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Abstract

Many temperate zone animals adapt to seasonal changes by altering their

physiology. This is mediated in large part by endocrine signals that encode

day length and regulate energy balance and metabolism. The objectives of this

study were to determine if the daily patterns of two important hormones,

melatonin and cortisol, varied with day length in captive brown bears (Ursus

arctos) under anesthetized and nonanesthetized conditions during the active

(March–October) and hibernation periods. Melatonin concentrations varied

with time of day and season in nonanesthetized female bears despite exceed-

ingly low nocturnal concentrations (1–4 pg/mL) in the active season. In con-

trast, melatonin concentrations during hibernation were 7.5-fold greater than

those during the summer in anesthetized male bears. Functional assessment of

the pineal gland revealed a slight but significant reduction in melatonin fol-

lowing nocturnal light application during hibernation, but no response to

beta-adrenergic stimulation was detected in either season. Examination of

pineal size in two bear species bears combined with a phylogenetically cor-

rected analysis of pineal glands in 47 other species revealed a strong relation-

ship to brain size. However, pineal gland size of both bear species deviated

significantly from the expected pattern. Robust daily plasma cortisol rhythms

were observed during the active season but not during hibernation. Cortisol

was potently suppressed following injection with a synthetic glucocorticoid.

The results suggest that melatonin and cortisol both retain their ability to

reflect seasonal changes in day length in brown bears. The exceptionally small

pineal gland in bears may be the result of direct or indirect selection.

Introduction

Photoperiodic time measurement is an important trait that

has evolved to enable individuals to reliably predict when to

engage in functions such as migration, reproduction, and

hibernation (Bradshaw and Holzapfel 2007). Brown bears

have evolved a highly seasonal physiology that allows them

to effectively acclimatize to various temperate climes, widely

changing food availability, and exposure to increasing

human influence (Garshelis and Pelton 1980; Gunther 1990;

MacHutchon et al. 1998; Olson et al. 1998; Kaczensky et al.

2006; Munro et al. 2006; Nellemann et al. 2007; Schwartz

et al. 2010; Ordiz et al. 2011). We have previously shown

that captive brown bears use light and food to synchronize

(entrain) daily locomotor rhythms in a seasonally depen-

dent manner (Ware et al. 2012). However, the underlying
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mechanisms used to entrain these rhythms and facilitate the

behavioral flexibility remain unknown.

Seasonal rhythms in physiology depend heavily on the

interaction between environmental cues and a neuroen-

docrine system that can be organized in a temporal fash-

ion for entrainment (Bartness et al. 1993; Cauter and

Buxton 2001). The product of the pineal gland, melato-

nin, is secreted into the bloodstream at night and is sup-

pressed by light during the day to create a daily

endocrine rhythm (Arendt 1988, 1995). Importantly, the

duration of nightly melatonin secretion varies in direct

proportion to the length of dark phase in many species,

thereby creating an endocrine signature of day length

(photoperiod) (Goldman et al. 1984; Arendt 1995; Gold-

man 2001; Pevet et al. 2006). Sheep have been used as a

model for many years to examine the role of the pineal

gland and melatonin in mediating seasonal changes in

physiology (Malpaux et al. 2001; Hazlerigg et al. 2004).

The daily and annual changes in melatonin secretion are

mediated by a series of neural pathways beginning in the

retina where light:dark information is conveyed via the

retinohypothalamic tract to the suprachiasmatic nucleus

of the hypothalamus (SCN) (Refinetti 2006). The SCN

in turn projects via a multisynaptic pathway to the

pineal gland to stimulate melatonin synthesis (Refinetti

2006). Once produced, melatonin binds to G-protein

coupled receptors (MT1, MT2) found in a variety of

hypothalamic regions (Scherbarth and Steinlechner

2010). In this way, melatonin is thought to modulate

adaptations to the annual photoperiodic cycle (Hazlerigg

and Wagner 2006; Scherbarth and Steinlechner 2010),

but whether or not this is true for bears remains to be

determined.

Similar to melatonin, the adrenal hormone cortisol (or

corticosterone) exhibits a daily rhythm requiring the SCN

(Moore and Eichler 1972; Raisman and Brown-Grant

1977; Kaneko et al. 1981; Buijs et al. 1999). The influence

of light on cortisol is also indirect, involving both the

hypothalamus and pituitary (Lightman et al. 2002). Corti-

sol plays an important role in stimulating gluconeogenesis

and lipolysis and for the mobilization of amino acids to

regulate energy balance (Goodman 2009). The amplitude

of the daily cortisol rhythm varies seasonally in many spe-

cies, including those that exhibit annual body mass and

hibernation cycles (Saboureau et al. 1979; Bubenik et al.

1983; Palumbo et al. 1983; Harlow and Beck 1990; Gower

et al. 1996). Elevated serum cortisol during hibernation is

thought to increase lipolysis necessary to provide energy

and maintain the relatively elevated metabolic rate of

bears during hibernation (Palumbo et al. 1983; Tøien

et al. 2011). The catabolic effects of elevated cortisol

appear to be mitigated by circulating binding proteins

and shunting of nitrogen products into anabolic pathways

during hibernation (Lundberg et al. 1976; Tinker et al.

1998; Chow et al. 2010). The effects of cortisol on energy

homeostasis are therefore important mediators of seasonal

adaptations (Lemos et al. 2009).

Considering the profound annual changes in body

weight (Nelson 1980), cycles of hibernation (Folk et al.

1976), and reproduction (Craighead et al. 1969; Farley

and Robbins 1995) exhibited by brown bears, together

with their wide geographic distribution in northern lati-

tudes (McLellan et al. 2008), we hypothesized that the

daily rhythms of cortisol and melatonin would expand

and contract in accordance with changes in day length.

Furthermore, we predicted that melatonin and cortisol

would be responsive to manipulations shown in other

species to enhance or suppress their respective neuroen-

docrine axes. Lastly, the size of the pineal gland was com-

pared phylogenetically across species to investigate the

role of selection on pineal size in the brown bear.

Methods

Animals

Male (n = 3; wild born, but two raised in captivity since

cubs; aged 6–9 years) and female (n = 4; captive born;

aged 3–8 years during studies) brown bears housed at the

Washington State University (WSU) Bear Education, Con-

servation and Research Center (WSU Bear Center, 46°43′
53″ N/117°10′43″ W) were used. Bears were maintained

according to the Bear Care and Colony Health Standard

Operating Procedures with all procedures approved by the

Washington State University Institutional Animal Care

and Use Committee. Bears were housed in pairs in dens

(3 m 9 3 m 9 2.5 m) with continuous access to an adja-

cent outdoor run (3 m 9 5 m 9 5 m). During the active

season (March–October), bears were released daily for 6–
12 hours into an adjacent 0.56 ha outdoor enclosure. At

this time the bears were exposed to natural changes in

photoperiod (ranging from 13 hours light: 11 hours dark

(L:D) in March/October to 16L:8D in June) and tempera-

ture fluctuations (average monthly temperature ranged

between 1°C in March and 18°C in July). Bears were fed a

commercial diet of dry chow (25.3% protein, 16.2% fat,

51.7% carbohydrate, and 2.0% crude fiber; Hill’s Pet

Nutrition, Topeka, KS) combined with apples, and small

amounts of meat and pastries. Feedings occurred twice

daily at 0700 � 1 hour and 1600 � 1 hour (standard

time). Bears were also allowed to forage for grasses and

clover in the irrigated outdoor enclosure to supplement

their commercial food diet (Rode et al. 2001). Bears were

fed at, or slightly above, maintenance levels between April

and August. Then, between August and October, when

bears’ appetite increases dramatically (hyperphagia), feed-
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ing amounts were increased to well above maintenance lev-

els to provide adequate energy for sufficient fat accumula-

tion necessary to survive the 5 months of hibernation

when bears are not eating. In early to mid-October,

depending on the bears’ appetite, food amounts were grad-

ually reduced until food was completely withdrawn in late

October. Hibernation was considered to have begun when

all food was withdrawn (October 24 � 7 days) or when

bears refused food, whichever occurred earliest. Water was

available ad libitum. Bears hibernated in the same dens

and runs as in the active season with straw provided for

bedding. During hibernation the bears were exposed to

natural photoperiod (ranging between 11L:13D in Febru-

ary to 8.5L:15:5D at the winter solstice) and temperature

fluctuations (average monthly temperature ranged from

�1°C in December to 1°C in February). Hibernation

ended based on subjective evaluation of general increases

in activity at which time feeding was restored (March

1 � 16 days).

Endocrine measurements

Blood samples were obtained from four trained female

(nonanesthetized) bears between 2008 and 2011 during

the Spring (March; 12L:12D), Summer (June; 16L:8D),

Late Summer (August; 14L:10D), and Fall (October;

11L:13D). In 2008, two of the four bears were classified

as juveniles and reached puberty in 2009 based on repro-

ductive maturation in previous reports (Craighead et al.

1969). These age classifications were not factored into the

statistical analyses because of small sample size. Bears

were trained using positive reinforcement with food

(dilute honey water) to offer their rear limb voluntarily

for blood sampling from the dorsal metatarsal or lateral

saphenous veins. Blood samples could not be collected

from this cohort of bears during hibernation because food

is no longer a useful reward given their anorectic state.

To collect blood samples during hibernation (2008–2009
hibernation season: late December to early January;

8L:16D), we sampled three anesthetized adult male bears

via jugular venipuncture. Two of these male bears were also

anesthetized to collect blood samples during the active sea-

son (June; 16L:8D) for direct comparison with hibernation

samples. Bears were anesthetized with 1.2 mg/kg of tileta-

mine HCl and zolazepam HCl (Telazol, Pfizer Animal

Health, New York, NY) and 0.08 mg/kg of medetomidine

HCl (Dormosedan, Pfizer Animal Health, New York, NY).

Following blood sampling, 3–5 mL atipamezole HCl (Anti-

sedan, Pfizer Animal Health, New York, NY) was adminis-

tered I.V. as a reversal agent. Apexa artificial tears eye

lubricant (Bausch and Lomb, Madison, NJ) was placed in

the bears’ eyes during anesthesia. Because of the known

effects of anesthesia on the hypothalamic–pituitary–adrenal

axis, we obtained blood samples no earlier than 45 minutes

postanesthesia based on a cortisol decay curve determined

in a preliminary study using two adult male bears.

Blood samples were collected from unanesthetized

female bears over a 7 � 5-day period to compile the 24-

hours endocrine profiles. Blood samples from all bears

were collected into heparinized tubes, centrifuged (1750g)

for 20 minutes, and the plasma was stored at �80°C until

assayed for cortisol or melatonin as described below.

Radioimmunoassay

Plasma was assayed for melatonin and cortisol by com-

mercially available radioimmunoassay kits (melatonin:

ALPCO Diagnostics, Salem, NH; cortisol: MP Biomedi-

cals, Solon, OH, respectively). The assay detection limits

were 0.3–0.84 pg/mL for melatonin, depending on lot,

and 1.7 ng/mL for cortisol. Both extraction and nonex-

traction methods were compared in the detection of mel-

atonin in bear plasma according to manufacturer’s

instructions. Differences between extracted versus nonex-

tracted melatonin concentrations in bear samples were

2% for the low internal control and 15% for the med

internal control (high internal control was above assay

standard, >81 pg/mL for both extracted and nonextracted

assays). In the nonextracted assay, samples were subjected

to an enzymatic pretreatment step which removed poten-

tially interfering proteins, followed by acidification and

precipitation using a protease mix. The precipitate was

removed by centrifugation. Although acceptable ranges

for variability were found between assays methods, the

extraction method was chosen as the preferred method in

all subsequent assays to reduce any potential nonspecific

interference. Briefly, 1 mL of plasma was thawed and

placed onto a C18 reverse-phase column. After passing

through the extraction column, the liquid phase was dis-

carded and melatonin was eluted from the column with

methanol. The methanol was then evaporated and the

remaining melatonin was reconstituted in sample buffer

and frozen until assayed. Duplicate 400 lL samples were

then incubated with G280 antimelatonin antibody

(Vaughan 1993) and 125I-melatonin tracer for 20 hours at

4°C. Next, 100 lL of solid-phase bound anti-donkey sec-

ondary antibody was added and the tubes were incubated

for 15 minutes. One milliliter of double distilled and

deionized water was then added and the tubes were cen-

trifuged at 2000g in order to precipitate the solid-phase

bound antigen:antibody complex. The supernatant was

decanted, the tubes were allowed to air dry. Once dry, the

precipitates were subjected to gamma counting (Apex 10/

880 plus gamma counter, MP Biomedicals, Solon, OH).

Extraction efficiency was 99% (determined by spiking a

bear daytime sample with 125I melatonin and counting
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pre- and posteluting). Chi-square tests of parallelism for

serially diluted samples indicated no difference between

expected and measured values. Low, medium, and high

internal controls made from pooled daytime bear serum

were used to confirm consistent results between assay

runs. Intraassay variation was 10.6% and interassay varia-

tion was 15.6%.

For cortisol, 25 lL of nonextracted plasma was assayed

in duplicate in a competitive binding assay with 125I-cor-

tisol tracer in rabbit anticortisol antibody-coated poly-

propylene tubes. Reagents were incubated for 45 minutes

in a water bath at 37 � 1°C. Liquids were decanted and

tubes drained before counting in a gamma counter.

Cortisol serial dilution curves confirmed parallelism using

the Chi-square test for independence (P > 0.05). Intra-

and interassay variation was 10.0% and 17.7%, respec-

tively. Cortisol was chosen as the glucocorticoid to

measure for two reasons: 1) virtually all previous bear

work reported cortisol concentrations and we wanted to

make direct comparisons, and 2) cortisol predominates

over corticosterone in the brown bear (Koren et al.

2012).

Pineal gland

Initial examination of adult brown bear necropsy speci-

mens (n = 3 males, n = 1 female) revealed an extremely

small pineal gland for their large brain size compared to

other commonly studied seasonal species such as sheep.

For a more in-depth examination of the pineal in situ,

we also performed a series of MRI studies on postmor-

tem brown bear, polar bear, sheep, and dog brains at the

WSU Veterinary Teaching Hospital. These studies used a

Phillips 1.0T MRI. Both T1 and T2 modalities in coronal

and horizontal sections. Section thickness was 3.5 mm.

For within-animal comparisons, the imaged brains were

then removed from the heads, fixed in 10% formalin,

and analyzed as follows. The width of the pineal gland

was measured in mm using a micrometer. Brain width

was measured in an identical manner. For both struc-

tures, the widest point was recorded. In addition to anal-

ysis of bear, sheep, and dog pineal we also made

measurements of pineal gland size in 45 other mamma-

lian species (total of 49 species) using an online collec-

tion of mammalian brains (http://brainmuseum.org).

Similar to our MRI analyses, pineal size was determined

using the coronal series of Nissl-stained sections. The sec-

tion containing the largest pineal was used for analysis.

Three measurements were made for each pineal from

each species and the average width was used in subse-

quent analyses. Brain width was analyzed in the same

way. Pineal and brain measurements were log trans-

formed and the resulting regression was used to detect

outliers by the ROUT method (Motulsky and Brown

2006).

Phylogenetic analysis

A phylogenetic analysis of pineal sizes among mammalian

species was also performed. Most comparative statistical

methods assume sample independence. However, simple

among-species comparisons violate this assumption

because of shared ancestry (Felsenstein 1985). Phyloge-

netic comparative methods have now been developed to

account for shared ancestry; these methods were applied

to the data on brain size and pineal size data from the 49

different mammalian species. Specifically, a phylogenetic

generalized least squares (PGLS) (Grafen 1989) analysis

was used to test for a correlation between brain size and

pineal gland size.

A supertree consisting of 4510 mammalian species

(Bininda-Emonds et al. 2007) was pruned to include the

49 species for which brain and pineal gland sizes were

obtained. A correlation structure was then derived using

Pagel’s k, which rescales the tree branch lengths relative

to their phylogenetic signal (Pagel 1999; Freckleton et al.

2002; Revell 2010). A linear model (brain size ~ pineal

gland size) was then fitted using generalized least squares.

This approach was implemented in the R programming

language (R Development Core Team 2012) using the

packages ape (Paradis et al. 2004; Paradis 2012), geiger

(Harmon et al. 2008), and phylobase (Geiser and Kenagy

1987).

Neuroendocrine function

Pineal gland responsiveness was determined by: (1)

application of bright light to test for melatonin suppression

during hibernation, and (2) administration of the beta-

adrenergic agonist isoproterenol to test for melatonin

stimulation during hibernation and active season. For mel-

atonin suppression, animals were anesthetized (anesthesia

protocol described above) in the dark phase of the light:

dark cycle (i.e., when plasma melatonin is elevated). Just

before light application, a baseline blood sample was

obtained under dim red light illumination (<5 lux). Then,

approximately 1500 lux of halogen light (spectrum ~250–
1000 nm with peak between 500 and 900 nm) was applied

at eye level for 30 minutes with a blood sample taken at the

end of the light application. Maximum sensitivity for mel-

anopsinergic retinal ganglion cells in a diurnal primate has

been reported at 482 nm (Dacey et al. 2005). The eyelids

were held open and blinked manually every 10 minutes to

avoid drying during the light application. Pupillary

responses were used to confirm the effectiveness of light

placement and were recorded via video recorder. For mela-
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tonin stimulation, isoproterenol (ISO; 0.005 mg/bear, i.v.)

was administered during the middle of the light phase to

four nonanesthetized female bears housed under natural

photoperiod in the active season. Blood samples were taken

immediately before administration and 3 hours following

drug treatment and stored until analyzed for melatonin.

This was repeated during hibernation in two anesthetized

male bears at the end of their light phase. Given the preli-

minary findings of unresponsiveness to ISO as well as pre-

vious findings in rodents concerning timing of ISO

treatment (Steinlechner et al. 1984; Garidou et al. 2002;

Kennaway et al. 2002), we delayed the injection of ISO

until the end of the light phase. A second ISO injection was

then given approximately 1 hour later at twice the active

season dose (0.01 mg/bear per injection). Blood samples

were collected immediately before ISO administration

(baseline) and then 5, 50, 90, and 120 minutes postinjec-

tion and assayed for melatonin as described above.

The responsiveness of the hypothalamic–pituitary–adre-
nal (HPA) axis was evaluated in both active (n = 5) and

hibernation (n = 2) seasons. Only cortisol suppression

was determined using the negative feedback of exogenous

glucocorticoids on cortisol secretion (Goodman 2009). To

this end, betamethasone valerate (BETA; Celestone

Soluspan, Schering-Plough, Kenilworth, NJ), a synthetic

glucocorticoid, was administered either orally (0.1 mg/kg)

in a 50% honey water mixture during the active season

or intramuscularly (0.05 mg/kg) during hibernation.

Blood samples were collected at approximately 24 and

48 hours following BETA administration and assayed for

cortisol as described above.

Statistical analysis

Hormone data were analyzed using Graphpad Prism5

(La Jolla, CA) and SAS v9.0 statistical software (Cary,

N.C.). Because samples were taken at slightly different

times of the day across seasons, the values were binned

into one of six periods (0100–0300, 0400–0600, 0700–
1000, 1100–1500, 1600–1900, and 2000–2400 hours) to

create a complete 24-hour profile. Assay values that fell

beyond the linear portion of the assay standard curve

were replaced with the assay detection limit value. The

duration of elevated hormone concentrations was defined

as the time between the upward and downward crossing

of the daily mean value for each individual (Duffy et al.

2002). Nonanesthetized and anesthetized samples were

analyzed separately. Two-way ANOVA or t-tests were

used to estimate daily and seasonal changes in hormone

profiles, variation in duration of hormone secretion, and

effectiveness of stimulation or suppression tests. Post hoc

analysis was performed using the Bonferroni multiple

comparison test. Linear regression analyses were per-

formed on the duration of elevated hormone concentra-

tions relative to the duration of the dark or light phase

for each season. Effects were considered statistically sig-

nificant if P ≤ 0.05.

Results

Melatonin—nonanesthetized female bears

Peripheral melatonin concentrations exhibited a signifi-

cant daily rhythm in all seasons (two-way ANOVA, main

effect of time of day, F = 12.55, df = 5, P < 0.0001;

Fig. 1). No main effect of season on mean daily melato-

nin was measured (P = 0.33; Fig. 2); however, an interac-

tion between season and time of day was identified

(F = 2.53, df = 15, P < 0.01). Primarily, this interaction

was the result of the significantly higher (P < 0.01) con-

centrations of melatonin during 0400–0600 hours time

period in the Fall (2.88 � 0.46 pg/mL) compared to

spring, summer, and late summer (0.64 � 0.04) (Fig. 1).

Additionally, summer values at 2000–2400 hours

(2.17 � 0.23 pg/mL) were higher (P < 0.01) than both

spring and late summer (avg. 0.80 � 0.42 pg/mL). The

duration of elevated melatonin was significantly related to

night length (Fig. 4; Lin. reg; P < 0.05, r2 = 0.28).

Melatonin—anesthetized male bears

There was no effect of time of day on peripheral melato-

nin concentrations (two-way ANOVA, P = 0.84), but

there was a large seasonal difference between mean sum-

mer and winter concentrations (Figs. 2–4; F = 28.65,

df = 1, P < 0.001; 4.35 � 0.67 vs. 0.55 � 0.05 pg/mL).

Summer anesthetized melatonin levels were just above

assay detection limit (assay detection limit = 0.5 pg/mL,

summer avg. = 0.55 pg/mL), whereas winter concentra-

tions were tonically elevated (Fig. 1). Additionally, dura-

tion of melatonin elevation was much longer in winter

compared to summer (Fig. 3; unpaired t-test, P < 0.01;

15.5 � 0.66 vs. 1.75 � 1.75 hours for winter and sum-

mer, respectively).

Cortisol—nonanesthetized female bears

Peripheral plasma cortisol concentrations varied with time

of day to produce a clear rhythm that also varied with

season (Fig. 5; two-way ANOVA, main effect of time of

day, F = 10.22, df = 5, P < 0.0001; and main effect of

season, F = 7.28, df = 3, P < 0.0001). There was no inter-

action between season and time of day for cortisol con-

centrations (P = 0.13). Cortisol duration was significantly

related to changes in day length (Fig. 4; Lin. reg;

P = 0.001, r2 = 0.52).
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Cortisol—anesthetized male bears

No effect of either season or time of day on cortisol con-

centrations was observed in samples taken from anesthe-

tized bears in the summer and winter seasons (Figs. 2, 6;

two-way ANOVA, F = 1.54, df = 6, P = 0.22). The lack

of time of day effect was further reflected in a lack of dif-

ference in cortisol duration between summer and winter

(Fig. 3). In contrast to melatonin, a clear effect of anes-

thesia on cortisol concentrations was evident (i.e., sum-

mer nonanesthetized vs. summer anesthetized values;

Fig. 2).

Pineal gland

An extremely small pineal gland was observed in MRI stud-

ies and this was confirmed when the brains were harvested

(Fig. 6). The gland size was generally comparable to that of

two other related species, the polar bear (not shown) and the

dog (Fig. 6). By contrast, bear and dog pineal glands were

much smaller than the sheep pineal (Fig. 6). Figure 7 shows

pineal size plotted against brain size for 49 different species

of mammals using data from the brain museum collection

(brainmuseum.org) and the specimens collected for this

study (Table 1). Outlier analysis revealed that both bear
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species and sheep pineal glands, but not the dog pineal, devi-

ated significantly from the expected fit even under the most

conservative conditions (Q = 1%). Specifically, pineal size

was much smaller than expected in both the brown bear and

polar bear and larger in the sheep. Phylogenetic generalized

least squares analysis of brain and pineal sizes (width, mm)

using the pruned, rescaled phylogeny resulted in a regression

line following the form:

Pineal = 0.9003 (brain)�2.818

(R-squared = 0.651; P < 0.0001). There was also a signifi-

cant correlation between brain size and pineal gland size

(T-value = 7.815, P < 0.01).

Melatonin stimulation and suppression tests

Regardless of season, dosage, or anesthetic state, ISO failed

to cause an increase in peripheral melatonin concentrations;

values pre- and post-ISO treatment remained undetectable

(<1.0 pg/mL) during the light period (Fig. 8). However,

heart rate was significantly elevated following ISO during

the active season and remained elevated for 3 hours post-

ISO (pre-ISO avg. heart rate = 56.5 � 4.3 bpm vs. post-

ISO avg. heart rate = 137.0 � 18.4 bpm; Fig. 8A). During

hibernation, heart rate increased only transiently after each

of the two ISO treatments (Fig. 8B). The hibernation heart

rate following ISO was not significantly different from base-

line heart rate (unpaired t-tests, P > 0.05). Bright light

application (1500 lux) during hibernation caused a slight,

but significant suppression of melatonin by 30 minutes after

application (prelight application mean = 4.33 � 2.3 pg/

mL and postlight = 3.75 � 2.2 pg/mL; Fig. 9A, paired one-

tailed t-test, t = 2.59, df = 3, P < 0.05). During the active

season, daytime melatonin concentrations were nearly

always at the assay detection limit (see Fig. 1), indicative of

light suppression, although this was not tested directly.
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Cortisol suppression test

Betamethasone caused a significant and prolonged sup-

pression of plasma cortisol concentrations to below base-

line levels for up to 48-hours post administration

irrespective of season (Fig. 9B, two-way ANOVA, main

effect of treatment, F = 12.96, df = 1, P < 0.01, main

effect of season, F = 0.58, df = 1, P = 0.46).

Discussion

Brown bears have evolved a highly seasonal physiology to

coincide with annual environmental changes, including

food availability. The success of these adaptations

presumably relies on the ability to encode a predictable

environmental cue such as day length (Goldman 2001;

Paul et al. 2008). We reasoned, therefore, that brown

bears would express robust seasonal changes in the daily

rhythms of two important endocrine hormones, melato-

nin, and cortisol. Indeed, we found that melatonin and

cortisol exhibited clear daily rhythms. However, the

seasonal changes in daily rhythms were less obvious. Spe-

cifically, no difference in daily mean melatonin concentra-

tions was seen during the early, mid, and late active

season. This was somewhat unexpected as seasonal

changes in mean daily concentrations of melatonin have

been reported for other species (Darrow et al. 1986;

Delgado and Vivien-Roels 1989; Edmonds et al. 1995;

Vivien-Roels et al. 1997; Goldman 2001; Zawilska et al.

2009). However, given the strong masking effect of light

to suppress melatonin, concentrations during the dark

phase and the duration of nocturnal elevation should

provide a better estimate of seasonal changes in relation

to photoperiod. Indeed, we found that the duration of

melatonin elevation was significantly affected by changes

in night length indicating that the pineal gland in brown

bears is responsive to seasonal changes in photoperiod

despite the exceedingly low amplitude of the melatonin

rhythm and unusually small pineal gland in this species.

In contrast to the low melatonin concentrations

observed during the active season, daily melatonin con-

centrations in hibernation were much greater than those

in the summer. Melatonin concentrations were not com-

pletely suppressed in the light phase during hibernation,

suggesting a baseline increase in melatonin production.

The proposed increase is unlikely to be entirely due to

the anesthetics because the same bears sedated in the

active season (midsummer) had virtually no melatonin

detectable at any time of the day. Several other explana-

tions may account for the increased baseline. First, mela-

tonin biosynthetic activity of the bear pineal may be

greater during hibernation than other species. This is

plausible given the bears’ higher body temperature during

hibernation compared to other species in which body

temperature is extremely low and melatonin concentra-

tions are greatly reduced (Florant et al. 1984). Second,

the metabolic activity of different brain regions varies

greatly even in deep torpor as occurs in ground squirrels

(Kilduff et al. 1990). The same is likely to be true for the

bear. Thus, it is possible that the bear pineal may be

more metabolically active relative to other brain regions.

Third, reductions in hepatic and renal activity (Hissa

Figure 6. Images of the sheep (Top), brown bear (middle), and

dog (bottom) brains illustrating the differences in pineal gland size.

Insets represent higher magnification views of the pineal and

associated structures. Rostral is to the left in all figures. cc, corpus

callosum; *pineal gland; Scale bar = 1 cm, inset scale bar = 5 mm.
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1997) could indirectly slow the clearance of melatonin

from the plasma. However, the precise cause of the ele-

vated melatonin during hibernation in the bear remains

to be determined.

Because melatonin has both somnogenic (Lerner and

Nordlund 1978; Lockley et al. 1997; Zawilska et al. 2009)

and hypothermic (Krauchi et al. 1997) properties, the ele-

vated melatonin concentrations we observed during hiber-

nation could provide a mechanism to decrease activity,

lower body temperature, and increase the amount of sleep

(H.C. Heller, pers. com.). Elevated melatonin during

hibernation could also have obscured an underlying daily

rhythm, consistent with observations made in other hib-

ernators (Florant et al. 1984; Darrow et al. 1986). Indeed,

the apparent absence of a (strong) melatonin rhythm is

also consistent with reports in other animals living at

extreme latitudes where environmental light cycles disap-

pear during the polar summer and winter (Eloranta et al.

1992, 1995; Reierth and Stokkan 1998). However, caution

is required in concluding that the melatonin rhythm in

bears was completely abolished (vs. masked) because the

circadian clock appears functional in bears during hiber-

nation (Ware et al. 2012). A more likely explanation is

that either the number of animals was too small or the

sampling frequency was insufficient to detect a rhythm.

The absolute concentrations of melatonin measured in

bear plasma were exceptionally low compared to other

mammals (Arendt 1995; Stehle et al. 2001). Although

Table 1. List of species included in the brain–pineal size analysis.

Species Common name Species Common name

Taxidea taxus American badger Mandrillus sphinx Mandrill

Castor Canadensis American beaver Ursus arctos horribilis1 North American brown bear1

Mustela vison American mink Erethizon dorsatum North American porcupine

Equus burchellii Burchell’s zebra Semnopithecus entellus Northern plains gray langur

Zalophus californianus California sea lion Thomomys talpoides Northern pocket gopher

Pan troglodytes Chimpanzee Aotus trivirgatus Owl monkey

Pecari tajacu Collared peccary Cynocephalus volans Phillipine flying lemur

Sorex araneus Common shrew Macaca nemestrina Pig tailed macaque

Saimiri sciureus Common squirrel monkey Ornithorhynchus anatinus Platypus

Tupaia glis Common tree shrew Ursus maritimus1 Polar bear1

Canis latrans Coyote Perodicticus potto Potto

Felis silvestris catus Domestic cat Rattus norvegicus Rat

Canis lupus familiaris Domestic dog Vulpes vulpes Red fox

Capra hircus domestica Domestic goat Ailurus fulgens Red panda

Sus scrofa domesticus Domestic pig Callicebus moloch Red-bellied titi

Ovis aries Domestic sheep (Suffolk) Macaca mulatta Rhesus macaque

Sciurus carolinensis Eastern gray squirrel Tachyglossus aculeatus Short-beaked echidna

Scalopus aquaticus Eastern mole Glaucomys volans Southern flying squirrel

Elephantulus myurus Eastern rock elephant shrew Crocuta crocuta Spotted hyena

Erinaceus europaeus European hedgehog Tenrec ecaudatus Tailless tenrec

Homo sapiens Human Macropus fuliginosus Western grey kangaroo

Pteropus giganteus Indian flying squirrel Nasua narica White nose coati

Rhinolophus hipposideros Lesser horseshoe bat Odocoileus virginianus Whitetailed deer

Panthera leo Lion Bos taurus indicus Zebu

Lama glama Llama

1Outlier (see Methods for determination of outliers).
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mammals. Plus symbols indicate outliers as detailed in Methods. For

a list of species analyzed, see Table 1.
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assay differences could account for some of these differ-

ences, comparisons with studies using a similar assay and

antibody (Andersson et al. 2000) suggest that this is not

entirely the case. More likely, the extremely small pineal

gland of the bear relative to its brain size may reflect an

anatomical limitation to melatonin production. In

support of this hypothesis, adrenergic stimulation failed

to increase levels of circulating melatonin in either non-

anesthetized female bears during the active season or

anesthetized male bears during hibernation, despite heart

rate increasing significantly. Furthermore, pineal gland

size, but not biosynthetic activity, accounts for a signifi-

cant amount of the variation in peripheral melatonin

concentrations (Coon et al. 1999). Alternatively, an

underlying defect in melatonin biosynthesis, similar to

what is observed in several mouse strains (Goto et al.

1989) could be a factor, although this seems unlikely

given the elevation in plasma melatonin observed during

hibernation in our bears. Future studies will be required

to differentiate between these possibilities.

Both the polar bear and the brown bear possess pineal

glands significantly smaller than expected relative to their

brain size. Although a few early studies attempted to

define the allometric relationship between pineal size

(volume) and body weight, neither ursids nor canids

were included in those analyses (Legait et al. 1976a,

1976b). Nevertheless, large differences in pineal size were

observed even within mammalian orders leading to the

conclusion that pineal gland “must be related to a nones-

sential somatic function that varies from one species to

another at constant somatic weight.” (Legait et al.

1976c). Additionally, phylogenetic correction methods

had not been developed at the time which made it diffi-

cult to place the findings into a proper phylogenetic con-

text. The present study attempted to overcome these

earlier limitations by using modern analytical methods

and updated phylogenetic histories. The results of these

analyses, after correcting for the influence of phylogeny,

reveal that the size of the bear pineal gland is signifi-
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cantly smaller than that of other mammals. Clearly,

brown bears and polar bears have been successful even

with a relatively small pineal gland and very low circulat-

ing melatonin concentrations.

A functioning pineal gland is necessary for seasonal

responses to photoperiod (Goldman 2001). Based on the

light suppression (albeit slight) that we observed during

hibernation in combination with the very low levels dur-

ing the day in the active season, bear melatonin is capable

of responding to photic signals. In contrast to other

mammals, including a diurnal rodent, the grass rat (Arvi-

canthis ansorgei) (Romero and Axelrod 1975; Garidou

et al. 2002; Kennaway et al. 2002), bears were not respon-

sive to b-adrenergic stimulation of melatonin during the

light phase despite producing an increased heart rate

(during the active season). This may be indicative of a

nighttime ‘gating’ effect as seen in several hamster species

(Reiter et al. 1987; Hong et al. 1993; Garidou et al. 2003;

Simonneaux and Ribelayga 2003). Future studies are

required to confirm this in bears.

Daily cortisol profiles in the bears were very similar to

those described for other diurnal species suggesting a

diurnal niche for the brown bear as we hypothesized pre-

viously (Ware et al. 2012). Unlike melatonin, mean daily

concentrations of cortisol varied significantly with season.

Cortisol elevations were also strongly dependent on day

length. Seasonal changes in cortisol are well documented

(Saboureau et al. 1979; Boswell et al. 1994; Gower et al.

1996; Gardiner and Hall 1997) with greater concentra-

tions of cortisol associated with periods of food scarcity

(Bubenik et al. 1983; Palumbo et al. 1983; Harlow and

Beck 1990; Saltz and White 1991; Tsuma et al. 1996;

Huber et al. 2003). The effects of cortisol are generally to

mobilize energy reserves via lipolysis (Hadley 1984;

Granner 1985). Increased use of lipids during prolonged

fasting and hibernation has been extensively documented

in various birds and mammals (Allen 1976; Young 1976;

Geiser and Kenagy 1987). This action, occurring primarily

on fat reserves, protects valuable lean (muscle) tissue

(Granner 1985). On the basis of these earlier findings, we

predicted that bears would have higher levels of cortisol

during hibernation compared to the active season. Unfor-

tunately, we could not confirm our prediction because of

the effect of the anesthetics to increase basal cortisol.

Despite the lack of a statistically significant change in cor-

tisol during the winter in anesthetized male bears, the

gross rhythm, with appropriate phasing (i.e., elevated in

the dark phase and declining during the light phase) was

maintained. Because we could not sample unanesthetized

bears during hibernation, additional studies will be

required to address this. A baseline elevation in cortisol

during hibernation would, however, be consistent with its

role in facilitating lipolysis and energy metabolism, as

previously suggested for bears (Palumbo et al. 1983;

Harlow and Beck 1990; Hellgren et al. 1993). Previous

studies in brown bears examining plasma cortisol have

only been conducted during the active season and under

anesthesia (Brannon 1985; Cattet et al. 2003). In those

studies, cortisol concentrations ranged from 54 to 177 ng/

mL (Brannon 1985; Cattet et al. 2003), very similar to

our active season anesthetized average of 85 ng/mL.

Intriguingly, we observed that in nonanesthetized female

bears, adults had undetectable levels of cortisol during

midsummer compared to subadults. Although the small

sample size prevented us from statistically comparing

these age groups, both age and reproductive status are

reported to affect cortisol concentrations (Harlow and

Beck 1990; Coe and Levine 1995; Kiess et al. 1995; Schiml

et al. 1996; Ruis et al. 1997; Boonstra et al. 2001; McKen-

zie and Deane 2003), though some reports found no

effects of age (Huber et al. 2003; Christina et al. 2004).

Sex of the bears may also have impacted results between

seasons. The nonanesthetized samples were collected

exclusively from female bears while the anesthetized sam-

ples were obtained only from males. Generally, males

have been found to have higher basal levels of circulating

cortisol than females (Ruis et al. 1997). Circulating bind-

ing factors, such as corticosterone-binding globulin

(CBG), exhibit sexual dimorphism with adult females

having elevated CBG, thus potentially lowering plasma

cortisol concentrations (Allen 1976; Chow et al. 2010).

The very low cortisol levels in adult nonanesthetized

bears during the summer were in sharp contrast to those

measured in anesthetized bears during the same period

confirming that the anesthetics used in our studies caused

the increases. Indeed, sympathomimetics, such as that used

in the current studies have been documented to increase

cortisol (Al-Damluji et al. 1987; Bugajski et al. 1991; Lin

et al. 1993; Clapper 2008). In contrast, the benzodiazepine-

like drug, Zolazepam, included in Telazol, could mitigate

some of the HPA stimulation resulting from tiletamine

hydrochloride (Rohrer et al. 1994; Imaki et al. 1995; Bentson

et al. 2003). Lastly, medetomidine was also included in our

anesthetic cocktail and has been reported to reduce sympa-

thetic activation (Aho et al. 1992; Caulkett et al. 1999; Ko

et al. 2000). The most parsimonious explanation of the ele-

vated cortisol is that the repeated doses of Telazol were

responsible for continued elevation in basal cortisol. It is

interesting that melatonin was not affected in a similar way,

although the a-2 adrenergic agonist dexmedetomidine may

have played a role (Mustanoja et al. 1997).

Perspectives and Significance

Melatonin and cortisol both appear to serve as seasonal

phase markers in the brown bear. The nocturnal elevation
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in melatonin in brown bears is consistent with observa-

tions made in many other temperate species. However,

the extremely small amplitude observed may be related to

the unexpectedly small pineal gland in the bear. We

hypothesize the very low nocturnal melatonin concentra-

tions during the active season may facilitate a certain

degree of behavioral flexibility allowing brown bears to

adapt to highly variable food resources and diverse tem-

poral niches (Ware et al. 2012). The elevated baseline

melatonin during hibernation may be a unique adapta-

tion in this large mammal to facilitate metabolic suppres-

sion by lowering body temperature and enhancing sleep

propensity. The daily cortisol profile is very similar to

that of other diurnal species suggesting that this is the

preferred temporal niche of the brown bear.
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