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Abstract: The filamentous fungus Penicillium chrysogenum (recently reidentified as Penicillium rubens)
is used in the industrial production of the β-lactam antibiotic penicillin. There are several mechanisms
regulating the production of this antibiotic, acting both at the genetic and epigenetic levels, the
latter including the modification of chromatin by methyltransferases. S-adenosyl-L-methionine
(AdoMet) is the main donor of methyl groups for methyltransferases. In addition, it also acts as a
donor of aminopropyl groups during the biosynthesis of polyamines. AdoMet is synthesized from
L-methionine and ATP by AdoMet-synthetase. In silico analysis of the P. chrysogenum genome
revealed the presence of a single gene (Pc16g04380) encoding a putative protein with high similarity
to well-known AdoMet-synthetases. Due to the essential nature of this gene, functional analysis
was carried out using RNAi-mediated silencing techniques. Knock-down transformants exhibited
a decrease in AdoMet, S-adenosyl-L-homocysteine (AdoHcy), spermidine and benzylpenicillin
levels, whereas they accumulated a yellow-orange pigment in submerged cultures. On the other
hand, overexpression led to reduced levels of benzylpenicillin, thereby suggesting that the AdoMet
synthetase, in addition to participate in primary metabolism, also controls secondary metabolism in
P. chrysogenum.

Keywords: S-adenosyl-L-methionine; polyamines; penicillin; secondary metabolism; Penicillium
chrysogenum

1. Introduction

The filamentous fungus Penicillium chrysogenum, re-identified as Penicillium rubens [1],
is well known for being the microorganism used in the industrial production of the β-
lactam antibiotic benzylpenicillin. The biosynthesis of this antibiotic is a well-characterized
process that begins with the non-ribosomal condensation of α-aminoadipic acid, L-cysteine
and L-valine to form L-δ(α-aminoadipyl)-L-cysteinyl-D-valine. Then, this step is followed
by cyclization of the tripeptide to constitute the β-lactam ring structure, thus giving rise to
isopenicillin N. The pathway is completed with the substitution of the α-aminoadipyl side
chain of isopenicillin N with the CoA-activated form of phenylacetic acid (phenylacetyl-
CoA), thereby constituting benzylpenicillin or penicillin G (for a recent review see [2]). The
biosynthesis of benzylpenicillin is subjected to complex regulatory mechanisms, which act
both genetically and epigenetically [3–6]. Epigenetic mechanisms acting on the modification
of chromatin by acetyltransferases or methyltransferases exert an enormous influence on the
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expression of different secondary metabolism biosynthetic gene clusters [7]. LaeA is a global
regulator of secondary metabolism that has a putative methyltransferase activity [8–10],
which regulates penicillin biosynthesis in P. chrysogenum [5,11]. S-adenosyl-L-methionine
(AdoMet) is the main donor of methyl groups for methyltransferases in transmethylation
reactions in eukaryotic systems [12]. The biosynthesis of AdoMet (Figure 1) is catalyzed by
AdoMet synthetase (EC 2.5.1.6) (also known as methionine adenosyltransferase, MAT) [13],
which uses methionine and ATP as substrates in a reaction dependent on the presence
of K+ and Mg2+ to yield AdoMet, pyrophosphate and inorganic phosphate [14]. In the
next step, S-adenosyl-L-homocysteine (AdoHcy) is formed after the transfer of a methyl
group from AdoMet and is further converted to adenosine and homocysteine by AdoHcy
hydrolase [15]. The cycle is closed after the conversion of L-homocysteine into methionine
(Figure 1). The AdoMet synthetase core structure is conserved between different organisms
and include the motifs for L-methionine, ATP and PPi binding [16], and active-site catalytic
amino acids [17]. In addition to being a universal donor of methyl groups, AdoMet is also
a precursor for higher polyamines (spermidine and spermine), which play a crucial role in
many physiological processes, including cell proliferation, gene expression and DNA re-
combination and repair [18]. For this, AdoMet is decarboxylated and releases aminopropyl
moieties that are captured by putrescine and spermidine to synthesize spermidine and
spermine, respectively [19] (Figure 1).

AdoMet and AdoMet synthetases have been well characterized in mammals and other
eukaryotes [16,20–22], including Saccharomyces cerevisiae [23–26]. On the contrary, very little
is known about their role in filamentous fungi, and the information available is the result
of just three articles. In the first one, it was reported that variation in AdoMet levels in
Neurospora crassa modifies the flux of AdoMet-dependent metabolic pathways [27]. In the
second article, AdoMet synthetase of Aspergillus nidulans (AnSasA) was reported to regulate
sporogenesis and the production of secondary metabolites [28]. Finally, and very recently,
it was confirmed that in Penicillium oxalicum AdoMet synthetase (PoSasA) is essential for
viability and for the expression of extracellular glycoside hydrolases (specifically cellulolytic
enzymes) encoding genes [29]. Therefore, more information about AdoMet synthetases is
necessary to determine the role of this enzyme and its product in filamentous fungi.

In this article we have performed an in silico analysis of the P. chrysogenum genome
finding that this filamentous fungus contains a single-copy gene (Pc16g04380) that puta-
tively encodes AdoMet synthase. Due to the essential nature of this gene, its functional
analysis was carried out using RNAi-mediated gene silencing. The analysis of AdoMet,
AdoHcy and the polyamines putrescine and spermidine levels in the knock-down transfor-
mants confirmed that Pc16g04380 encodes the P. chrysogenum AdoMet synthetase (PcSasA).
Interestingly, our results indicate that AdoMet levels regulate secondary metabolism and
penicillin biosynthesis in P. chrysogenum.
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Figure 1. Schematic representation of the methyl cycle and the polyamine biosynthetic pathway. 
AdoMet: S-adenosyl-L-methionine; AdoHcy: S-adenosyl-L-homocysteine; dcAdoMet; decarbox-
ylated AdoMet; THF: tetrahydrofolate. 

2. Materials and Methods 
2.1. Strains, Media and Culture Conditions 

P. chrysogenum Wisconsin 54-1255 is the reference strain for the genome sequencing 
project and has been re-identified as P. rubens [1]. For consistency with the traditional and 
well-recognized name, as well as with our previous works, we will use in this article P. 
chrysogenum. This fungus was grown in solid Power sporulation medium [30] for 7 days 
at 28 °C to obtain fresh-made sporulated plates. For expression analysis experiments, 
flasks cultures were carried out by inoculating fresh spores (approximately 108) of P. chrys-
ogenum in 100 mL of complex inoculum medium CIM [31] without phenylacetate. After 
incubation at 25 °C for 20 h in an orbital shaker (250 r.p.m.), aliquots (5%) were inoculated 
in CP complex penicillin production medium [31] in the absence or presence of 0.4% po-
tassium phenylacetate, and incubated under the same conditions for up to 72 h. For other 
experiments, flask cultures were performed in a similar way, but using defined medium 
[30] for preinoculum, and defined medium with 0.1% potassium phenylacetate as final 
culture medium with a 10% inoculum. 

Figure 1. Schematic representation of the methyl cycle and the polyamine biosynthetic pathway.
AdoMet: S-adenosyl-L-methionine; AdoHcy: S-adenosyl-L-homocysteine; dcAdoMet; decarboxy-
lated AdoMet; THF: tetrahydrofolate.

2. Materials and Methods
2.1. Strains, Media and Culture Conditions

P. chrysogenum Wisconsin 54-1255 is the reference strain for the genome sequencing
project and has been re-identified as P. rubens [1]. For consistency with the traditional and
well-recognized name, as well as with our previous works, we will use in this article P.
chrysogenum. This fungus was grown in solid Power sporulation medium [30] for 7 days
at 28 ◦C to obtain fresh-made sporulated plates. For expression analysis experiments,
flasks cultures were carried out by inoculating fresh spores (approximately 108) of P.
chrysogenum in 100 mL of complex inoculum medium CIM [31] without phenylacetate.
After incubation at 25 ◦C for 20 h in an orbital shaker (250 r.p.m.), aliquots (5%) were
inoculated in CP complex penicillin production medium [31] in the absence or presence of
0.4% potassium phenylacetate, and incubated under the same conditions for up to 72 h.
For other experiments, flask cultures were performed in a similar way, but using defined
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medium [30] for preinoculum, and defined medium with 0.1% potassium phenylacetate as
final culture medium with a 10% inoculum.

Escherichia coli DH5α cells were used for plasmid amplification. Cells were grown in
Luria–Bertani medium with ampicillin (100 µg/mL).

2.2. Plasmid Constructs

Plasmid pJL43-RNAi-SAMsil was constructed to give rise to Pc16g04380 knock-down
transformants and was constructed as follows: Plasmid pJL43-RNAi [32] with the ble gene
marker (for phleomycin resistance), was digested with NcoI in order to subclone a 467-bp
fragment amplified with primers MatSilF (5′-CCATGGAGTAATCCTTTCCGGAG-3′) and
MatSilR (5′-CCATGGTATCATGTTCGGCTATG-3′) from the third exon of the Pc16g04380
gene. This fragment was digested with NcoI (underlined in the primer sequences), thus
yielding pJL43-RNAi-SAMsil.

Plasmid pOverSAM was used for the overexpression of the P. chrysogenum Pc16g04380
gene and was constructed as follows: Oligonucleotides MAToverF (5′-CACACCATGGATG-
GGCTCTGTTTC-3′) and MAToverR (5′- GCAGAAGGCCTTCAGAACTTGAGGG-3′) were
used to amplify by PCR the 1317-bp Pc16g04380 gene. The amplicon was digested with NcoI
and StuI (underlined in the forward and reverse primer sequences, respectively) and was
subcloned into pIBRC43 [33], previously digested with NcoI-StuI, and between the strong
Aspergillus awamori gdh gene promoter and the S. cerevisiae cyc1 transcriptional terminator.

Plasmid pJL43-Trp [34], which contains the ble gene as a selection marker under the
control of the gpdA gene promoter and the trpC terminator, was used as helper plasmid in
the transformations with pOverSAM, in order to allow further selection of overexpression
transformants in the presence of phleomycin.

2.3. Transformation of P. chrysogenum Protoplasts, Extraction of Genomic DNA and Southern
Blotting

P. chrysogenum protoplasts were obtained and transformed following standard labo-
ratory protocols, which have been described elsewhere [35]. Upon transformation, proto-
plasts were grown in Czapek minimal medium [31], and the selection of positive clones was
carried out by addition of phleomycin (final concentration 30 µg/mL) to Czapek medium.

Isolation of genomic DNA from P. chrysogenum and Southern blotting hybridization
have been previously described [36,37].

2.4. RNA Extraction and RT-PCR Experiments

RNA was extracted from samples taken at 48 h from cultures of P. chrysogenum grown
in complex medium (see above) using “RNeasy Mini Kit” columns (Qiagen, Hilden, Ger-
many), following the manufacturer’s instructions. Total RNA was treated with RNase-Free
DNase (Qiagen, Hilden, Germany), following the manufacturer’s instructions and quan-
tified using a NanoDrop ND-1000 spectrophotometer. Prior to reverse transcription, the
absence of contaminant DNA in the samples was tested by PCR.

For RT-PCR experiments, 200 ng of total RNA were retrotranscribed and amplified
using the “SuperScript One-Step RT-PCR with Platinum Taq” system (Invitrogen Corpora-
tion), following the manufacturer’s instructions. MatSilF and MatSilR primers (see above)
were used to assess Pc16g04380 expression levels. Expression of the γ-actin gene was used
as control. For this purpose, primers RTactF (5′-CTGGCCGTGATCTGACCGACTAC-3′)
and RTactR (5′-GGGGGAGCGATGATCTTGACCT-3′) were used. Quantitation (densito-
metry) of the intensity of the bands amplified in the RT-PCR assays was achieved using
the “Gel-Pro Analyzer” software (Media Cybernetics). The transcript levels were normal-
ized comparing the intensity of each mRNA signal to the γ-actin mRNA signal. Different
cycles were tested in the RT-PCR in order to obtain optimal signals for quantitation. For
the characterization of Pc16g04380 knock-down transformants, 40 cycles of amplification
were used, whereas for the characterization of overexpression transformants, 36 cycles of
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amplification were employed. For γ-actin 36 cycles of amplification were used. Results
were expressed as the mean and standard deviation of three measurements.

2.5. Sample Preparation for HPLC Analysis of Intracellular Levels of AdoMet, AdoHcy, Putrescine
and Spermidine

Samples were taken at different time points from cultures in defined medium [30]
with potassium phenylacetate (see above). Three different experiments were carried out in
duplicate. Differences were considered as significant according to the standard deviation
and when the p-value provided by the ANOVA test was p < 0.05. The mycelium was
filtrated using a nylon filter (Nytal Maissa, Barcelona, Spain) and dried using Whatman
filter paper. Then, the mycelium was ground to a fine powder in liquid nitrogen using a
mortar and introduced into microtubes in order to determine the wet weight.

2.6. HPLC Analysis of Intracellular AdoMet and AdoHcy

AdoMet y AdoHcy were determined by HPLC protocols as previously reported [38,39].
Pulverized mycelia (see above) were resuspended in Milli Q water. The mobile phase
consisted of 30 mM ammonium formate buffer pH 5.0 and acetonitrile (82:18). The flow
rate was 1 mL/min. The run time was set to 30 min. Detection was carried out at 214 nm
using an Agilent HPLC System equipped with a diode-array detector using an analytical
4.6 mm (inner diameter) × 250 mm (length) (5.0 µm particle size) RP C18 Lichrospher 100
(Merck) column.

2.7. HPLC Analysis of Intracellular Putrescine and Spermidine

Polyamines were detected after derivatization with benzoyl chloride, which provides
more stable reaction products [40]. For this purpose, pulverized mycelia (see above) were
resuspended in 1 mL of 2 M NaOH and 20 µL benzoyl chloride. The mixture was briefly
shaken in a vortex and, after 20 min on ice, saturated NaCl solution (4.0 mL) and diethyl
ether (4.0 mL) were added. This solution was mixed for 1 min and then centrifuged
at 2000× g for 10 min. The upper ether phase containing benzoylated polyamines was
transferred to another set of screw-capped tubes and evaporated to dryness. The residue
was washed with diethyl ether and evaporated to dryness to remove any traces of wa-
ter. This procedure was repeated two more times. Before injection and HPLC analysis,
benzoylated polyamines were dissolved in 100 µL methanol and vortexed. After 10 min
on ice, this methanol solution was filtered through Millipore filters (0.45 pm) to remove
particulates [41]. Separation was carried out with gradient reversed-phase HPLC using an
Agilent HPLC System equipped with a diode-array detector and using an analytical 4.6 mm
(inner diameter) × 150 mm (length) (3.0 µm particle size) SPHERISORB C18 ODS (Waters)
column. The mobile phase was a mixture of methanol-water (50:50, v/v). The flow rate
was 0.8 mL/min. Polyamines were eluted with a gradient from 50% to 60% methanol (0 to
7 min) at room temperature. The gradient was returned to 50% methanol (10 to 11 min).
The run time was set to 15 min. Detection was carried out at 240 nm.

2.8. HLPC Analysis of Benzylpenicillin Production

Samples were taken at different time points from cultures in defined medium [30]
with potassium phenylacetate (see above). Analysis and quantitation of benzylpenicillin
was carried out in culture supernatants by HPLC as previously described [34]. The specific
production of benzylpenicillin (µg/mg dry weight) was assessed by dividing the volu-
metric production (µg/mL) into the dry weight (mg/mL). Three different experiments
were carried out in duplicate. Differences were considered as significant according to the
standard deviation and when the p-value provided by the ANOVA test was p < 0.05.
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3. Results
3.1. P. chrysogenum Wisconsin 54-1255 Genome Contains a Putative AdoMet Synthetase-Encoding
Gene, Which Is Constitutively Expressed under Normal and Penicillin-Producing Conditions

In silico analysis of the P. chrysogenum Wisconsin 54-1255 genome [42] revealed the
presence of a single 1317-bp gene (Pc16g04380), whose cDNA (1164 bp) encodes a puta-
tive protein of 387 amino acids and a predicted molecular mass of 42.18 kDa (isoelectric
point 5.66). The predicted amino acid sequence of this protein showed high similarity with
well-characterized AdoMet synthetases from other eukaryotes, such as the trypanosomatid
Leishmania infantum [21] (61% identity) or Homo sapiens [43] (68% identity), and with other
filamentous fungi, such as AN1222 from A. nidulans [28] (90% identity) or PDE_07230 from
P. oxalicum [29]. This protein contains the conserved motifs of AdoMet synthetases, namely
the hexapeptide GAGDQG (responsible for binding adenine moiety of ATP) [44] between
residues 123–128, and the glycine-rich nonapeptide GGGAFSGKD that has been proposed
to bind the triphosphate moiety of ATP [45] between residues 270–278.

In silico and BLAST analyses of Pc16g04380 and the predicted encoded sequence
revealed that this gene is present as a single copy in the genome. The Pc16g04380 gene is
predicted to contain two introns (99 bp and 54 bp) close to the 5′-end region. Expression of
this gene was tested in cultures of P. chrysogenum Wisconsin 54-1255, which was grown in
complex medium in the presence and absence of phenylacetic acid during 72 h. RNA was
extracted at different time-points and expression of the Pc16g04380 gene was confirmed by
RT-PCR. As shown in Figure 2, expression is detected throughout the culture time and is
not induced by phenylacetic acid.
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Figure 2. Transcriptional analysis of Pc16g04380 in the presence (PAA+) and absence (PAA-) of
phenylacetic acid (PAA). (A) cDNA bands of Pc16g04380 and γ-actin were amplified by RT-PCR
from RNA samples taken from cultures grown in complex medium during 24 h, 48 h and 72 h.
(B) Integrated Optical Density (IOD) graph shows the expression profiles (normalized to the γ-actin
expression levels) at 24 h, 48 h and 72 h. Those values corresponding to the expression of Pc16g04380
at 24 h were set to 100. Densitometry values correspond to the mean plus standard deviation of three
independent measurements.
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3.2. Knocking-Down of the P. chrysogenum Pc16g04380 Gene Is Compatible with a Viable
Phenotype

Functional characterization of the Pc16g04380 gene was initially tried using a knock-
out approach. However, all attempts to obtain knock-out transformants were unsuccessful,
thus suggesting that this gene is essential in P. chrysogenum. Therefore, in order to func-
tionally characterize Pc16g04380, we carried out knock-down experiments to reduce the
expression levels of this gene without compromising cell viability. For this purpose, proto-
plasts from P. chrysogenum Wisconsin 54-1255 were transformed with plasmid pJL43-RNAi-
SAMsil, which includes a 467-bp exon fragment from the Pc16g04380 gene (see Materials
and Methods). Several phleomycin-resistant transformants were obtained and analyzed by
PCR to confirm the presence of the silencing cassette (data not shown). Five transformants
that showed a correct amplification pattern were analyzed by Southern blotting after the
digestion of genomic DNA with SphI and StuI (Figure 3A). The DIG-labelled exon fragment
included in the silencing cassette was used as probe. All transformants and the parental
strain showed the ~4-kbp band containing the genomic region with the Pc16g04380 gene.
In addition to this band, transformants also included the ~2.1-kbp band from the silencing
cassette. Transformants 14 and 15 showed additional hybridization bands, likely because
of the ectopic random integration of partial fragments from the silencing cassette within
the genome (Figure 3A).
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Figure 3. Silencing of the Pc16g04380 gene. (A) Southern blot analysis of different transformants
and the parental P. chrysogenum Wisconsin 54-1255 strain (W) showing the integration of the 2127-bp
silencing cassette (red arrow). The 3998-bp genomic band containing the genomic Pc16g04380 gene is
indicated with a blue arrow. M (molecular weight marker). (B) Relative expression of Pc16g043801 in
different transformants compared to the Wisconsin 54-1255. cDNA bands of Pc16g04380 and γ-actin
were amplified by RT-PCR from RNA samples taken at 48 h from cultures grown in complex medium.
Integrated Optical Density (IOD) graph shows the expression profile (normalized to the γ-actin
expression levels) of each transformant regarding the values provided by the Wisconsin 54-1255 strain
(Wis), which were set to 100. Densitometry values correspond to the mean ± SD of three independent
measurements. (C) Growth profile in defined medium of Pc16g04380-knock-down transformants.

In order to confirm Pc16g04380 gene silencing in transformants T8, T9, T14, T15
and T20, RT-PCR gene expression experiments were performed using RNA extracted at
48 h from cultures grown in complex medium without phenylacetic acid. As it can be
inferred from Figure 3B, transformants T14 and T15 showed a 4.3- and 8.6-fold reduction,
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respectively, in the Pc16g04380 mRNA levels regarding those provided by the control strain.
The rest of the transformants showed null (transformant T8) or very weak decrease in the
transcription levels of Pc16g04380, ranging from 1.1-fold decrease (transformant T9) to
1.2-fold decrease (transformant T20).

So as to confirm whether knock-down transformants were impaired in growth, sub-
merged cultures were carried out. All transformants grew well on solid Power medium and
spore color did not differ from that of the parental strain (data not shown). For submerged
cultures, we used defined medium to avoid the addition of components present in the
complex medium that could mask the effect of a putative depletion of metabolites due to
the knock-down of the Pc16g04380 gene. As seen in Figure 3C, all transformants showed a
growth profile similar to that provided by the control strain, with similar amounts of dry
weigh at each time point. This indicates that gene silencing of Pc16g04380 is compatible
with a viable phenotype. Transformants T14 and T15 were selected for further experiments.

3.3. Pc16g04380 Encodes AdoMet Synthetase in P. chrysogenum (PcSasA)

In order to assess whether the protein encoded by Pc16g04380 is AdoMet synthetase,
the intracellular levels of AdoMet and AdoHcy were analyzed by HPLC in knock-down
transformants T14 and T15, and were compared to the levels provided by the control strain
(P. chrysogenum Wisconsin 54-1255). As depicted in Figure 4A, knock-down transformants
produced very low levels of AdoMet regarding the control strain. Significant differences
ranged from a 4.6-fold (24 h) to a 10.5-fold (72 h) decrease in transformant T14, whereas for
transformant T15, AdoMet levels remained around 6-fold lower than that provided by the
control strain throughout the culture time.
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Figure 4. Specific production (nmol/g wet weight) of (A) AdoMet, (B) AdoHcy, (C) putrescine and
(D) spermidine in the knock-down transformants T14 and T15 and the control strain P. chrysogenum
Wisconsin 54-1255 (Wis). Results correspond to the mean ± SD from three different experiments
carried out in duplicate.

AdoHcy production in the knock-down strain was also lower than in the control
strain (Figure 4B). Differences ranged from a 5.5-fold (48 h) to a 7.0-fold (24 h) decrease in
transformant T14, whereas in transformant T15, differences ranged from a 5.9-fold (24 h) to
a 3.75-fold (72 h) decrease. These results confirm the role of the product of the Pc16g04380
in the biosynthesis of AdoMet, and in view of these results, Pc16g04380 was termed PcsasA.
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Due to the role of AdoMet in polyamine biosynthesis, the intracellular levels of
putrescine and spermidine were analysed by HPLC in knock-down transformants T14 and
T15, and the control strain. Figure 4C shows that interestingly, putrescine levels increased
in both transformants, which showed a similar behavior, regarding control values. The
increase reached maximum values (~10 fold) at 48 h, whereas at 24 h and 72 h, values varied
between a ~4-fold and a ~5-fold increase, respectively. On the other hand, spermidine
values (Figure 4D) underwent a strong decrease at 48 h and 72 h in the knock-down
transformants, with the lowest values (17-fold decrease) being reached by transformant
T15 at 72 h.

3.4. Secondary Metabolism Is Affected by Reduced Levels of AdoMet

The effect of AdoMet depletion on secondary metabolism was tested through ben-
zylpenicillin production. With this purpose, cultures in defined medium were carried
out and samples were extracted at different time points to analyze benzylpenicillin spe-
cific production (Figure 5A). Knock-down transformants T14 and T15 produced lower
benzylpenicillin levels than the control strain. This significant decrease varied between
7.75-fold (24 h) and 3-fold (72 h) for transformant T14, and between 5.5-fold (24 h) and
2-fold (72 h) for transformant T15.
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Figure 5. Secondary metabolism in knock-down transformants T14 and T15. (A) Benzylpenicillin
specific production (µg/mg dry weight) of the control strain Wisconsin 54-1255 (Wis) and knock-
down transformants T14 and T15 grown in defined medium. Results correspond to the mean ± SD
from three different experiments carried out in duplicate. (B) Supernatants obtained after 72 h of
growth from cultures of the control strain Wisconsin 54-1255 (Wis) and knock-down transformants
T14 and T14 in defined medium. Note the yellow-orange color of the knock-down transformants.

In addition to this effect on benzylpenicillin biosynthesis, knock-down transformants
also accumulated a yellow-orange pigment in the culture broths (Figure 5B), which was
more intense at 48 h and 72 h of culture. These results cannot conclude unequivocally that
AdoMet levels act as a regulator of secondary metabolism, although it could be suggested
that AdoMet is involved to some extent in processes related with secondary metabolism in
P. chrysogenum.

3.5. Overexpression of PcsasA Does Not Lead to an Increase in Benzylpenicillin Production

Since AdoMet levels are related to benzylpenicillin production, we decided to test
whether overexpression of the PcsasA gene could lead to overproduction of this β-lactam
antibiotic. Therefore, protoplasts obtained from P. chrysogenum Wisconsin 54-1255 were
transformed with plasmid pOverSAM (see Materials and Methods), which includes the
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PcsasA gene under the control of the strong promoter of the gdh gene and the cyc1 tran-
scriptional terminator. Transformants were selected in medium containing phleomycin
and analyzed by PCR to confirm the presence of the overexpression cassette (data not
shown). Three transformants that showed a correct amplification pattern were analyzed
by Southern blotting after the digestion of genomic DNA with PvuII (Figure 6A). The
DIG-labelled exon fragment previously described was used as probe. All transformants
and the parental strain showed the ~8.5-kbp band containing the genomic region with
the PcsasA gene. In addition to this band, transformants also included the ~2.8-kbp band
from the overexpression cassette. All transformants, especially OT9 and OT13, showed
additional hybridization bands, which can be attributed to the ectopic random integration
of partial fragments from the overexpression cassette within the genome (Figure 6A).
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Figure 6. Overexpression of the Pc16g04380 (PcsasA) gene. (A) Southern blot analysis of different
transformants and the parental P. chrysogenum Wisconsin 54-1255 strain (W) showing the integration
of the 2785-bp overexpression cassette (red arrow). The 8521-bp genomic band containing the
genomic Pc16g04380 (PcsasA) gene is indicated with a blue arrow. M (molecular weight marker).
(B) Relative expression of Pc16g043801 (PcsasA) in different transformants compared to the Wisconsin
54-1255. cDNA bands of Pc16g04380 (PcsasA) and γ-actin were amplified by RT-PCR from RNA
samples taken at 48 h from cultures grown in complex medium. Densitometry (IOD) graph shows the
expression profile (normalized to the γ-actin expression levels) of each transformant regarding the
values provided by the Wisconsin 54-1255 strain (Wis), which were set to 100. Densitometry values
correspond to the mean ± SD of three independent measurements.

In order to confirm PcsasA overexpression, all transformants were tested by RT-PCR.
With this purpose, cultures in complex medium without phenylacetic acid were conducted,
and RNA was extracted from samples taken at 48 h. All transformants showed higher
steady-state levels of PcSasA mRNA (around 3.5-fold increase) than the control strain
(Figure 6B) and did not show sporulation or growth defects either in solid medium or
in submerged cultures or differences in spore color regarding the parental strain (data
not shown).
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Intracellular levels of AdoMet, AdoHcy and spermidine were quantified at 48 h in the
parental and overexpression transformants. As seen in Figure 7A, transformants OT9 and
OT13 were able to produce twice as many AdoMet as the parental strain. This significant
increase was a bit lower in the case of transformant OT 5 (1.5-fold). When AdoHcy and
spermidine levels were determined, no significant differences were found regarding the
Wisconsin 54-1255 strain (Figure 7B,C).
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Figure 7. Production of AdoMet, AdoHcy, spermidine and benzylpenicillin in overexpression
transformants. Percentage (%) of intracellular levels of (A) AdoMet, (B) AdoHcy and (C) Spermidine
in the overexpression transformants OT5, OT9 and OT13 regarding values provided by the Wisconsin
54-1255 strain (Wis), which were set to 100%. (D) Benzylpenicillin specific production (µg/mg dry
weight) of the control strain Wisconsin 54-1255 (Wis) and overexpression transformants OT5, OT9
and OT13 grown in defined medium. Results correspond to the mean ± SD from three different
experiments carried out in duplicate.

Benzylpenicillin specific production was assessed in overexpression transformants
(Figure 7D). Interestingly, antibiotic titers were not increased in these transformants. On
the contrary, all transformants exhibited a significantly lower benzylpenicillin specific
production than the Wisconsin 54-1255 strain during the first 48 h of culture. At this
timepoint benzylpenicillin titers were approximately 3-fold lower in the overexpression
transformants than in the control strain. After 48 h, β-lactam values in the overexpression
transformants were not significantly different from those shown by the control strain,
although they remained slightly below the control values with the only exception of
transformants OT5, whose values reached those from the Wisconsin 54-1255 strain at the
end of the culture time.
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4. Discussion

AdoMet is the universal methyl donor molecule. This compound is synthesized by
AdoMet synthetases, which are highly conserved proteins that in some organisms have one
or more isoforms. In this work we have identified the gene encoding AdoMet synthetase of
P. chrysogenum (PcSasA). PcsasA is present as a single copy in the P. chrysogenum genome,
thus giving rise to only one form of the protein. The presence of a single AdoMet synthetase
gene has also been reported in P. oxalicum and A. nidulans [28,29]. With the only exceptions
of Aspergillus flavus and Aspergillus oryzae, which contain two independent isoforms of
AdoMet synthetase, all Aspergillus species contain only one AdoMet synthetase encod-
ing gene [28]. Similarly, S. cerevisiae also contains two independent AdoMet synthetase
encoding genes (SAM1 and SAM2) in the genome [23,24].

AdoMet synthetases have been described as essential in fungi. Previous results
confirmed that the gene encoding AdoMet synthetase in A. nidulans (AnsasA) is essential
and its functions are indispensable for the cellular activities of this filamentous fungus [28].
Similar conclusions were raised in P. oxalicum [29]. Our initial attempts to obtain knock-
out mutants in the Pc16g04380 gene were unsuccessful, which is consistent with the fact
that this is gene encoding AdoMet synthetase (PcsasA) is essential for the viability of
P. chrysogenum too.

We were able to reduce the steady-state levels of PcSasA mRNA by using a gene
silencing approach, which resulted in a viable phenotype with normal growth and with
lower levels of AdoMet and AdoHcy than the control strain. This produced accumulation
of putrescine and reduction of spermidine due to likely reduction in dcAdoMet levels
as a consequence of the depletion in AdoMet. Knocking-down of PcsasA gave rise to
the production of lower penicillin titers than the control strain, which may be related to a
decrease in spermidine levels. In P. chrysogenum, spermidine and 1,3-diaminopropane cause
the reprogramming of metabolism, leading to multiple vesicles and penicillin overproduc-
tion [46]. This indicates that these compounds are also involved in controlling secondary
metabolism in filamentous fungi. In fact, the intersection of the metabolisms of polyamines
and β-lactams has also been recently confirmed in another β-lactam producer, Acremonium
chrysogenum, where polyamines have been reported to upregulate cephalosporin C pro-
duction and expression of β-lactam biosynthetic genes [47]. Interestingly, reduced levels of
AdoMet also produced accumulation of a yellow-orange pigment. A similar effect was ob-
served in P. oxalicum, where downregulated PosasA expression led to the formation of pink
colonies instead of the dark-green colonies of the wild-type strain, which was attributed to
the impairment of formation of melanins [29]. P. chrysogenum is able to synthesize several
yellow pigments, such as chrysogine (chrysogenine) [48] and sorbicillinoids [49]. Identifi-
cation of their biosynthetic pathways [50,51], together with other secondary metabolism
enzymes related to the biosynthesis of natural products, pave the way to the engineering
of P. chrysogenum in order to generate promising cell factories for novel products [52].
Overexpression of the PcsasA gene did not modify growth rate in P. chrysogenum. This
agrees with the results shown after the overexpression of the genes encoding AdoMet
synthetase in N. crassa or P. oxalicum [27,29], but it is in contrast with the results obtained
in A. nidulans, which showed impaired development after overexpression of the AnsasA
gene [28]. Increased expression of PcsasA gene led to the intracellular accumulation of
AdoMet but did not significantly modify AdoHcy or spermidine levels. An explanation
to this effect could be the sequestration of most of the excess AdoMet in vacuoles. Hence,
vacuolar AdoMet would be excluded from the cytosolic pool of this molecule that is either
decarboxylated (thus forming decarboxylated AdoMet) or demethylated (thus forming
AdoHcy) as it has reported in S. cerevisiae [25]. PcsasA overexpression led to a reduction
in benzylpenicillin levels along the culture, mainly at early time-points. A similar result
was obtained in A. nidulans with sterigmatocystin, a precursor of aflatoxin B1. In this
filamentous fungus, overexpression of AnsasA produced a decrease in the biosynthesis
of this compound, which was attributed to defects in coordination of development and
secondary metabolism [28]. Coordination of these two processes is regulated in filamentous
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fungi by the LaeA and Velvet Complex [9]. LaeA is a nuclear protein containing an AdoMet
binding domain with putative methyltransferase activity and it has been hypothesized that
it could regulate secondary metabolism by acting epigenetically through modification of
chromatin structure, either directly or indirectly, although the exact function of this protein
has not yet been clarified [53]. It has been suggested in A. nidulans that SasA could tran-
siently interact with LaeA and the Velvet Complex and therefore, overproduction of SasA
might affect LaeA function and secondary metabolite production [28]. In a similar way,
the overproduction of PcSasA might interfere with LaeA and affect penicillin biosynthesis
in P. chrysogenum. Future experiments will reveal if interaction occurs between these two
proteins, which will help elucidate the mechanism of action of LaeA.
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