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ABSTRACT
Long noncoding RNAs (lncRNAs) can exert their function by interacting with the DNA via triplex
structure formation. Even though this has been validated with a handful of experiments, a genome-
wide analysis of lncRNA-DNA binding is needed. In this paper, we develop and interpret deep learning
models that predict the genome-wide binding sites deciphered by ChIRP-Seq experiments of 12
different lncRNAs. Among the several deep learning architectures tested, a simple architecture consist-
ing of two convolutional neural network layers performed the best suggesting local sequence patterns
as determinants of the interaction. Further interpretation of the kernels in the model revealed that these
local sequence patterns form triplex structures with the corresponding lncRNAs. We uncovered several
novel triplexes forming domains (TFDs) of these 12 lncRNAs and previously experimentally verified TFDs
of lncRNAs HOTAIR and MEG3. We experimentally verified such two novel TFDs of lncRNAs HOTAIR and
TUG1 predicted by our method (but previously unreported) using Electrophoretic mobility shift assays. In
conclusion, we show that simple deep learning architecture can accurately predict genome-wide
binding sites of lncRNAs and interpretation of the models suggest RNA:DNA:DNA triplex formation as
a viable mechanism underlying lncRNA-DNA interactions at genome-wide level.

ARTICLE HISTORY
Received 6 July 2018
Revised 6 November 2018
Accepted 9 November 2018

KEYWORDS
Long noncoding RNAs; deep
learning; triplex

Introduction

There has been increasing evidence that long noncoding
RNAs (lncRNAs) regulate biological processes via different
mechanisms [1–4] including RNA-protein interactions, as
well as RNA-RNA interactions and RNA-DNA interactions.
Such interactions are important for the proper organization of
the chromatin and regulation of associated genes. In this
study, we focus on developing and interpreting computational
model that can predict DNA-lncRNA interactions. which can
contribute to proper chromatin organization and regulate
expression of nearby genes.

There have been a few studies that indicate that DNA-
lncRNA interactions happen via RNA-DNA triplex formation
with experimental validation of a handful of interactions for
lncRNAs such as HOTAIR [5], MEG3 [6], and TUG1 [7].
A genome-wide analysis to interpret DNA-lncRNA interac-
tions will provide further insights to this mechanism. Using
Chirp-Seq (or Chromatin Isolation by RNA purification)
technique, extraction of regions of genome bound by different
lncRNAs have been possible [8–10]. The sequences represent-
ing these regions can be analyzed for corresponding lncRNAs
to test if RNA-DNA triplex formation is a viable mechanism
that drives DNA-lncRNA interactions. We aim to use predic-
tive models to predict sequences that interact with a particular
lncRNA and test the performance using the sites obtained by
ChIRP-Seq experiments.

Recently, deep learning models such as deep convolutional
neural networks (CNN) [11,12] have been successfully applied

to sequence-based problems in genomics signals . For exam-
ple, DeepBind [13] and DeepSEA [14] have been successfully
applied deep learning to predict the DNA-protein interactions
in high-throughput ChIP-Seq data produced by the
Encyclopedia of DNA Elements (ENCODE) project. Another
form of deep learning model recurrent neural network (RNN)
has also been applied in problems related to protein structure
prediction, classification, and gene expression regulation. In
general, a CNN layer captures local patterns while a RNN
layer captures long range patterns or dependencies. Since,
there is no clear evidence on what kind of deep learning
architecture best explains DNA-lncRNA interactions, we
explore different architectures of convolutional neural net-
works and recurrent neural networks to model DNA
sequences which interact with a given lncRNA.

To perform the analysis, we compiled a comprehensive set of
genome-wide binding sites of 12 different lncRNAs from publicly
available ChIPR-Seq peaks. We show that compared to recurrent
neural networks, simpler architectures with only two convolu-
tional layers in deep learning model can accurately predict gen-
ome-wide lncRNA binding peaks uncovered by ChIPR-Seq
experiments. This suggests local sequence patterns as determi-
nants for positive cases of interactions between DNA and
lncRNAs. The performance of the CNN models also increased
with increase in number of kernels used. We found that majority
of the subsequences within the ChIPR-Seq peaks which best
represent the kernels in the first CNN layer form triplex structures
with their respective lncRNAs suggesting RNA:DNA:DNA triplex
formation as the underlyingmechanism. Unlike the usual method
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of directly predicting the triplex forming domains (TFDs) of
a lncRNA by using Triplexator, we uncovered TFDs of 12
lncRNA by mapping the portions of the lncRNA sequence
which formed triplex structures only with these subsequences.
Some of the experimentally verified TFDs of lncRNAs such as
HOTAIR and MEG3 were detected in this paper. TFDs which
were not previously reported were also detected in this paper. We
experimentally verified such two TFDs of lncRNAs HOTAIR and
TUG1 predicted by ourmethod (but previously unreported) using
Electrophoretic mobility shift assays. In conclusion, we show that
simple deep learning architecture can accurately predict genome-
wide binding sites of lncRNAs and further interpretation of the
models suggest RNA:DNA:DNA triplex formation as a viable
mechanism underlying lncRNA interactions with DNA at gen-
ome-wide level.

Materials and methods

ChIRP-Seq data

We collected coordinates of genome-wide Chirp-Seq peaks of
12 lncRNAs (8 mouse, 3 human, and 1 fruit fly) from publicly
accessible NCBI GEO repository (Table 1).

Training, testing and data augmentation

50% of the peaks were used for training, 25% were used for
validation set, and remaining 25% for testing purposes.
lncRNAs with less than 500 ChIRP-Seq peaks, data augmen-
tation was applied to increase the size of the training set by
randomly shifting each binding peak left or right with base
pairs between 10 and 40. This was repeated four times for
each binding site. While it was repeated two times for each
binding intervals in cases of lncRNAs with less than 10,000
but more than 500 Chirp-Seq peaks. The sequences corre-
sponding to these augmented training set served as the posi-
tive cases of lncRNA binding sites. To generate the negative
binding cases, sequences of similar lengths were randomly
selected from the genome using bedtools excluding the
regions occupied by peaks. We used this technique instead
of shuffling the positive sequence because the later approach
can lead to overestimated performance [15]. Similarly, nega-
tive instances in the testing set were generated randomly from
the genome. To remove redundancy between training and
testing set, sequences in testing set which are at least 90%
similar to sequence in training set were removed using CD-
HIT (http://weizhongli-lab.org/cd-hit/).

Input layer

In our case, DNA sequences represent the input data and the
goal is to predict if a lncRNA will interact with it (class label
+1) or not (class label −1). The raw nucleotide characters (A,
C, G, T) in the sequence were used as inputs, where they were
converted into a one hot encoding (a binary vector with the
matching character entry being a 1 and the rest as 0s). This
encoding matrix is used as the input layer to the deep learning
models that performs the prediction (Fig. 1).

Convolutional and pooling layer

Convolutional neural network (CNN), when applied in the
context of DNA sequences, can learn local sequence patterns
or ‘motifs’ which are good discriminators between the positive
and negative instances in the training set. The information of
the motifs is embedded in the entries of a kernels (filters) used
in the first convolution layer. Additional CNN layers can
learn higher order interaction between those motifs.
A convolution filter or kernel of size k takes an input data
matrix X of size T x Nin, with length T and input layer size
Nin, and outputs a matrix Z of size T x Nout, where Nout is the
output layer size. We used rectified linear units (ReLU) as the
nonlinear activation function in the neurons. After the con-
volution, a pooling layer is usually applied to reduce the size
of the output matrix from the CNN layer. Figure 1A shows
a CNN model with one single convolutional layer. In this
model, a global-max pooling layer is used after the convolu-
tion layer because it has been shown to be the most appro-
priate pooling technique for genomic signals [16].The output
of the pooling layer is fed to the output softmax layer for
classification.

Recurrent layer

Recurrent neural networks (RNNs) have become the main
neural network to handle sequential data. Given an input
matrix X of size T x Nin, an RNN layer produces matrix
H of size T x d, d is the RNN embedding size. At each
time step t, an RNN takes an input column vector xt of
length Nin and the output of length from previous hidden
neuron and produces output (which acts an input to then
next hidden neuron). We used an RNN variant called the
Long Short-term Memory (LSTM) layer, which can handle
long term dependencies using gating functions. RNNs
generate an output vector at each time step of the input
sequence. For classification purpose, we used the average
of all the vectors and the used the mean vector as the
input to the final output softmax layer. We used a bi-
directional LSTM layer in which the input sequence goes
through two LSTM networks, in forward and backward
directions. These two networks produce two matrices,
each containing column vectors representing the time

Table 1. Chirp-Seq data set used in this paper. The table shows number of peaks
obtained from ChIRP-Seq of 12 lncRNAs. Genome and GEO accession number are
also shown for each ChIRP-Seq data set.

LncRNA
Number of

ChIRP-Seq Peaks GEO accession number Genome

lincHSC2 264 GSE66819 Mouse
EC7 268 GSE97119 Mouse
ROX2 307 GSE31332 Drosophila
HOTAIR 832 GSE31332 Human
RMRP 2002 GSE73912 Mouse
TERC 2198 GSE31332 Human
HOTCHON (Limb) 2880 GSE70986 Mouse
HOTCHON (Glial) 2919 GSE70986 Mouse
MEG3 9010 GSE99798 Mouse
LIN28 32387 GSE90574 Mouse
DACOR1 40300 GSE58989 Human
PANCT1 43581 GSE73805 Mouse
TUG1 130269 GSE77493 Mouse
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steps. These vectors are averaged to create one vector for
each direction. The forward and backward vectors are
concatenated and act as the input to the final output
softmax layer. Figure 1B shows a RNN model with one
single LSTM layer.

Models

In our study, we tried several versions of CNNmodels by varying
the number of layers and kernels, but here we report 15 of them
which performed the best. 16_miniCNN, 32_miniCNN, and
64_miniCNNmodels had one hot encoded input layer represent-
ing the training sequences followed by one hidden CNN layer
with 16, 32, and 64 kernels, respectively. The ReLU activation
function was used. The CNN layer was followed by a global max
pooling layer (local pooling was attempted but performed poorly).
Finally, the output of the pooling layer was connected to the ouput
layer with one single neuron which the Sigmoid activation func-
tion. 16_smallCNN, 32_smallCNN, and 64_smallCNN models
had one input layer followed by two hidden CNN layers with
16, 32, and 64 kernels, respectively. The ReLU activation function
was used in each hidden layer. The first CNN layer was followed
by a local max pooling layer (with pooling size of 10 bases and
stride size of 5 bases). The second CNN layer was followed by
a global max pooling layer. Similarly, mediumCNN, largeCNN
and verylargeCNN models containing 3, 4, and 5 CNN layers,
respectively were also tested. Three different number of kernels
(16, 32, and 64) in the CNN layer in each of three models were
tested. The size of each kernel or filter was 15 × 1 in all the 15 CNN
models. 15 base pairs were long enough to capture the short
sequence motifs in the positive DNA sequences that differentiate

them from the negative sequences. To prevent overfitting, we
added dropout layer and batch normalization layer after the
every hidden CNN layers models. Dropout percentage was set
to 20% for first CNN layer and it was set to 30% for second or
subsequence CNN layers)

Three Recurrent Neural Network (RNN) models
(15_smallRNN, 5_smallRNN, and 30_smallRNN) were tested.
Each model had one bidirectional LSTM layer each of sizes 15,
5, and 30, respectively. The LSTM layer was made bidirectional
and hence it sweeps from left to right and right to left. The output
from the LSTM layer was a vector (output at each ‘time step’) of
each direction were concatenated and averaged before feeding as
input to the final output layer. To prevent overfitting, a dropout
layer (dropping 30% of nodes) was used.

The output layer contained a single neuron with Sigmoid
activation function, which learns the mapping from the hid-
den layers to the output class labels [+1, −1]. The final output
is a probability indicating whether an input is a positive or
a negative binding site (binary classification task).

Training

The parameters of the network were trained end-to-end by
minimizing the binary cross-entropy over the training set.
The minimization of the loss function was obtained via the
stochastic gradient algorithm Adam, with a mini-batch size of
50 sequences. Three different learning rates (0.001, 0.005,
0.05) were tested. The training phase was set for 150 epochs
but early stopping criteria on the optimization procedure was
used when the value of the loss function on the validation set
stop decreasing for 11 consecutive epochs. Six different

A

B

Figure 1. Convolutional neural network and recurrent neural network layers. (A) Illustration of CNN model with the input layer (sequence) as one-hot encoded followed by
a CNN layer followed by a global max pooling layer and output layer with a single node with sigmoid activation function. (B) Illustration of a RNN model with the input layer
(sequence) as one-hot encoded followed by a concatenated bidirectional LSTM layer followed by an output layer with single node with sigmoid activation.
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metrics (accuracy, area under the curve, F1 score, MCC or
Matthews correlation coefficient, Precision, and Recall) were
used to evaluate the performance of the models.

Results

Data preparation before model tuning

We collected coordinates of genome-wide Chirp-Seq peaks
of 12 different lncRNAs (8 mouse, 3 human, and 1 fruit
fly) from publicly accessible NCBI GEO repository (Table
2). The number of Chirp-Seq peaks varied from few hun-
dreds (lncRNA lincHSC2 has only 264 peaks) to a few
hundred thousand (lncRNA Tug1 has 130,269 peaks) sug-
gesting different levels of genomic binding by lncRNAs
(Table 2). The DNA sequences which represent these
binding sites represent the positive cases of lncRNA
binding.

Deep learning models require a large amount of data for
their proper training. Therefore, for lncRNAs with less than
500 ChIRP-Seq peaks, data augmentation was applied by
randomly shifting each binding site either left or right with
base pairs between 10 and 40. This was repeated four times
for each binding site. It was repeated two times for each
binding interval in cases of lncRNAs with less than 10,000
but more than 500 Chirp-Seq peaks (Methods). The augmen-
ted set served as the positive cases of lncRNA binding sites.
The positive sequences were shuffled maintaining the same
dinucleotide frequency to generate the negative binding cases
of the respective lncRNAs. To create the testing set, we
selected 25% of Chirp-Seq peaks from each data set to use
as positive cases in the testing set. Sequences of similar lengths
were randomly selected from the genome excluding the
regions occupied by peaks to form the negative cases in the
testing set. This was to make sure that the testing set repre-
sents the ‘real’ population of binding instances of the lncRNA.
The augmented training and testing sequences were then
converted to one-hot encoded matrix (Methods) for training
deep learning models.

Performance of deep learning models depend on
hyper-parameters

Because of successful application of convolutional neural net-
work (CNN) models to predict genome wide transcription
factor binding sites, we first tested if CNN models can also
accurately predict lncRNA and DNA interaction sites. We
tested different multi-layered CNN models with six different
evaluation metrics (Fig. 2) by varying number of kernels and
learning rate. We found that the performance of the CNN
models depend on the learning rate as well the number of
kernels. For all the six metrics, learning rate of 0.001 yielded
the best performance in the models that have 16 kernels in the
CNN layer (Fig. 2). However, the models that have 32 kernels
in the CNN layers performed the best with learning rate of
0.005 in all the six different metrics (Fig. 2). The models with
62 kernels in the CNN layer performed best with learning rate
0.005 in general except when the metric MCC is used (Fig. 2).
In general, the learning rate of 0.005 performed the best
across the six different metrics tested. These observations
indicate that different values of hyper parameters should be
tested when evaluating different deep learning models.
Focusing on one single value of hyper-parameter might lead
to wrong conclusions.

Deep learning accurately predicts genome-wide lncRNA
binding sites

The simplest version of CNN model with one CNN layer is
very similar to deepbind model [13] for transcription factor
binding sites (Table 2). The simplest CNN model
(16_miniCNN) contained only one CNN layer with 16 kernels
(Table 2). It performed moderately well with mean area under
curve or mean AUC = 0.75) (Fig. 2). Based on AUC, the
performance improved by increasing the number of kernels
to 32 (32_miniCNN: mean AUC = 0.80). However, AUC
didn’t improved with 64 kernels (64_ miniCNN: mean
AUC = 0.76). Similar performance trend was also observed
with this single layer CNN model for accuracy, precision, f1
score and recall; where choice of 32 kernels performed the

Table 2. Architecture of selected models tested in this study. The miniCNN, smallCNN, mediumCNN, largeCNN, and verylargeCNN models have one 1, 2, 3, 4, and 7
CNN layers, respectively. The number of kernels, and their sizes (within parentheses) are indicated under column ‘Conv kernels’. The pooling size is indicated under
‘Pooling size’. The three smallRNN models had one LSTM layer each. The sizes of LSTM nodes are indicated under column ‘LSTM size’. Pooling layer after the last CNN
layer was based in ‘Global Max’, and pooling layer for other layers a local max pooling function of size 10 was used.

Model Conv Layers Conv kernels in each layer (length) Pooling size LSTM Layers LSTM Size

16_miniCNN 1 16 (15) Global Max 0 0
32_miniCNN 1 32 (15) Global Max 0 0
64_miniCNN 1 64 (15) Global Max 0 0
16_smallCNN 2 16 (15) 10, Global Max 0 0
32_smallCNN 2 32 (15) 10, Global Max 0 0
64_smallCNN 2 64 (15) 10, Global Max 0 0
16_mediumCNN 3 16 (15) 10, Global Max 0 0
32_mediumCNN 3 32 (15) 10, Global Max 0 0
64_mediumCNN 3 64 (15) 10, Global Max 0 0
16_largeCNN 4 16 (15) 10, Global Max 0 0
32_largeCNN 5 32 (15) 10, Global Max 0 0
64_largeCNN 5 64 (15) 10, Global Max 0 0
16_verylargeCNN 7 16 (15) 10, Global Max 0 0
32_verylargeCNN 7 32 (15) 10, Global Max 0 0
64_verylargeCNN 7 64 (15) 10, Global Max 0 0
16_smallRNN 0 0 N/A 1 15
5_smallRNN 0 0 N/A 1 5
30_smallRNN 0 0 N/A 1 30
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best (Fig. 2) except for MCC in which choice of 64 kernels
was the best (Fig. 2). In the context of DNA sequences, the
kernels or filters in the first CNN layer indicate short motifs
or sequences that discriminate the positive and negative cases.
Here, a single CNN layer with 32 kernels was able to achieve
a mean auc and accuracy of 0.80 and 75%, respectively (Fig.
2). Similar to how DNA binding by transcription factors is
governed by sequence motifs, the binding of lncRNAs on the
DNA is likely dictated by short sequence patterns on the
DNA. The increase in the performance with 32 kernels from
16 kernels indicates existence of multiple sequence patterns
and variations within the same sequence pattern.

We also explored if higher order relationships between the
short sequence patterns contribute to lncRNA binding. Since
a single CNN layer can’t capture such kind of interactions, we
tested multi-layered CNN models containing two (smallCNN),
three (mediumCNN), four (largeCNN) and 7 layers
(verylargeCNN) (Table 2). Similar to miniCNN, we tested three
choices of number of kernels (16, 32, and 64) on each of these
multi-layered CNN models (Table 2). Interestingly, adding one
additional layer to miniCNN improved the ability to differentiate
between lncRNA binding and non-binding sequences (Fig. 2).
16_smallCNN (mean AUC = 0.77), 32_smallCNN (mean
AUC = 0.83), 64_smallCNN (mean AUC = 0.82), performed
better than their corresponding models with a single layer

(Fig. 2). This means higher order relationships between the
sequence patterns in the ChIRP-Seq peaks contribute to lncRNA
binding to DNA. Using the other fivemetrics showed also showed
that two-layered smallCNN model performed better (Fig. 2).
Interestingly, adding more additional CNN layers
(mediumCNN, largeCNN, and verylargeCNN) didn’t improve
any of the five metrics (AUC, accuracy, f1 score, precision, and
recall) compared to 32_smallCNN (Fig. 2). When MCC metric is
used, 64_largeCNN model with 4 CNN layers performed slightly
better than two layered 32_smallCNN model (Fig. 2).

In summary, a model with only two CNN layers with 32
kernels in each CNN layer performed the best based on the six
metrics evaluated compared more complex models. Increasing
the number of kernels to 64 or increasing the number of CNN
layers didn’t improve the performance.

CNN model performs better than feature-based models
and sequence-based models

The above CNN models capture local sequence patterns and
their interactions between them but doesn’t really test if the
entire length of lncRNA binding sequences is important. It’s
possible that there are long range interactions between
sequence patterns across DNA ChIRP-Seq peaks that contri-
bute to the binding of lncRNAs. To explore this possibility, we

Figure 2. Performance of CNN models. Performance of 15 different CNN models are shown for six different evaluation metrics. Three learning rates were tested. See
specifications of the models in Table 2.
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generated deep learning models with recurrent long short-
term memory layer (LSTM) (Fig. 1). RNN or LSTM layer in
deep learning has the ability to capture long term dependen-
cies in data in the form of a sequence. We generated three
RNN models; each model having one single bidirectional
LSTM layer with varying LSTM hidden units: 5, 15, and 30
in 5_smallRNN, 15_smallRNN, and 30_smallRNN, respec-
tively (Table 2). The three LSTM models performed more
worse compared to the best CNN model. 5_smallRNN,
15_smallRNN, and 30_smallRNN achieving mean AUCs of
0.58, 0.63, and 0.64, respectively. These poor results seem to
be independent of the complexity of the LSTM models indi-
cating no relationship between the size of the LSTM on the
model performance. The results indicate that long range
dependencies along the DNA sequence is not necessary for
the binding of lncRNAs.

To check if deep learning models are really necessary for
this problem, we also tested three feature-based traditional
models: support vector machines (svm), logistic regression,
and random forest on the data set (Table 3). We used the
frequency count of all possible 4-mers in the sequences as
features. By tuning appropriate parameters under each of
these models, we extracted the best model, which gave the
highest value for the metric of interest. Among these three,
svm performed the best (Table 3) in terms of accuracy (69%),
area under the curve (0.742); logistic regression performed
best in terms of MCC (0.387), precision (0.700), recall (0.694),
and f1 score (0.693). However, all of these three models
roughly performed at similar levels; but yielded at least 10%
lower than the best deep learning model (Table 3). This
indicates that deep learning models predicts the lncRNA
binding sites at a better rate compared to traditional models.

Triplex forming domains of lncRNAs

There has been some indication that lncRNA harbors triplex
forming domains (TFDs) that interact with double stranded
DNA via RNA-DNA triplex formation [17]. If this is true, we
can decipher the TFDs within the lncRNAs by matching
(using triplex forming rules) the short patterns or motifs
‘learned’ by a CNN model within the ChIRP-Seq binding
sites to specific portions of the lncRNA.

Out of all CNN models, we found that 32_smallCNN
performed significantly better than all the other models. For
this reason, the 32_smallCNN models (which achieved the
best performance) representing 13 lncRNA binding profiles
were applied to their corresponding test sequences (only the
positive cases of lncRNA binding). Here, convolution on the
positive test sequences were performed using the kernels in
the first CNN layer and the subsequences in each test
sequence which yielded the maximum positive signal were

extracted. These subsequences represent the sequence ‘motif’
or pattern that best match the kernels in first CNN layer in
the 32_smallCNN models.

If the lncRNA binding is primarily dictated by triplex
formation, lncRNAs should form triplex structures with
these extracted subsequences. We used Triplexator [18] to
test if lncRNAs can form triplex structures with these sub-
sequences. With an allowed maximum of 3 mismatches, the
lncRNAs formed triplex structures with a subset of the
extracted subsequences representing 82% of the kernels (26
out of 32). This indicates that majority of the lncRNA binding
sites are indeed triplex forming instances.

To obtain the TFDs of each lncRNA, we first extracted
regions in the lncRNA which formed triplex structures (pre-
dicted via Triplexator) with the kernel matching subsequences
as mentioned above. Then, we merged any regions in the
lncRNA which are at the most 5 bp apart to obtain its triplex
forming loci or domains. Shorter lncRNAs such as HOTAIR,
ROX2, TERC etc. have fewer triplex forming domains (7, 1,
and 4, respectively) compared to other longer lncRNAs such
as TUG1 isoforms (Table 4; NR_002321.2, NR_002322.2, and
NR_110490.1), and MEG3 isoforms (Table 4; NR_003633.3,
NR_027651.2, and NR_027652.1).

Three lncRNAs HOTAIR, MEG3, and TUG1 have been
studied in the context of triplex structures formation. One
triplex forming domain positioned at 649–708 in HOTAIR,
which has been experimentally verified [5] as a triplex form-
ing domain was one of the 9 domains detected by our method
(Table 4). One triplex forming domain located in the extreme
c-terminus in the shortest mouse MEG3 isoform
NR_027652.1 (Table 4) was experimentally verified to form
triplex structures with DNA [19]. For this particular isoform,
our method detected 12 triplex forming domains, out which
one (Table 4; positioned at 1822–1836) matched the experi-
mentally verified domain [20]. LncRNA TUG1 has been
shown to form triplex structures [7], but the domains have
not been experimentally verified yet. For TUG1, we detected
38, 59, and 41 domains in its three isoforms (Table 4). This
indicates that our method has uncovered experimentally vali-
dated triplex forming domains in lncRNAs.

Next, we tested the triplex structure forming ability of
TFDs in lncRNAs which have not been reported nor experi-
mentally validated. For this, we picked one TFD at nucleotide
836–851 coordinates of HOTAIR sequence and one TFD at
nucleotide 35–50 coordinates of TUG1 sequence (Fig. 3A).
Triplex formation of the HOTAIR and TUG1 TFDs were
tested with selected double stranded DNA sites next to
genes HOXD3 and PPARGC1A, respectively (Figs. 3C–F).
Electrophoretic mobility shift assays support triple helix for-
mation of these TFDs with their corresponding DNA
sequences selected from ChIRP-Seq peaks (Figs. 3C–F).
A corresponding control shows that triplex formation doesn’t
occur between the double stranded DNA and the control
RNA sequence (Figs. 3C–F). Besides, the detected signal of
the triplex structure formation increased with the amount of
RNA used (Figs. 3C–F). These EMSA assays support the
notion that HOTAIR and TUG1 form triplex structures with
the selected targets via triplex domains which have not been
reported before. In general, it provides some experimental

Table 3. Performance of feature-based models. Three feature-based models
were tested using 6 evaluation metrics.

Model AUC Accuracy MCC Precision Recall F1

Support vector machines
(svm)

0.74 68.66% 0.37 0.69 0.69 0.69

Random forest 0.73 67.24% 0.34 0.66 0.68 0.67
Logistic regression 0.73 67.35% 0.39 0.70 0.69 0.69
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validation to our approach of obtaining the triplex forming
domains of lncRNAs using a trained deep learning model.

Discussion

We show that deep learning models can accurately predict gen-
ome-wide lncRNA binding peaks uncovered by ChIPR-Seq peaks.
Majority of the subsequences within the peaks representing the
kernels in the first CNN layer act as host for triplex structure
formation by lncRNAs. The number of triplex forming domains
or oligos (TFDs) within lncRNAs vary and have different
sequence patterns. We experimentally verify two TFDs of
lncRNAs HOTAIR and TUG1 predicted by our method (but
previously unreported) using Electrophoreticmobility shift assays.
Our results show that RNA-DNA triplex formation is one
mechanism used at genome-wide level by lncRNAs to exert
their functions.

In this paper, we explore different architecture in deep learning
models. The variation in the performance among the different
architecture indicates that one needs to explore different architec-
ture when it comes to developing deep learning models in geno-
mics. However, one type of architecture seemed to perform
consistently well across different ChIRP-Seq peaks of different
lncRNAs. Small size of training set leads to overfitting and poor

performance on the testing set in deep learningmodels.We found
that some lncRNAs don’t have a lot of binding sites, hence were
not appropriate for training deep learning models. For such
lncRNAs, with the technique of data augmentation, we created
new training sequences by shifting the original peaks to the left or
right with a random amount. This resonates with proven data
augmentation method of rotating images by a random degree in
traditional image classification using deep learning models. Since
the testing set should reflect an accurate ‘future’ sequences of
unknown class label, we only applied data augmentation to the
training set and not the testing set. To prevent overfitting, we used
some proven techniques for training deep learning models. We
used the drop out technique and batch normalization. Drop out is
a technique of randomly removing neurons from hidden layer
during training process making the trained model to act like an
ensemble of different models which eventually outperforms the
corresponding model without dropout. Batch normalization nor-
malizes input data to a layer on a mini-batch basis which even-
tually improves the optimization process. We also imposed an ‘an
early stopping’ in the optimization process of the models to
prevent any overfitting. The optimization process was stopped
when the value of the loss function on the validation set didn’t
decrease for 11 consecutive steps or epochs. Manual inspection of

Table 4. Triplex forming domains (TFDs) of lncRNAs. (A) Table indicates the number of triplex forming domains/oligos (TFDs) in
lncRNAs. Isoforms are separated for lncRNAs with multiple isoforms. (B) Table indicates locations and sequence of triplex forming
domains for two example lncRNAs: Human HOTAIR, and mouse MEG3 isoform NR_027652.1. Bolded TFDs have been experimentally
validated by previous studies.

A

lncRNA Triplex forming domain count

Hotair 7
Rox2 1
Terc 4
DACOR1 30
lincHSC2 5
Hotchon (Limb) 14
Hotchon (Glial) 13
RMRP 1
Tug1 (NR_002321.2) 64
Tug1 (NR_002322.2) 95
Tug1 (NR_110490.1) 67
EC7 2
MEG3 (NR_003633.3) 114
MEG3 (NR_027651.2) 112
MEG3 (NR_027652.1) 11
Lin28 15
Panct1 65

B

LncRNA Starting Ending Sequence

Hotair 422 436 GAGAGGAAGGAGGG
669 683 AGAGGAGGGAAGAG
800 816 TGTATTTTTATTTTTT
836 853 ATGAGGAAAAGGGAAAA
1388 1402 GTGTGTTTTGTTGG
1482 1494 GGGGTTGTGTAG
2009 2025 AAGAACAGAAAAAAAA

NR_027652.1 (Meg3) 197 209 CCTCTACCTCCT
650 675 GTGGGTGGGGTGGGGTGGGGTGCTT
710 734 CATGTCCCCTCCCCCTCCTCCACC
758 770 GGGGTAGTGGGG
788 803 TAGGGTTGTTGTGAG
974 989 AGGTGGGAAAGAGAA
1091 1115 TCGCTGCTTTCCTTCCTCACCTCC
1281 1293 TTTGCTGTTGTG
1360 1373 GAAGAAAAGAAGA
1742 1760 TTGGGGGGGTGGGAGAAA
1822 1836 GGGCTGTTGTGAGG
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Figure 4. Receiver Operating Characteristic (ROC) plots for training and testing sets. Four representative ROC plots for the best deep learning model representing four
lncRNAs: TUG1 (A), HOTAIR (B), HOTCHON (C), and DACOR1 (D). Area under the curve for testing and training sets are shown for each plot.

A

C

E F

D

B

Figure 3. Electrophoretic mobility shift assays support triple helix formation. Triple helix formation between (A) HOTAIR novel TFD and HOXD3 and (B) TUG1 novel
TFD and PPARGC1A, which were considered for in vitro validation. (C and D) Electrophoretic mobility shift assay of predicted binding domains (HOTAIR and TUG1).
Complementary oligodeoxynucleotides were preincubated to form double stranded DNA and then incubated with either specific RNA of predicted triplex binding in
HOTAIR (C) and TUG1 (D), or non-specific control RNA. RNA was applied in 25-fold or 50-fold excess; 1.1 equivalents were used of the pyrimidine-rich DNA strand to
reduce the possibility of DNA:DNA-DNA triplex formation. A mobility shift that indicates triplex formation was only observed with the specific sequences of HOTAIR
and TUG1 TFDs. Triplex formation increased wth the increased in concentrations of RNAs: HOTAIR (E) and TUG1 (F).
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the ROCplots (Fig. 4) show resemblance between the training and
testing set. In deep learning models, pooling layer usually follows
a convolution layer. But, there are different pooling techniques
such as max, average, and L2-norm, which can be applied at the
local or global level. For genomic signals, global-max pooling has
shown to be more appropriate across multiple cases [16]. Because
of this reason, we used global-max pooling in the CNN models.

Here, we conclude that short sequence patterns in ChIRP-Seq
peaks that dictate lncRNA binding act as host for triplex structure
formation by lncRNAs. The best model had 2 convolutional layers
with pooling layers, drop out and batch normalization. Due to
non-linear nature of the model as use of drop out and batch
normalization techniques, we did not focus on measuring the
importance of each kernel in the first CNN layer of the model.
We focussed on finding the TFDs of lncRNAs instead of motifs
that occurred in ChIRP-Seq peaks. Extracting the TFDs from the
lncRNAs keeps the analysis lncRNAs-focused instead of ChIRP-
Seq focused. One possible future direction of our work is to
achieve a deeper biological interpretation of the TFDs of the
lncRNAs. LncRNAs seem to have multiple TFDs. Do the TFDs
have the same effect on gene regulation? For example, one TFD of
a lncRNA may interact with a set of DNA sites to activate genes;
and another TFD of the same lncRNA may repress a different
group of genes. Another possible extension of this work is quan-
tifying the importance of TFDs in lncRNAs.

In this paper, we extracted sequences of equal length cen-
tered at the midpoint of the peaks. In doing so, the input
sequences to the models were of the same length. However,
the input training data or matrix can be modified in such
a way to handle sequences of different length. Let’s assume
that M is the length of the longest sequence from the set of all
peaks. If the length of a particular sequence (L) is less
than M, M-L number of ‘N’ bases can be padded at th
sequence to make the length of the sequence equals M. The
raw nucleotide characters (A, C, G, T) in the sequence can be
converted into a one hot encoding (a binary vector with the
matching character entry being a 1 and the rest as 0s). The
character ‘N’ can be encoded as a vector of 0 entries. If the
preprocessing step is done in this manner, the models can be
applied to sequences of different length.
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