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ABSTRACT
Many studies have shown that algal growth is enhanced by organic carbon and algal
mixotrophy is relevant for physiology and commercial cultivation. Most studies have
tested only a single organic carbon concentration and report different growth
parameters which hampers comparisons and improvements to algal cultivation
methodology. This study compared growth of green algae Chlorella vulgaris and
Chlamydomonas reinhardtii across a gradient of photoautotrophic-mixotrophic-
heterotrophic culture conditions, with five acetate concentrations. Culture growth
rates and biomass achieved were compared using different methods of biomass
estimation. Both species grew faster and produced the most biomass when supplied
with moderate acetate concentrations (1–4 g L−1), but light was required to optimize
growth rates, biomass yield, cell size and cell chlorophyll content. Higher acetate
concentration (10 g L−1) inhibited algal production. The choice of growth parameter
and method to estimate biomass (optical density (OD), chlorophyll a fluorescence,
flow cytometry, cell counts) affected apparent responses to organic carbon, but use of
OD at 600, 680 or 750 nm was consistent. There were apparent trade-offs among
exponential growth rate, maximum biomass, and culture time spent in exponential
phase. Different cell responses over 1–10 g L−1 acetate highlight profound
physiological acclimation across a gradient of mixotrophy. In both species, cell size vs
cell chlorophyll relationships were more constrained in photoautotrophic and
heterotrophic cultures, but under mixotrophy, and outside exponential growth
phase, these relationships were more variable. This study provides insights into algal
physiological responses to mixotrophy but also has practical implications for
choosing parameters for monitoring commercial algal cultivation.

Subjects Aquaculture, Fisheries and Fish Science, Plant Science, Food, Water and Energy Nexus
Keywords Optical density, Chlorophyll a fluorescence, Exponential growth, Algal cultures,
Carrying capacity, Acetate, Physiology, Photosynthesis, Flow cytometry

INTRODUCTION
Growth of microalgal biomass for use in biotechnology, biofuel production, aquaculture,
pharmaceutical applications and during wastewater treatment is of interest to the research
community and algal biotechnology industry, so optimizing culture conditions for
production efficiency is a major research focus (Henley, 2019). A range of different culture
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approaches, including under strictly photoautotrophic as well as heterotrophic and
mixotrophic conditions, are typically reported (Wang, Yang &Wang, 2014). Furthermore,
a range of different methods and parameters for estimating algal growth are represented in
published studies and applications (summarized in Table 1). However, inconsistent use of
growth parameters makes comparisons difficult, hampering advances in algal cultivation
methodology. A systematic comparison of algal growth estimates under different growth
conditions is needed to determine which parameters are most robust and useful.

Optimizing microalgal growth has usually focused on the best combination of abiotic
conditions, particularly light and inorganic macro- and micro-nutrient availability (Smith
& McBride, 2015). But many studies over the last few decades have also shown that growth
of some algal species can be enhanced by organic carbon additions to the culture medium
(Lee, 2001; Chen et al., 2011). Some microalgal species can grow well mixotrophically and
even heterotrophically, and mixotrophy may be a successful strategy for organisms in
diverse natural habitats (Burkholder, Glibert & Skelton, 2008; Selosse, Charpin & Not,
2017). Energy use flexibility in algae involves biochemical interactions between
photosynthetic light harvesting and carbon fixation and respiratory organic carbon
processing in response to light and organic carbon (C) supply (Liu et al., 2009; Roach,
Sedoud & Krieger-Liszkay, 2013; Xie et al., 2016; Li et al., 2020). There is profound dynamic
physiological acclimation required to balance autotrophic and heterotrophic carbon use
(Heifetz et al., 2000; Bogaert et al., 2019).

Considerable attention has been focused on optimizing algal cell growth rates using
organic C supplements, or even exclusive heterotrophic cultivation (Lee, 2001; Bogaert
et al., 2019; Pang et al., 2019). Support of algal growth by addition of organic C sources can
help alleviate light limitation in high density cultures, reduce light requirements, and algae
may be able to use organic C sources available as waste products from other processes,
possibly improving biomass production efficiency and costs (Chen et al., 2011;
Nirmalakhandan et al., 2019; Ummalyma et al., 2022). Relatively few algal taxa have
been examined in laboratory or commercial cultivation (Luo et al., 2017; Nirmalakhandan
et al., 2019; Wang, He & Young, 2020), although green algae which grow fast and
tolerate high nutrient concentrations include Chlorella, Chlamydomonas and Scenedesmus
species, for which there is also information about growth, physiology and genetics
important for researchers. While some taxa can grow heterotrophically, growth rates are
often lower than with light, and many cells may need light to optimize production of
economically-important metabolites such as lipids, proteins or pigments (Lee, 2001; Chen
et al., 2011; Karimian, Mahdavi & Gheshlaghi, 2022) and mixotrophy may yield superior
biomass production than solely heterotrophic or photoautotrophic conditions (Li et al.,
2020). Several organic C sources have been applied, most commonly acetate or glucose,
glycerol but also amino acids or organic hydrolysates or chemical by-products (Chen et al.,
2011; Cheng et al., 2022). Studies have compared growth and yield across different taxa,
culture type, inorganic and organic C sources and supply conditions, but typically using
only one organic C concentration (Table 1). To understand how cells acclimate
photosynthetic physiology to respond to autotrophic, mixotrophic and heterotrophic
conditions, and to optimize cell culture production for applied purposes, we need to
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Table 1 Summary of growth parameters reported for studies comparing mixotrophy (MX), heterotrophy (HT) and photoautotrophy (PA)
with an emphasis on green algal species with some other algal groups represented.

Phylum Species Trophic
modes
tested

Culture type Organic
C used

HT
growth

Growth effect Growth
parameters
assessed

Other effects Reference

Chlorophyta Asterarcys sp.
SCS-1881

PA, MX,
HT

batch gluc no MX>PA, HT OD750,
counts,
mass

MX>PA protein
synthesis,
MX<PA
pigment, TAG

Li et al. (2020)

Chlorophyta Chlamydomonas
acidophila

PA, MX semi-cont gluc nd MX>PA volume cells could use
DOC but not
POC sources

Tittel et al.
(2005)

Chlorophyta Chlamydomonas
acidophila

PA, MX,
HT

semi-cont gluc no MX>PA>>HT OD800 MX>PA Pmax,
cell size;
PA>MX Chl

Spijkerman,
Lukas &
Wacker (2017)

Chlorophyta Chlamydomonas
acidophila

PA, MX,
HT

batch gluc, acet v low PA>MX>HT counts acet toxic in MX;
cell size variable
in PA, MX

Souza et al.
(2017)

Chlorophyta Chlamydomonas
humicola

PA, MX,
HT

batch acet yes MX>HT>PA counts,
OD680

MX>PA, HT
biomass,
protein, chl;
PA>MX, HT
lipid

Laliberte & De la
Noué (1993)

Chlorophyta Chlamydomonas
reinhardtii

PA, MX,
HT

batch acet grad yes no effect OD750 PS reduced with
incr. [acet]

Heifetz et al.
(2000)

Chlorophyta Chlamydomonas
reinhardtii

MX batch acet grad nd m>mod acet counts biomass, starch,
protein incr
with [acet].

Bogaert et al.
(2019)

Chlorophyta Chlamydomonas
reinhardtii

MX, HT batch acet yes MX>HT counts TAG production:
MX>HT

Singh et al.
(2014)

Chlorophyta Chlorella
protothecoides

PA, HT split MX gluc, acet yes MX>HT>PA OD750,
mass

Mx>PA lipid
yield after N
deprivation

Sim et al. (2019)

Chlorophyta Chlorella
protothecoides

MX, HT batch gluc yes PA>HT counts,
mass

HT>PA lipid,
same yield at
stat phase

Rosenberg et al.
(2014)

Chlorophyta Chlorella
pyrenoidosa

MX, HT batch gluc yes MX>HT mass MX>HT NH4+
removal

Wang et al.
(2021)

Chlorophyta Chlorella
pyrenoidosa

MX HT batch gluc yes MX>HT mass MX>HT N
removal

Cheng et al.
(2022)

Chlorophyta Chlorella
sorokiniana

MX, HT batch mal no MX>PA>>HT OD550 mal used only in
light; PA>MX
Rubisco act

Qiao, Wang &
Zhang (2009)

Chlorophyta Chlorella
sorokiniana

PA, MX airlift batch acet nd MX>PA counts,
mass

MX cells retain
PS capacity

Cecchin et al.
(2018)

Chlorophyta Chlorella
sorokiniana

PA, MX batch acet nd MX>PA OD750 acet reduces
photoinhibition

Xie et al. (2016)

Chlorophyta Chlorella
sorokiniana

HT batch acet,
butyr,
lact

yes acet incr,
butyr inhib

OD800,
mass

acet:butyr ratio
affects growth

Turon et al.
(2015)

(Continued)
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Table 1 (continued)

Phylum Species Trophic
modes
tested

Culture type Organic
C used

HT
growth

Growth effect Growth
parameters
assessed

Other effects Reference

Chlorophyta Chlorella
sorokiniana

PA, MX,
HT

batch gluc yes HT>MX>PA counts HT>PA lipid Rosenberg et al.
(2014)

Chlorophyta Chlorella
sorokiniana

PA, MX,
HT

batch gluc,
acet,
glyc

yes MX>PA,HT OD680,
mass

HT>MX protein,
MX>PA, HT
lipids

Karimian,
Mahdavi &
Gheshlaghi
(2022)

Chlorophyta Chlorella vulgaris PA, HT batch gluc yes PA>HT counts HT>PA lipid Rosenberg et al.
(2014)

Chlorophyta Chlorella vulgaris PA, MX,
HT

semi-cont gluc yes MX>PA=HT OD800 MX larger cells;
diff FA HT-PA;
HT>PA C:P
ratio

Spijkerman,
Lukas &
Wacker (2017)

Chlorophyta Chlorella vulgaris PA, MX,
HT

column,
panel

gluc no MX>PA OD750,
mass

needs light to use
gluc

Subramanian,
Yadav & Sen
(2016)

Chlorophyta Chlorella vulgaris MX batch
micropl

acet, gluc nd glu+acet>acet OD750, FC,
biomass

MX vs PA
changes OD/
FC-mass
relationship

Chioccioli,
Hankamer &
Ross (2014)

Chlorophyta Chlorella sp. HS2 HT, MX batch,
multich

gluc,
yeast

yes MX>HT counts,
mass

MX>HT pigment Kim et al. (2020)

Chlorophyta Chlorella PA, MX,
HT

batch gluc 2% yes MX>PA>HT OD750,
mass

PA>MX, HT
lipid accum

Ratha et al.
(2013)

Chlorophyta Dunaliella
bardawil

PA, MX,
HT

batch acet, gluc v low MX>PA>>HT counts gluc>acet higher
β-carotene,
lipid

Chavoshi &
Shariati (2019)

Chlorophyta Graesiella sp. PA, MX,
HT

batch gluc v low MX>HT, PA mass PSII act lost
under MX, HT

Zili et al. (2017)

Chlorophyta Scenedesmus
obliquus

PA, MX,
HT

batch yeast,
Bold

yes MX> PA, HT counts MX>PA, HT
SOD act

Pokora,
Aksmann &
Tukaj (2011)

Chlorophyta Scenedesmus
obliquus

PA, MX,
HT

batch acet yes MX>PA>HT OD680,
counts

isocitrate lyase
act with acet

Combres et al.
(1994)

Chlorophyta Scenedesmus
obliquus

PA, MX,
HT

batch acet yes MX> PA>HT mass MX>PA, HT N, P
removal, lipid
content

Choi et al. (2019)

Chlorophyta Scenedesmus
obliquus

MX, HT batch, matrix acet nd nd OD682 MX>HT N
removal

Liu et al. (2019)

Chlorophyta Scenedesmus
obliquus

PA, MX batch acet,
pyrv

nd MX>PA mass Pyrv/acet diff
effects on
growth, cell
parameters

Mansouri et al.
(2022)

Chlorophyta Scenedesmus sp. PA, MX,
HT

batch molas yes MX>HT>PA counts,
mass

PS, chl
maintained
with molas

Kamalanathan
et al. (2017)

Chlorophyta Scenedesmus PA, MX,
HT

batch molas yes HT>PA counts,
mass

HT>PA biomass,
m, lipid

Kamalanathan
et al. (2018)
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characterize cell growth and parameters such as size and pigment content over a gradient
of organic C concentrations.

For applied biotechnological cultivation of microalgal species, there are several useful
culture parameters to compare. Growth rate is important, but also the maximum biomass,
or carrying capacity, of the culture conditions may be an important parameter for
commercial application, as well as how long cultures can sustain maximum growth rates in
culture (Andersen, Faeerovig & Hessen, 2007; Smith & McBride, 2015), but most studies do
not report these parameters. In assessing culture growth responses, direct mass
measurements require relatively dense and/or large culture volumes for accuracy
(Subramanian, Yadav & Sen, 2016), so many applied studies employ rapid algal biomass

Table 1 (continued)

Phylum Species Trophic
modes
tested

Culture type Organic
C used

HT
growth

Growth effect Growth
parameters
assessed

Other effects Reference

Chlorophyta Chlorococcum PA, MX,
HT

batch gluc 2% yes MX>PA>HT OD750,
mass

PA>MX, HT
lipid accum

Ratha et al.
(2013)

Haptophyta Isochrysis
galbana

PA, MX,
HT

batch glyc no MX>PA>>HT counts,
mass

>biomass with
glyc 25–50 mM

Alkhamis & Qin
(2013)

Bacillariophyta Pavlova lutheri PA, MX,
HT

batch gluc,
glyc,
acet,
sucr

v low MX>HT counts,
OD750

Sucr>gluc>acet
growth

Bashir et al.
(2019)

Bacillariophyta Phaeodactylum
tricornutum

PA, MX batch glyc nd MX>PA counts N deprivation ->
lipid accum

Villanova et al.
(2017)

Rhodophyta Galdieria
sulphuraria

PA, MX,
HT

batch sorb yes MX>PA+HT counts,
mass

org C stimulates
PS via CO2

supply

Curien et al.
(2021)

Rhodophyta Galdieria
sulphuraria

PA, MX batch 700 L ww no nd OD750,
mass

low pH
cultivation
suppressed
bacteria

Nirmalakhandan
et al. (2019)

Rhodophyta Galdieria
sulphuraria

PA, MX batch/chemo Gluc yes MX>PA mass MX>PA pigment
prod

Abiusi et al.
(2022)

Ochryophyta Nannochloropsis
oceanica

PA, MX batch acet ND MX>PA OD750 TCA, C4 cycle
stim by DIC
+DOC

Li et al. (2020)

Cyanobacteria Nostoc PA, MX,
HT

batch gluc 2% yes MX>PA, HT OD750,
mass

MX>PA, HT
lipid accum

Ratha et al.
(2013)

Cyanobacteria Phormidium,
Anabaena

PA, MX,
HT

batch gluc 2% yes MX>PA, HT OD750,
mass

MX>PA, HT
lipid accum

Ratha et al.
(2013)

Notes:
PA, photoautotrophy; MX, mixotrophy; HT, heterotrophy.
nd, not determined; Chl, chlorophyll; OD, optical density; counts, counts of cell by microscopy or automated counter unless; FC, flow cytometry specified; TAG,
triacylglycerol; FA, fatty acids; incr, increasing; m, growth rate.
Culture types: semi-cont, semi-continuous culture; panel, panel bioreactor; micropl, microplate; multich, multichannel bioreactor; matrix, matrix immobilized; chemo,
chemostat.
Organic C substrates: gluc, glucose; acet, acetate; butyr, byturate; fruct, fructose; glyc, glycerol; lact, lactate; mal, malate; meat, meat extract; molas, molasses; pep, peptone;
pyrv, pyruvate; sucr, sucrose; sorb, sorbitol; yeast, yeast extract; Bold, Bolds basal medium.
grad, gradient; ww, wastewater; act, activity; DIC, dissolved inorganic C; DOC, dissolved organic C.
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assessment methods such as optical density (OD) at 600 or 750 nm, which is easy and
relatively cheap to measure (Chioccioli, Hankamer & Ross, 2014). Other studies have used
680 nm to target absorbance by algal chlorophyll (Xiao et al., 2015; Luo et al., 2020).
Counts of cells using manual microscopy counts or more automated methods are
common, often used in combination with other parameters (Chioccioli, Hankamer & Ross,
2014; Kamalanathan et al., 2018). Chl-based estimates of biomass, typically based on
chlorophyll a fluorescence, require specialized fluorometers, but are sensitive and have
been widely applied to estimate biomass and physiological parameters in field and culture
studies (Kolber & Falkowski, 1994; Young & Beardall, 2003; Chen et al., 2017). These
parameters target different cell characteristics so it is unclear if using different growth
parameters will result in similar or different growth rates or conclusions in responses to
photoautotrophic, mixotrophic or heterotrophic conditions. More detailed comparisons of
different growth parameters for algal growth applications are needed. Furthermore,
depending on the application for rapid vs. dense biomass production, different parameters,
including cell density, size and pigment content may be most useful. Specific comparisons
of these measuring parameters have not often been carried out across different growth
conditions.

To address the need for more detailed comparisons of cell culture parameters, and
responses of cells over a gradient of mixotrophic, autotrophic and heterotrophic
conditions, this study used two species of green algae commonly used in biotechnology
and for biofuels production. The study focused on three research aims and related
hypotheses:

1. To compare the use of different parameters for estimating growth and biomass
production under photoautotrophic, mixotrophic and heterotrophic growth conditions
in two green algal species. We hypothesize that growth rates will vary with mode of
energy supply and that different biomass estimating parameters will result in different
growth rate relationships.

2. To examine additional important algal culture parameters, i.e., maximum biomass
achieved and time spent in exponential phase of batch cultures, across a gradient of
photoautotrophic, mixotrophic and heterotrophic growth conditions. We hypothesize
that there will be a trade-off between maximum exponential growth rate and maximum
biomass achieved and culture time spent in exponential phase.

3. To examine algal cell size and cell chlorophyll responses to photoautotrophic,
mixotrophic and heterotrophic culture conditions over the culture growth cycle.
We hypothesize that cell size and chlorophyll per cell will change with trophic energy
mode and culture growth phase.

MATERIALS AND METHODS
Cultures
Chlorella vulgaris (UTEX 259) was obtained from UTEX (utex.org) and Chlamydomonas
reinhardtii (c-9 wt) was obtained from Chlamydomonas resource center
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(chlamycollection.org/). Cultures of each species were maintained in stock cultures and
used to inoculate cultures in one liter flasks with 500 mL of DY-V medium (Anderson
et al., 2005), all maintained at 18 �C. Magnetic stir bars and filter-sterilized (Whatman
GF/F) air agitated the medium, and flasks were fitted with a sampling port with a syringe.
Irradiance was supplied by fluorescence light tubes (Philips Alto TL841 HO) at ~30 µmol
m−2 s−1 at the flask surface with L:D periodicity of 14:10 h. For mixotrophic and
heterotrophic conditions, organic C was added as sterile-filtered (0.2 µm) sodium acetate
(Fisher Scientific, Hanover Park, IL, USA) which is most often included as a C source
in synthetic wastewater (Xiao et al., 2015; Luo et al., 2020). For mixotrophic cultures,
acetate from a 100 g L−1 stock solution was added to cultures for final concentrations
of 1, 2, 3, 4, 10 g L−1 in the growth medium. Heterotrophic cultures were supplied with
2 g L−1 sodium acetate and culture flasks were covered with black felt to exclude all
light and placed in the same growth chamber at 18 �C. Four replicate cultures were
used for each treatment and species. Changes in algal biomass were evaluated by
changes in chlorophyll a (chl) fluorescence and optical density (OD) measured in culture
subsamples withdrawn from the sampling port within a sterile hood. Chl fluorescence
was measured twice daily in a 4 mL subsample using a benchtop fluorometer (TD-700;
Turner Designs, San Jose, CA, USA). OD of the same sample was also measured at 600, 680
and 750 nm daily in 1 cm cuvette in a spectrophotometer (DU-640; Beckman Coulter,
Brea, CA, USA).

Growth parameters
Cultures were monitored for ~6–8 days covering lag, exponential and into stationary
phase. OD and chl fluorescence data were collected and plotted over time, then natural log
transformed to determine exponential growth regions for growth rate (d−1) calculations
from beginning (initial) to end (final) of the exponential period using specific growth rate
equation (m) (Fogg & Thake, 1987):

l ¼ lnðbiomassfinalÞ � lnðbiomassinitialÞ=timefinal � timeinitial

The length of the exponential growth period, from end of lag phase to beginning of
stationary phase, was measured from the linear portion of the natural log plots. Maximum
biomass achieved at stationary phase (as a measure of carrying capacity, K) was also
calculated using a linear regression through at least three points in the stationary phase of
the culture where the maximum chl fluorescence or OD values were observed for each
culture. The parameters compared from the growth curves are shown in Fig. 1.

To extend the comparison of biomass parameters and examine the possibilities of OD
increases related to cell size, differences in chl per cell, or biomass increases related to
growth of bacteria rather than algal cells, especially in mixotrophic and heterotrophic
cultures, an additional experiment compared growth rates based on measurements of chl
fluorescence, OD (as above) but also included counts of algal cells but comparing the
2 g L−1 acetate concentration for mixotrophic and heterotrophic conditions. Cells were
counted using microscopy with a haemocytometer of samples collected daily and
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preserved with acid Lugol’s iodine reagent and stored in the dark at 4 �C. Cells were also
counted and cell size and chl fluorescence in algal cell populations examined by flow
cytometry (FC). Three treatments were compared: photoautotrophic, mixotrophic with
2 g L−1 acetate and heterotrophic with 2 g L−1 acetate conditions, as described above, with
three replicate cultures of each treatment. FC was carried out on a benchtop flow
cytometer (BD Accuri C6, 488 nm blue laser), using forward scatter (FSC-H) as a proxy for
cell size and chl fluorescence signal (FL-3-H) as an estimate of per cell chl fluorescence,
both within the previously-defined gates for each species, using peak height viewed on a
histogram. Gating of each algal species was performed separately and used for total cell
counts. Typical FC parameters were a 10 µm core size, a 14 µL min−1 flow rate and a
threshold of 800 units on FL-3. FC plots were analyzed, and counts were collected using
BD Accuri C6 system software.

Analysis
The average of parameters (growth rate, time spent in exponential phase, maximum cell
density), were calculated from replicate cultures for each treatment and species. Culture
condition treatments were compared with a one-way ANOVA or a two-way ANOVA with

Figure 1 Example growth curve showing growth parameters used for analysis. Plot of growth of
Chlorella vulgaris in a batch culture example to illustrate the growth parameters reported in Figs. 2–5.
The period of exponential growth phase (grey box) was estimated from the linear portion of a plot of the
natural log of biomass over time (top plot). Full-size DOI: 10.7717/peerj.13776/fig-1
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treatment and measured parameter as factors, separately for each species, and to compare
culture treatment and species as factors. Calculated parameters using each of the three
wavelengths for OD (600, 680, 750 nm) were compared with two-way ANOVA of culture
treatment and wavelength, but no differences were found, so OD at 680 nm only was used
for all further statistical treatment comparisons. Within each species, treatment effects on
each parameter were compared with one-way ANOVA with Tukey’s or Holm-Sidak
multiple comparisons. The data for time spent in exponential phase failed equal variance
test for ANOVA so a Kruskal–Wallis non-parametric test on ranks was performed, with
Tukey pairwise comparisons. For experiments including FC and haemocytometer counts,
along with chl fluorescence and OD at 680 nm, growth rates were calculated on the same
time periods across all four measuring methods and compared with two-way ANOVA
using treatment and growth rate estimation method as factors, separately for each species,
with Holm-Sidak pairwise comparisons. All statistical analyses were made using Sigmaplot
(v. 12.5; Systat Software Inc, San Jose, CA, USA).

RESULTS
Exponential growth rates
Both species grew rapidly in the batch cultures with similar ranges of exponential growth
rates over photoautotrophic (0 g L−1), mixotrophic and heterotrophic conditions (Fig. 2).
Based on chl fluorescence, Chlorella vulgaris grew at similar rates for all light-grown
cultures (maximum 1.17 ± 0.17 d−1) but the growth rate in heterotrophic cultures was
significantly lower than in other treatments (Fig. 2A, one-way ANOVA with Holm-Sidak
multiple comparisons, p = 0.007, F = 4.11, df = 6, n = 4). Chlamydomonas reinhardtii grew
faster (maximum 1.54 ± 0.35 d−1) with 2 g L−1 than other conditions (one-way ANOVA,
p < 0.001, F = 18.7, df = 6, n = 4) (Fig. 2B), and growth rate in mixotrophic 10 g L−1 and
heterotrophic conditions was slower than mixotrophic cultures supplied with 2, 3 and
4 g L−1.

Growth of cells in different treatments based on changes in chl fluorescence vs. optical
density (OD) yielded similar growth rates for light-grown cultures and between the two
species; OD-based growth rates excluding heterotrophic cultures for C. vulgaris were 1.11
± 0.060 d−1 and for C. reinhardtii 0.92 ± 0.042 d−1 (Figs. 2C, 2D). However, OD-based
growth rates of heterotrophic cultures were significantly higher than the light-grown
cultures of both species (one-way ANOVA with Holm-Sidak multiple comparisons:
C. vulgaris p < 0.001, df = 6, F = 57.496; C. reinhardtii p = 0.023, ANOVA, df = 6,
F = 17.26), in contrast to lower culture growth rates in heterotrophic conditions when
based on chl fluorescence (Fig. 2). Within OD wavelengths, there were no significant
differences between growth rates determined using OD at 600, 680 or 750 nm (two-way
ANOVA). Based on OD at 680 nm, all photoautotrophic and mixotrophic cultures of
C. vulgaris grew at similar rates but there was some variability in growth rates among
treatments in C. reinhardtii (Figs. 2C, 2D).
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Maximum biomass achieved
The maximum biomass achieved during stationary phase in cultures of C. vulgaris based
on chl fluorescence was 303 ± 91 relative fluorescence units (rfu) in photoautotrophic
cultures, which was similar to maximum biomass for mixotrophic cultures supplied with 1,
2 and 4 g L−1 acetate but higher than biomass for 3 and 10 g L−1 and heterotrophic cultures
(Fig. 3A; ANOVA with Holm-Sidak multiple comparisons, p = 0.002, F = 20.5, df = 6,
n = 4). For C. reinhardtii, the maximum chl fluorescence was also highest in
photoautotrophic cultures with 376 ± 59 rfu, and maximum chl fluorescence was
significantly lower in 10 g L−1 and heterotrophic cultures than the other treatments
(Fig. 3B) (ANOVA with Holm-Sidak multiple comparisons, p < 0.001, F = 31.79, df = 6,
n = 4).

There were no treatment effect differences in maximum biomass based on use of
different OD wavelengths (600, 680, 750 nm) (two-way ANOVA with wavelength and
treatment as factors). C. vulgaris cultures only achieved higher maximum values than
C. reinhardtii at 1 g L−1 acetate (Figs. 3B, 3C) (two-way ANOVA with species and

Figure 2 Algal growth rates based on chl a fluorescence and optical density measurements. Growth
rates of Chlorella vulgaris and Chlamydomonas reinhardtii, based on Chl a fluorescence (A and B) or OD
(600, 680, 750 nm; C and D). Growth rates were calculated during exponential growth phase of batch
cultures. Cultures were maintained in light with 0 g L−1 acetate (photoautotrophic conditions), supplied
with light and acetate (1, 2, 3, 4 or 10 g L−1) (mixotrophic), or 2 g L−1 acetate in the dark (heterotrophic).
Bars are mean + standard deviation from four replicate cultures, and treatments with significant different
values are indicated with different lowercase letters (1-way ANOVA). For OD, statistical differences
between treatments are shown only for OD at 680 nm. Full-size DOI: 10.7717/peerj.13776/fig-2

Young et al. (2022), PeerJ, DOI 10.7717/peerj.13776 10/27

http://dx.doi.org/10.7717/peerj.13776/fig-2
http://dx.doi.org/10.7717/peerj.13776
https://peerj.com/


treatment as factors, Holm-Sidak multiple comparisons, p < 0.001, F = 11.5, df = 6,
n = 4). The highest C. vulgaris maximum biomass in mixotrophic conditions was
found with 1 g L−1 acetate (0.408 ± 0.07 OD) but similar biomass OD were observed
for photoautotrophic and mixotrophic cultures except 10 g L−1 acetate (Fig. 3C).
Heterotrophic and mixotrophic C. vulgaris cultures supplied with 10 g L−1 acetate achieved
lower maximum OD than all other treatments (ANOVA, p = 0.011, F = 16.56, df = 6,
n = 4). Maximum OD of C. reinhardtii cultures was highest in photoautotrophic cultures
(0.276 ± 0.02 OD) and mixotrophic cultures supplied with 1–3 g L−1 acetate (Fig. 3D) and
maximum biomass was significantly lower in heterotrophic cultures than all treatments
except 10 g L−1 mixotrophic (ANOVA, p < 0.001, F = 22.73, df = 6, n = 4).

Culture time in exponential phase
Discrete culture sampling times resulted in unequal variance in time in exponential phase
values (some treatments showed no variation), so comparisons were made with
Kruskal–Wallis ANOVA on ranks. There were no significant differences in times in
exponential phase between the two species, for either parameter. The longest times were
in photoautotrophic and mixotrophic cultures with exponential phase of 3–5 days and the

Figure 3 Maximum algal biomass achieved in cultures. Maximum biomass achieved in batch cultures
of green algae, based on Chl a fluorescence (A and B) or OD (600, 680, 750 nm; C and D). Values for Chl
a fluorescence or OD were estimated during stationary phase of growth. Treatments are the same as
Fig. 2. Bars are mean + standard deviation from four replicate cultures, and treatments with significant
different values are indicated with different lowercase letters (one-way ANOVA). For OD, statistical
differences are shown for OD at 680 nm. Full-size DOI: 10.7717/peerj.13776/fig-3
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shortest times in exponential phase were in heterotrophic or higher acetate concentration
mixotrophic treatments (1–2 days). The maximum culture time in exponential phase
for C. vulgaris based on chl fluorescence was highest in photoautotrophic cultures
(4.0 ± 1.2 d), but with similar times across heterotrophic cultures and most mixotrophic
cultures (Fig. 4A). For C. reinhardtii, maximum time in exponential phase was also
observed in photoautotrophic cultures (103.2 ± 5.28 h (4.3 ± 0.22 days)) but with similar
times across heterotrophic cultures and most mixotrophic cultures (Fig. 4B). When based
on OD (680 nm), the shortest time in exponential phase was also in the C. vulgaris
heterotrophic cultures (<48 h) (K-W ANOVA on Ranks, p = 0.001, H = 22.29, df = 6,
n = 4) and in C. reinhardtii, heterotrophic cultures grew in exponential phase for shorter
time than in 1 and 10 g L−1 treatments (K-W ANOVA on Ranks, p = 0.001, H = 22.68,
df = 6, n = 4) (Figs. 4C, 4D). There was no indication that a longer exponential phase led to
higher maximum biomass, although for C. reinhardtii cultures grown in the light there was
apparently a slight negative relationship (Fig. S1).

Figure 4 (A–D) Culture time period spent in exponential phase of growth. Time spent in exponential
growth phase for batch cultures of green algae based on Chl a fluorescence or OD (at 600, 680 or 750 nm).
Treatments are as in Fig. 2. Bars are mean + standard deviation from four replicate cultures, and
treatments with significant different values are indicated with different lowercase letters (one-way
ANOVA). For OD, statistical differences are shown for OD at 680 nm only.

Full-size DOI: 10.7717/peerj.13776/fig-4
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Measuring methods for growth rate estimates
Growth rates comparisons between estimates based on cell counts using flow cytometry
(FC), cell counts from microscopy, and culture density based on chl fluorescence and OD
for three treatments showed some differences (two-way ANOVA with treatment and
estimate parameter as factors and Holm-Sidak multiple comparisons) although the highest
growth rate estimates were not consistently found with one estimation method (Fig. 5).
In photoautotrophic and mixotrophic cultures, the highest rates were based on microscopy
counts and chl fluorescence. In heterotrophic cultures, (OD clearly gave higher growth rate
estimates for C. reinhardtii n = 3) but in C. vulgaris, OD based growth rates were only
higher than microscopy counts (two-way ANOVA, p < 0.001, F = 350.9, df = 2). With all
methods, growth rate was slowest in heterotrophic cultures of C. vulgaris, and with all
methods except OD for C. reinhardtii (ANOVA treatment effect p < 0.001 for both

Figure 5 Algal culture growth rates based on different estimates of biomass. (A) Chlorella.
(B) Chlamydomonas. Growth rates calculated for batch cultures of green algae based on cell counts from
flow cytometry and haemocytometer counts, chl fluorescence and OD during exponential phase of
growth. Three treatments were 0 g L−1 acetate (photoautotrophic), 2 g L−1 acetate plus light (mixo-
trophic), and 2 g L−1 acetate in the dark (heterotrophic). Bars are mean + standard deviation from three
replicate cultures. Statistically significant growth rates within each species and treatment are indicated
with different lowercase letters (two-way ANOVA). Full-size DOI: 10.7717/peerj.13776/fig-5

Young et al. (2022), PeerJ, DOI 10.7717/peerj.13776 13/27

http://dx.doi.org/10.7717/peerj.13776/fig-5
http://dx.doi.org/10.7717/peerj.13776
https://peerj.com/


species). In C. vulgaris, growth rates estimated by FC were highest in mixotrophic (2 g L−1

acetate) and lowest in heterotrophic cultures (Fig. 5A, two-way ANOVA, p < 0.001,
F = 114.5, df = 2, n = 3), but photoautotrophic and mixotrophic cultures showed similar
growth rates when estimated with chl fluorescence or OD. With haemacyometer
microscopy counts, C. vulgaris growth rates were highest in photoautotrophic cultures
(ANOVA, p < 0.001, F = 114.5, df = 2, n = 3). In C. reinhardtii, growth rates were also
highest in mixotrophic culture and lowest in heterotrophic cultures with FC, microscopy
counts and OD but with chl fluorescence, growth rates were similar growth in
photoautotrophic and mixotrophic cultures (Fig. 5B).

Cell size and fluorescence
Cell size and chl fluorescence per cell varied over the culture growth phases with distinct
patterns between the three growth conditions (Fig. 6). In both species, in photoautotrophic
and mixotrophic conditions, there was an initial increase in cell size but during stationary
phase, cell size declined in photoautotrophic cells and but increased markedly in
mixotrophic cells (Figs. 6C, 6D). In contrast, in heterotrophic cultures, cell size in both
species declined until the start of stationary phases then increased in C. vulgaris but not
in C. reinhardtii (Figs. 6E, 6F). Chl fluorescence per cell showed some similar trends to
cell size, but some differences suggest that chl fluorescence per cell was not solely based
on cell size. The closest correlation between mean cell size and mean chl fluorescence
per cell was in heterotrophic cells, where in C. vulgaris cultures chl fluorescence per cell
was lower than in photoautotrophic cells. Despite C. reinhardtii heterotrophic cultures
growing minimally and decreasing in cell numbers after day 3, cells maintained higher chl
fluorescence than in C. vulgaris heterotrophic cells (Figs. 6E, 6F).

The relationship between cell size estimates (FSC) and fluorescence per cell (FL-3)
clearly differed between the three treatments (Fig. 7). During photoautotrophic growth of
both species, the linear regression relationship showed very similar slopes across the two
species and even closer similarity during exponential phase (Figs. 7A, 7B), but during
mixotrophic and heterotrophic growth, the two species differed. Heterotrophic cultures
showed tight linear regression relationships (highest R2 values) between FSC and FL-3 but
with lower FL-3 ranges (Figs. 7E, 7F). Mixotrophic cultures showed the most
unconstrained FSC vs. FL-3 relationships with big differences between species and during
exponential phase and over all time points and low R2 values across all the time points
(Figs. 7C, 7D).

DISCUSSION
Growth rates and biomass parameters
The two green algal species used in this study both showed trophic flexibility, growing well
across a gradient of photoautotrophic-mixotrophic-heterotrophic conditions. The data
support the hypothesis that growth rates differ with energy supply mode. Differences in
growth rates and maximum biomass achievable may be important for selection of species
and for choice of measurements. The data also supported the hypothesis that there are
differences in growth rates based on different parameters used to assess biomass, and also
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Figure 6 Cell size and chl fluorescence per cell in cultures. Changes in cell size and chl fluorescence per
cell estimates over the culture growth period in the two algal species in photoautotrophic (A–B),
mixotrophic (2 g/L acetate; C–D) and heterotrophic (E–F) growth conditions, for Chlorella vulgaris (A, C,
E) and Chlamydomonas reinhardtii (B, D, F). Cell size estimates are based on the mean FSC-H for each
sample (filled symbols, left scales) and chl fluorescence per cell (open symbols, right scales) is based on
mean FL-3 values for each sample, both using the same flow cytometry gates determined for each species.
Plots of the two species for each growth condition treatment are on the same scales. Exponential growth
period is indicated with grey bars at top of plots. All points represent a mean of mean FSC-H or FL-3
values for three replicate cultures ± standard deviation. Full-size DOI: 10.7717/peerj.13776/fig-6
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that growth rates depend on energy supply. As previously noted (Henley, 2019), most
studies do not report the exact time range used for calculations of growth rate, nor verify
the exponential phase in batch culture. However, based on within-study comparisons
reported, many studies suggest higher growth rates in mixotrophy relative to
photoautotrophy or heterotrophy (Table 1). In Chlamydomonas reinhardtii and Chlorella

Figure 7 Relationships between cell size and cell chl fluorescence. Relationships between flow-cyto-
metry estimates of cell size (mean FSC) and chl fluorescence per cell (mean FL-3) in Chlorella vulgaris
(filled symbols) and Chlamydomonas. reinhardtii (open symbols) during photoautotrophic, mixotrophic
(2 g/L acetate) or heterotrophic culture conditions. Points are mean FSC and FL-3 values from sam-
ples from three replicate cultures (mean values over time are shown in Fig. 6). A, C, E plots show all
points over culture experiment and B, D, and F plots show points only during exponential growth phase.
Lines for each species are fitted by linear regression. R2 values for linear regressions: All points
Exponential Growth Photoautotrophic: Chlorella – 0.263, Chlamy – 0.317, Chlorella – 0.247,
Chlamy – 0.284; Mixotrophic: Chlorella – 0.0174, Chlamy – 0.0776, Chlorella – 0.134, Chlamy – 0.364;
Heterotrophic: Chlorella – 0.284, Chlamy – 0.671 Chlorella – 0.747, Chlamy – 0.168.

Full-size DOI: 10.7717/peerj.13776/fig-7
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vulgaris cultures, any stimulation of growth rates in mixotrophic culture was mild, but also
if a little acetate stimulated growth, then higher concentrations did not result in even
higher growth, rather the highest acetate concentration suppressed growth rate and/or
biomass yield. Most studies examining algal growth in different energy supply modes use
just one concentration of organic C, but selected studies investigating concentration effects
suggest a threshold organic C concentration, above which there is either no additional
effect, or there is a decline in growth or biomass, observed in Chlamydomonas,
Scenedesmus and Isochrysis (Heifetz et al., 2000; Alkhamis & Qin, 2013; Bogaert et al., 2019;
Cheng, Fan & Zheng, 2021).

C. vulgaris was apparently less sensitive to exposure to acetate, with more even chl
fluorescence-based growth rates across the gradient of photoautotrophic-mixotrophic-
heterotrophic conditions, than C. reinhardtii which showed more variable growth rates
with the highest in mixotrophic 2 g L−1 acetate cultures. However, the exponential growth
rate estimates also depended on the biomass parameter; growth rates based on OD were
higher than for chl fluorescence, especially for heterotrophic conditions. OD is the most
commonly used algal biomass parameter used (Table 1). Most studies report use of just
one wavelength across 680–800 nm, without justification for the choice, although OD at
750 nm the most common (Table 1). Our findings of no differences between the three
wavelengths suggests that results from studies using different OD wavelengths should still
be relatively comparable.

Measuring OD at 680 nm is a logical choice to target a chl absorbance peak, but OD at
680 nm did not seem to have any closer relationship to chl fluorescence than 600 or
750 nm. A broad chl absorbance peak might include some overlap across 600 and 680 nm,
although 750 nm would be out of chl absorbance range. OD is commonly used in
large-scale cultures OD and/or with algal cultivation in wastewater (Bogaert et al., 2019;
Nirmalakhandan et al., 2019), but in these conditions, cell and other debris could
contribute absorbance at 750 nm, potentially overestimating algal cell biomass and
therefore growth rate (Chioccioli, Hankamer & Ross, 2014). The higher biomass, and thus
growth rate, based on OD than chl fluorescence suggests important distinctions in these
measurements. Chl fluorescence per cell depends on cellular chl content but will also
depend on cell size and vary with physiological status, including light acclimation and
nutrient status (Young & Beardall, 2003).

We considered that the higher growth rates based on OD than chl fluorescence in
heterotrophic culture could be due to contaminating non-photosynthetic biomass, which
would contribute to OD but not chl fluorescence. Although bacteria are potentially
beneficial to growth of algae in cultures (Higgins & VanderGheynst, 2014), to examine the
possibility that bacteria were contributing to OD, cells were also counted using flow
cytometry (FC) measurements allowing focus on the just the algal cell population, which
are larger than bacteria. FC has been determined as a more sensitive parameter than OD
for assessing growth of green algal species and can avoid any signal from cell debris
(Chioccioli, Hankamer & Ross, 2014). In comparisons of growth rates based on changes in
OD (680 nm), chl fluorescence, alongside microscopy (haemocytometer) cell counts and
FC, OD clearly overestimated growth in heterotrophic cultures of C. reinhardtii, but not
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convincingly so in C. vulgaris (Fig. 4). Another study of Chlorella also showed FC and
microscopy counts more similar but differences with biomass and OD (Chioccioli,
Hankamer & Ross, 2014). However, in contrast to this current study, Chioccioli, Hankamer
& Ross (2014) also showed higher green algal growth rates based on FC than OD. In this
study, more similar results between OD and the specific counting parameters (FC,
microscopy counts) in C. vulgaris, suggests that OD is not overestimating growth because
of bacterial contamination, but that high acetate and/or heterotrophic conditions produces
algal cell biomass with suppressed or very low cell chl content. Overestimates using OD
in C. reinhardtii cultures could be due to higher load of dead cells or debris. If algal cells
are being grown for pigment production (Benavente-Valdés et al., 2017; Kim et al., 2020),
then OD is a less suitable and direct pigment measurements or use of chl fluorescence
would be more valuable for culture monitoring, and could be combined with other chl
fluorescence parameters, including quantum yield to assess cell photosynthetic health
(Young & Beardall, 2003; Masojídek, Vonshak & Torzillo, 2010; Kamalanathan et al.,
2017).

Other culture parameters
The two species showed similar growth rate ranges, maximum biomass achieved (OD or
chl fluorescence) and time spent in exponential phase, so offer similar potential for
application to bioreactor growth. The data supported the hypothesis of some apparent
trade-offs between maximum growth rate and maximum biomass achieved and culture
time spent in exponential phase. Based on OD, the highest C. vulgaris growth rates were in
heterotrophic conditions but with a lower maximum biomass and a shorter exponential
growth phase, and higher growth rates in heterotrophic C. reinhardtii cultures were
accompanied by shorter time in exponential phase and lower biomass achieved. Similar
trade-offs with lower growth rate but higher biomass accumulation was reported in
Chlamydomonas grown mixotrophically with acetate (Bogaert et al., 2019) but in
Scenedesmus, photoautotrophic cultures produced more biomass but at lower growth rate
than in mixotrophic cultures (Choi et al., 2019). In another study, light-grown
Chlamydomonas accumulated higher biomass in batch cultures with pulsed supply of
acetate which prolonged the exponential growth phase (Fields, Ostrand & Mayfield, 2018)
and higher biomass of Chlorella cells was achieved with acetate under mixotrophic
conditions than photoautotrophy in batch cultures (Karimian, Mahdavi & Gheshlaghi,
2022). Higher biomass accumulation could be important in for yield in batch cultivation;
in the two species examined, the exponential growth phase tended to be longer in
light-grown than heterotrophic cultures. Maximum biomass achieved may be a critically
important characteristic for economically viable commercial culture application (Fu et al.,
2012; Henley, 2019). Longer time in exponential phase may allow more flexibility in
harvesting timing for cultures, and/or provide longer window for cultures to be
subsampled or growth stimulated by dilution or feeding (Fields, Ostrand & Mayfield,
2018).

Many studies comparing growth between energy acquisition modes report results of
batch culture (Table 1), because they are cheaper and easier to maintain. Commercial
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cultivation employs both batch culture and semi-continuous or continuous cultures, which
maintain cells in exponential growth phase with continuous supply of nutrients and
dilution to remove the inhibitory products which can accumulate in stationary phase
(Fernandes et al., 2015; Henley, 2019). Hybrid batch or balanced chemostat bioreactors
with organic C feeding or extra stages are also in development (Fields, Ostrand &Mayfield,
2018; Kim et al., 2020, Abiusi et al., 2022). It is unclear how batch culture parameters
translate to continuous culture bioreactors or open-pond cultivation. Both species showed
similar range of time in exponential phase, which may translate to relative stability in
continuous cultures. However, the more similar growth rates across all conditions in
C. vulgaris suggests that in commercial cultures supplemented with an organic source such
as acetate under light limiting conditions, C. vulgaris growth may be more stable if organic
C concentrations fluctuate.

Chlorophyll and physiology
Culture supplementation with organic C can have profound effects on cell physiology,
including cell pigment and protein content (Table 1) and macronutrient use (Singh et al.,
2014; Bogaert et al., 2019; Sim et al., 2019; Li et al., 2020; Wu et al., 2021). The decrease in
chl fluorescence with increasing concentrations of acetate, most evident in maximum chl
fluorescence achieved (Figs. 3A, 3B), along with distinct patterns in cell chl fluorescence
and cell size between the three energy acquisition modes (Fig. 7), suggests a clear effect of
organic C use on chlorophyll synthesis, regulation of cell division and photosynthetic
physiology. The marked decline in chl fluorescence above 4 g L−1 acetate, and almost
complete suppression in 10 g L−1, suggests a threshold for suppression of investment in
photosynthetic processes, and balancing growth demands with energy gain from
heterotrophy. In C. reinhardtii, significantly lower chl fluorescence in all mixotrophic
conditions suggests even low acetate concentration stimulates a down-regulation of
photosynthesis, with a similar trend in C. vulgaris. Some previous studies show loss of chl
with mixotrophic growth (Table 1) but others in which chl production was maintained
even if photosynthetic capacity declined with increasing acetate availability (Heifetz et al.,
2000). Mixotrophy can also suppress photosystem II or Rubisco activity (Qiao, Wang &
Zhang, 2009; Zili et al., 2017) and marked transient effects of acetate on chlorophyll
fluorescence indicate dynamic cell responses to acclimate carbon and energy metabolism
(Endo & Asada, 1996). Other studies suggested maintenance of photosynthesis in
mixotrophic growth may depend on species and/or organic substrate (Kamalanathan
et al., 2017; Cecchin et al., 2018). Organic C supply can even support photosynthesis by
reducing photoinhibition or improving CO2 supply (Xie et al., 2016; Curien et al., 2021;
Gain et al., 2021) and Chlamydomonas cells also show regulation of inorganic carbon
acquisition in response to organic C supply, possibly by stimulating respiratory CO2

production inside cells which can be used for photosynthesis (Fett & Coleman, 1994).
However, some species need a light supply to be able to use glucose or to maximize growth
benefit of organic C (Chioccioli, Hankamer & Ross, 2014; Curien et al., 2021). In contrast,
diatoms may activate use of organic C when grown in the dark (Tuchman et al., 2006).
Although chl content was profoundly affected in the green algae, similar maximum OD
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values across the low-high acetate gradient suggests protein and cell wall synthesis was
relatively less affected by exposure to acetate. Several studies suggest that mixotrophic
growth conditions can also affect lipid production or accumulation in cells of some, but
not all, algal and cyanobacterial species relative to PA and HT growth (Table 1) (Ratha
et al., 2013; Arora & Philippidis, 2021). There are clearly complex interactions between
photoautotrophic and heterotrophic processes, possibly specific to genotype, physiological
conditions and organic substrate type.

Cell chlorophyll and cell size
Changes in cell chl content, and chl fluorescence (e.g., Fig. 2), were also be complicated by
cell size changes, both over time in batch cultures, and in response to energy supply mode
(Fig. 6), supporting the hypothesis. The relatively similar relationship in both species
between FC cell size (FSC) and chl per cell (FL-3) between photoautotrophic and
heterotrophic cultures, but differences under mixotrophy (Fig. 7), highlights the profound
physiological acclimation associated with energy acquisition. The differences between
these relationships during exponential phase vs. the full culture growth phases also indicate
changes in physiological status of cells during batch culture growth phases. The relatively
similar cell size vs. cell chl relationships both between species and between exponential
phase and full culture growth in photoautotrophic cells suggests tighter constraints on cell
chl content, as chl is critical for all energy harvesting. In heterotrophic cells, this
relationship was also relatively tightly constrained, albeit with lower chl content. During
mixotrophy (on 2 g L−1 acetate), the much weaker relationship over the full culture phases
suggests more dynamic and reduced physiological control over cell chl content, as energy
harvesting can also rely on organic C use. In mixotrophic growth of Chlamydomonas, up to
50% of carbon can be derived from heterotrophy (Heifetz et al., 2000) reducing
physiological investment in chl synthesis and photosynthetic energy harvesting (Zili et al.,
2017). In heterotrophic culture, decline in cell chl over time (Figs. 6E, 6F) also indicates
suppressed synthesis and/or decay of chl in the dark when energy metabolism is totally
dependent on organic C uptake. Other studies have also reported loss of cell chl during
mixotrophy (Spijkerman, Lukas & Wacker, 2017; Li et al., 2020) which can relate to
reductions also in photosystem activity or photosynthetic capacity (Heifetz et al., 2000; Zili
et al., 2017). In other studies, chl content or photosynthetic competence was not
compromised during mixotrophy (Laliberte & De la Noué, 1993; Cecchin et al., 2018) and
other pigments can be maintained despite organic C supplementation (Kamalanathan
et al., 2017; Kim et al., 2020). The higher maintenance of chl per cell in mixotrophic and
heterotrophic C. reinhardtii than in C. vulgaris (Fig. 6) might allow cells to re-acclimate to
light more quickly in cultivation strategies combining different culture trophic modes (Sim
et al., 2019; Kim et al., 2020).

Energy acquisition mode has also been shown to influence cell size, with larger cells
shown by FC in cultures of C. vulgaris supplemented with glucose (Chioccioli, Hankamer
& Ross, 2014). However, in this study, the smallest C. vulgaris and C. reinhardtii cells were
observed in mixotrophic cultures during exponential phase (Fig. 6). Chioccioli, Hankamer
& Ross (2014) also compared FC and microscopy, noting that OD and cell density were
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more similar to FC counts during exponential growth phase, but cell counts diverged from
OD values during stationary phase. In Scenedesmus cultures supplemented with molasses,
the largest cell biovolumes were measured in mixotrophic, followed by heterotrophic
cultures with the smallest cells in photoautotrophic cultures (Kamalanathan et al., 2017).
In Chlorella and Chlamydomonas species, larger cells were reported in heterotrophic
conditions (Spijkerman, Lukas & Wacker, 2017), and acetate feeding of Chlamydomonas
resulted in larger cells than photoautotrophic growth (Fields, Ostrand & Mayfield, 2018).
These observations were in contrast to our measurements. These inconsistent results
across several studies just with green algae suggest that culture conditions, organic C
source and concentration, and possibly genotype, can result in different responses of cell
cycle regulation to energy acquisition mode.

CONCLUSIONS AND RECOMMENDATIONS
These green algal species grew well across the gradient from photoautotrophic, a range of
mixotrophic organic C concentrations, and heterotrophically. While organic C
supplementation could support cell growth in these two commonly-used green algal
species, light was required to maintain cell chl contents, cell size, as well as optimize growth
rates and biomass yield using organic C. Estimates of algal growth depend on what
parameter is used for calculating growth rates. Direct biomass measurements are valuable,
but have been compared before (Table 1) and need large volumes and are labor-intensive.
OD is easier and widely used but may overestimate growth of algal cells at higher organic C
supply, or when water is turbid, for example in wastewater. Differences between rates
based on OD and chl fluorescence may be important for mass cultivation for
biotechnological applications. Alternative culture parameters need to be carefully
compared for target species, particularly when cultures are supplemented with organic C.
Examination of algal cultures with a single concentration of organic C source provides an
incomplete picture of species response to mixotrophic conditions, which include
differences in growth rates, cell size, chl per cell and maximum biomass at stationary phase
of batch culture across a range of organic C concentrations. Furthermore, higher acetate
concentration may inhibit, not promote growth rates; moderate organic C concentrations
(1–4 g L−1) with light may support highest growth rates and biomass yields.
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