
significantly hypopigmentation of the retina was detected
in a specialized ophthalmological investigation. So far, the
young girl exhibits mild bleeding symptoms. Taking these
findings together these compound heterozygous variants most
probably cause the patient’s mild phenotype. Such a mild
phenotype has been described also in other patients with HPS-
3 (Liu et al., 2021).

IP2 (HPS-5) carries a homozygous missense variant in HPS5
(c.760G > T). The PP is concordant disease-causing. According to the
ACMGcriteria the variant classifies VUS. The patient does not exhibit
apparent albinism, however, a life-long history of bleeding diathesis.
None of her 8 children (all heterozygous carriers) are clinically affected
as severely as their mother (IP2), although some show very minor
bleeding symptoms, such as gingival bleeding and easy bruising.
Because the patient lives outside of Germany, a specialized
opthalmological investigation has not been performed to date. IP2
suffered from a cystic lesion of her gall bladder, therefore the gall
bladder was removed. Clinically, she did not show any symptoms of
colitis and the ultrasound investigations did not reveal any signs of
colitis. Besides the HPS5 variant, which we detected homozygous in
the severely affected mother (IP2), we identified a heterozygous VUS
in the gene VPS33B. According to OMIM alterations in the gene
VPS33B are autosomal recessive associated with ARC
(Arthrogryposis, renal dysfunction, and cholestasis). IP2 and the
daughter who we investigated with NGS are carrier of the VPS33B
variant; however, they do not show any symptoms of ARC. The son
investigated with NGS presented wild type at the position.We did not
investigate the other siblings for occurrence of the VPS33B variant.
VPS33B is a protein essential for alpha granule biogenesis (Lo et al.,
2005). Thrombin induced alpha-granule specific membrane protein
P-selectin (CD62) exposure measured by flow cytometry was normal
compared to healthy controls. However, a synergistic effect along with

FIGURE 3 | NK cell degranulation of IP3 is slightly reduced in response to K562. (A) Ex vivo degranulation of CD3− CD56+ NK cells from IP3 and a healthy day
control (Co.) after incubation with medium (left panel) or NK-sensitive K562 target cells (middle panel) assessed by flow cytometric analysis of CD107a surface
expression. Graphs in the right panel show ΔCD107a for the patient and healthy day controls (solid triangles) pooled from two independent experiments assessing fresh
and activated (PHA/IL-2 pre-culture for 48 h) NK cell degranulation. ΔCD107a was calculated as the percentage of NK cells expressing CD107a after stimulation
with K562 minus the percentage of NK cells expressing CD107a after incubation with medium. Blank circles represent historical controls (n � 28,17). The dashed line
indicates the diagnostic cutoff below which NK cell degranulation is considered abnormal and equals the 10th percentile of a reference range. (B) Degranulation of CD3+

CD8+ CTL after incubation with medium (grey line) or anti-CD3/CD28 beads (black line).
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the homozygous HPS5 variant, which is also classified as VUS is
conceivable. We excluded Chediak-Higashi syndrome an autosomal
recessive disease associated with alterations in the gene LYST.One of
the features is a partial or severe reduction of dense-granules. LYST is
included in our NGS gene panel and the analysis did not show any
pathological findings. Inclusions in polymorph nuclear leukocytes
have typically been reported in the blood smear of patients with
Chediak-Higashi syndrome. IP2 did not show any inclusions in
polymorph nuclear leukocytes and no signs of immunodeficiency.

Both HPS3 and HPS5 gene products are part of the BLOC-2
complex and patients primarily present with mild bleeding
symptoms (Huizing et al., 2020; Nurden et al., 2020) and not
necessarily with noticeable hypopigmentation (Liu et al.,
2021). Complications usually did not include pulmonary
fibrosis and immunodeficiency. Granulomatous colitis has
been reported in about 10–20% of patients (Hussain et al.,
2006). Most of the reported variants in HPS3 and HPS5 are
variants with serious consequences like deletions,
duplications, and variants affecting splicing (Huizing et al.,
2020; Liu et al., 2021), only a few missense variants have been
described (Huizing et al., 2004; Michaud et al., 2017; Lasseaux
et al., 2018). It has also been described that two different
nonsense variants in HPS3 lead to different degrees of
severities of OCA, suggesting a wide spectrum. One patient
presented with a mild and two brothers exhibited a clear OCA
(Sandrock-Lang et al., 2017; Lecchi et al., 2020). Both IP1 and
IP2 show a mild phenotype, especially concerning the
albinism. No further complications, like pulmonary fibrosis
or immunodeficiency, were clinically observed in IP1 and IP2,
so far.

BLOC-1 Deficiency
The homozygous deletion of exon 6 in DTNBP1, found in IP3, has
not been previously described. This deletion is pathogenic according
to the ACMGguidelines due to the serious consequence. In addition,
we showed the absence of dysbindin in platelet lysate. Although this
patient has exhibited the characteristic HPS symptoms since birth,
the genetic defect was detected rather late in life. Even if the
symptoms of OCA are obvious, the diagnosis of HPS can be
delayed if the bleeding diathesis is not recognized as part of the
disease: the patient was 60 years old at the time when HPS-7 was
diagnosed. To our knowledge only seven patients with HPS-7 have
been reported worldwide comprising 4 nonsense or frameshift
variants in DTNBP1 (Li et al., 2003; Lowe et al., 2013; Bryan
et al., 2017; Bastida et al., 2019). Due to the small number of
patients, a definite statement regarding additional complications
cannot be made. So far, only one patient has been reported
developing granulomatous colitis (Lowe et al., 2013). The
DTNBP1 encoded Dysbindin-1 is involved in neurotransmission
regulation and neurodevelopment (Tang et al., 2009; Ghiani et al.,
2010) and seems to be involved in the etiology of Schizophrenia
(Cheah et al., 2015; Wang et al., 2017). IP3 showed no symptoms of
schizophrenia or other psychiatric disorders, however mild deficits
in social interaction or depressive-like emotion are difficult to
identify.

IP3 shows a history of severe and recurring airway infections
which may possibly hint to immunodeficiency. The most obvious

immune defect in lysosomal trafficking disorders is impaired NK
cell and CTL cytotoxicity (Fischer et al., 2007). Strong
degranulation defects predispose to hemophagocytic
lymphohistiocytosis (HLH), a severe disorder of
hyperinflammation, while the clinical consequences of milder
defects are poorly characterized. A previous report has concluded
that CTL cytotoxicity is normal in “sandy”mice (a model of HPS-
7) (Bossi et al., 2005), which we could confirm in our patient.
However, as previously documented in patients and mice with
Chediak-Higashi-Syndrome (Jessen et al., 2011) the fresh NK cell
degranulation assay is more sensitive than the CTL assay in
detecting subtle impairments of the lytic machinery. Moreover,
the degranulation defect could also affect other immune cells such
as neutrophils or mast cells (Ramadass and Catz 2016), which
could make an additional contribution to the observed infection
susceptibility.

Two patients with HPS-9 (subunit of BLOC-1) have been
reported presenting immunodeficiency (Badolato et al., 2012;
Okamura et al., 2019). This might point to a possible
complication in patients with BLOC-1 variants. However, only
a few patients with BLOC-1 deficiencies have been described at
all. More data are required to understand the role of BLOC-1
proteins in the immune system.

CONCLUSION

Patients with variants of the BLOC-2 complex may not show the
characteristic phenotype of a severe bleeding diathesis and
oculocutaneous albinism; therefore, molecular genetic analysis
including all HPS genes is needed for patients with a platelet delta
granule secretion defect. Only a few patients with BLOC-1
deficiencies have been described so far and more data are
needed to predict the phenotype and possible additional
consequences. NGS can facilitate and accelerate the process of
identifying the genetic defects regarding the different HPS-
subtypes, especially if the patient presents with only a mild
phenotype. Identification of a larger cohort for each subtype of
HPS is important for the precise prediction of possible
complications. This also offers new opportunities for further
understanding the pathophysiology of HPS.
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