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Abstract

Long noncoding RNA (lncRNA) transcripts have emerging impacts in cancer studies, which

suggests their potential as novel therapeutic agents. However, the molecular mechanism

behind their treatment effects is still unclear. Here, we designed a computational model to

Associate LncRNAs with Anti-Cancer Drugs (ALACD) based on a bilevel optimization

model, which optimized the gene signature overlap in the upper level and imputed the miss-

ing lncRNA-gene association in the lower level. ALACD predicts genes coexpressed with

lncRNAs mean while matching drug’s gene signatures. This model allows us to borrow the

target gene information of small molecules to understand the mechanisms of action of

lncRNAs and their roles in cancer. The ALACD model was systematically applied to the 10

cancer types in The Cancer Genome Atlas (TCGA) that had matched lncRNA and mRNA

expression data. Cancer type-specific lncRNAs and associated drugs were identified.

These lncRNAs show significantly different expression levels in cancer patients. Follow-up

functional and molecular pathway analysis suggest the gene signatures bridging drugs and

lncRNAs are closely related to cancer development. Importantly, patient survival information

and evidence from the literature suggest that the lncRNAs and drug-lncRNA associations

identified by the ALACD model can provide an alternative choice for cancer targeting treat-

ment and potential cancer pognostic biomarkers. The ALACD model is freely available at

https://github.com/wangyc82/ALACD-v1.

Author summary

LncRNAs are RNA transcripts that are longer than 200 bp and do not encode proteins.

Recent experimental studies have indicated the crucial role of lncRNAs in cancer. We pro-

posed a computational model, ALACD, to understand a lncRNA’s molecular mechanism
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by associating it with a drug through the drug’s target genes. ALACD reveals lncRNAs,

the associated anti-cancer drug, and the induced gene signatures that are involved in the

regulation of cancer. Furthermore, these cancer-related lncRNAs are differentially

expressed in cancer patients and closely associated with patient survival.

Introduction

Human cancer is one of the leading causes of morbidity and mortality worldwide, and it

involves multiple genetic, epigenetic, and transcriptional changes [1, 2]. Ongoing large-scale

projects by some cancer genome consortiums, such as The Cancer Genome Atlas (TCGA), are

using high-throughput molecular profiling strategies to characterize these changes. They first

focus on decoding changes in protein-coding genes to interpret cancer genomics, and then

shift their focus to the noncoding region due to the fundamental role of noncoding RNA in

the regulation of a wide range of processes [3, 4], including cancer [5, 6]. Fox example, HOX
transcript antisense RNA (HOTAIR) was highly expressed in breast cancer samples [7], Metas-

tasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) related with metastasis and

survival in early-stage non-small cell lung cancer (NSCLC) [8], and Colon Cancer-Associated

Transcript 2 (CCAT2) overexpressed in microsatellite-stable colorectal cancer [9]. Those find-

ings indicate that lncRNAs are involved in the regulation of cancer development, and targeting

them might provide a novel therapeutic strategy.

The modulatory mechanism of lncRNAs has advantages that support their potential as ther-

apeutic targets. One of these advantages is that lncRNA expression is highly tissue- or cell- spe-

cific [10], which provides a great opportunity to develop therapeutics for targeting specific

tissues. In addition, one of the main functions of lncRNAs is chromatin modification, thus tar-

geting the interaction of lncRNAs with epigenetic factors, such as PRC2, could provide an effi-

cient treatment approach. Moreover, many lncRNAs are located in the nucleus, and act as cis-

regulatory elements for neighbouring genes [11], hence, gene locus-specific regulation can be

achieved by lncRNA manipulation [12].

In addition, several strategies for lncRNA modulation have been developed. One of them is

the application of specifically designed small interfering RNAs (siRNAs) to inhibit the function

of lncRNAs, and the success of this strategy has been demonstrated [12]. Another approach is

the oligonucleotide-based targeting of lncRNAs. Compared to siRNAs, oligonucleotides have

higher specificity and fewer off-target effects due to the direct targeting of lncRNAs [13]. Col-

lectively, these findings encourage the study of lncRNAs in the treatment of cancer patients.

Various lncRNAs that target therapeutic agents are being investigated, and several companies

have attempted to develop lncRNA-targeting therapeutics for the treatment of human diseases,

including cancers [14, 15]. Moreover, some computational works have also attempted to

address this topic to further understand the molecular mechanism of lncRNA in cancer.

The current computational works for this topic can be divided into three types. One type

attempts to identify cancer-related lncRNAs, which exhibit significantly different expression

levels in cancer patients, by comparing gene expression in tumors and normal tissues of cancer

patients. The aim of this type of works is to find differentially expressed lncRNAs that are link

to cancer, such as TANRIC [16]. The second aim is to attempt to predict the associations

between small molecules and lncRNAs through linking drug response with RNA expression

([17–20]). The lncRNA signatures are generated through identifying the lncRNAs that display

significantly different expression levels before/after small molecule treatment. This type of

work actually reveals lncRNAs that are affected by drug treatment. The third aim is to derive
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the information from some mediator (such as miRNA), and apply the associations between

lncRNAs and that mediator to transfer disease information from that mediator to lncRNA

([21–24]).

Although both wet-bench and computational experiments were utilized to reveal the associ-

ations between lncRNA and cancer, there is still a large gap between existing knowledge and

clear picture of the mechanism of action of lncRNAs in cancer. However, chemical therapies

have been well studied, and recent high-throughput drug screening technologies have gener-

ated genomic data, and pharmacological profiling of hundreds of compounds across thou-

sands of cancer cells [25–29]. In addition, some curated databases have deposited multiple-

platform data sources, which describe drug functions in living cells. They include drug chemi-

cal structure, target protein, side-effects, therapeutic annotations (ATC-code), etc. [30, 31].

Jointly, these valuable data hint the mechanism of action of drugs in cancer [32, 33]. Thus,

associating lncRNAs with drugs may provide a deeper understanding of the mechanisms of

action of lncRNAs and their roles in cancer.

Here, we developed a systematically computational approach for Associating LncRNAs

with Anti-Cancer Drugs (ALACD) via a bilevel optimization. The model first identified drug-

induced gene-expression signatures through expression analysis of the Connectivity Map

(CMap) data [26]. Then, we calculated the expression correlations between lncRNAs and

mRNAs in patients from The Cancer Genome Atlas (TCGA), and further expanded those cor-

relations through a supervised learning algorithm, the Support Vector Machines (SVM),

which is motivated by statistical learning theory [34, 35]. Finally, through bilevel optimization,

lncRNAs, the associated anti-cancer drugs, and the induced gene signatures involved in the

regulation of cancer, were uncovered.

Materials and methods

Anti-cancer drugs

The Connectivity Map (CMap, build 02) data [26], which contains 6,100 gene expression pro-

files of 4 cell lines treated with 1,309 distinct small molecules with diverse doses, was applied to

detect drug-induced gene signatures. The histogram of treatment instances with respect to the

drugs in CMap is presented in S1 Fig. To achieve differentially expressed genes (DEGs) with

much more significance, 29 drugs with more than ten treatment instances were selected for

further gene expression analysis. The processed microarray data: ‘rankMatrix’ TXT file, which

was downloaded from the CMap main website (https://www.broadinstitute.org/cmap/), was

introduced here.

The expression profiles of lncRNAs and genes

The data used to search coexpressed genes for lncRNAs came from the TCGA RNA-seq data.

Specifically, lncRNAs expression was extracted from the TSV file ‘mitranscriptome.expr.

counts’ in the MiTranscriptome database [36], and the log2 transformation was performed

before correlation analysis. The mRNAs expression was extracted from the level three GExp-

Gene data form the TCGA data portal. There were a total of 10 TCGA cancer types, which

have more than 200 patients with both lncRNA and gene expression data available, including

Breast Invasive Carcinoma (BRCA), Head and Neck Squamous Cell Carcinoma (HNSC),

Kidney Renal Clear Cell Carcinoma (KIRC), Brain Lower Grade Glioma (LGG), Lung Adeno-

carcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Ovarian Serous Cystadenocar-

cinoma (OV), Prostate Adenocarcinoma (PRAD), Thyroid Carcinoma (THCA), and Skin

Cutaneous Melanoma (SKCM) (S1 Table).
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The ALACD model

We designed a computational model, named ALACD, to associate lncRNAs with drugs

through their associated genes (Fig 1A). It first defined drug-associated genes by examining

drug-induced gene-expression signatures (Fig 1B), and defined lncRNA-associated gene as

coexpressed genes. Due to lack of known lncRNA target genes, the coexpressed genes were

chosen as the lncRNA-associated genes. To further extend the coverage, the coexpressed genes

were augmented by the supervised learning algorithm (Fig 1C). That is, we imputed the miss-

ing lncRNA-gene association through this supervised learning algorithm. It finally proposed

an optimization model algorithm to search the optimal genes that were closely relate with both

drugs and lncRNAs, and used them to associate lncRNAs with drugs (Fig 1D). More details

are included in the following section.

Drug-associated genes: Drug induced gene signatures. The gene-expression signatures

for a given drug, provided in CMap, were chosen to represent the drug associated genes. They

were obtained through identification of genes showing significant differential expression levels

before and after drug treatment. The coefficients indicating the relationships between the

Fig 1. The flow-chart of ALACD. A: Association of lncRNAs with drugs via their target genes to better understand the

mechanism of lncRNAs. B: Identification of drug-associated genes through gene analysis. The genes exhibiting

significantly different expression levels before/after drug treatment were identified as drug-associated genes. C:

Identification of lncRNA-associated genes through detecting coexpressed genes. It first constructed the initial lncRNA-

gene relationships by calculating their expression correlations. Then, by ranking the whole correlation coefficients, the

close and poor relationships were selected to train a supervised learning model, and the lncRNA closely associated genes

were identified through this supervised learning model. The size of circle indicates the predicted score for associations

between lncRNAs and genes, and the larger size means stronger association. D: Identification of anti-cancer drug

associated lncRNAs through optimized associating drug’s gene signatures with their closely related genes.

https://doi.org/10.1371/journal.pcbi.1007540.g001
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genes and a given drug (nG is the number of genes) were calculated as follows:

ci ¼ signðlogFCÞ
sigi � m
n � m

; ð1Þ

where logFC is the log transformation of fold change (FC), and sign(logFC) will be +1, if logFC
larger than zero, will be -1 if logFC less than zero, and will be zero if FC equal to one, sigi =

|logFC| × (−log(Pvaluei)), μ and ν are the minimum and maximum of sigi, i 2 {1, � � �, nG},

respectively, Pvaluei was Benjamini adjusted p-value and obtained by expression analysis via

‘limFit’ function in R ‘limma’ package [36]. The Eq (1) means that gene-expression signatures

for CMap anti-cancer drug were those genes with absolute coefficient close to one.

LncRNA-associated genes: Enhanced lncRNA coexpressed genes. The genes that are

coexpressed with lncRNA were defined as lncRNA-associated genes. However, only a small

fraction of lncRNAs and genes are coexpressed supported by the correlation analysis (with

high Pearson correlation coefficients (PCCs)). Taking the TCGA squamous cell lung cancer

data as an example, only 323 pairs of lncRNAs and genes were identified to be coexpressed

with high confidence (PCCs larger than 0.7), while there were a total of 10,000 possible pairs of

lncRNAs and genes. To extend the range of lncRNA’s coexpressed genes, a supervised learning

method was introduced. Specifically, we collected lncRNA-gene pairs with high PCCs and

close to zero PCCs as training positives and negatives, respectively (S2 Fig), which were applied

to train a supervised learning model (SVM classification model) by concatenating the gene

and lncRNA expression levels. The rest of the possible lncRNA-gene pairs were treated as the

testing data and ready for prediction via that SVM classification model. Through the super-

vised learning model, the associations between lncRNAs and genes were represented as the

SVM score with values ranging from 0 to 1, where a strong association would have an SVM

score close to one, and a weak association would be represented by an SVM score close to

zero.

Bilevel optimization to associate drug and lncRNA. Once we obtained the associated

genes for both anti-cancer drugs and lncRNAs, we could then associate them through detect-

ing the optimum overlaping genes. To this end, an optimization algorithm was developed. Spe-

cifically, for a given drug, the correlation scores for lncRNAs were obtained by the following

bilevel convex programming problem, where the upper problem, is constrained by the optimi-

zation of the lower problem:

min
d;a�

XnG

i¼1

jcij
XnL

j¼1

signðciÞ
XnT

t¼1

a�t ytKðxt; xÞ þ b�
 !

� dj

 !2

; ð2Þ

s:t: a� ¼ arg min
a

1

2

XnT

p¼1

XnT

q¼1

ypyqapaqKðxp; xqÞ �
XnT

n¼1

an; ð3Þ

XnT

n¼1

ynan ¼ 0; 0 ⩽ an ⩽ C; n ¼ 1; � � � ; nT; ð4Þ

9s 2 f1; � � � ; nTg; a
�

s 2 ð0;CÞ; b
� ¼ ys �

XnT

n¼1

yna
�

nKðxn; xsÞ; ð5Þ

where nT is number of lncRNA-gene pair used for training, x is a pair of a lncRNA and a gene,

which was represented through concatenation of lncRNA and gene expression profile; yt = 1,
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when the tth pair of lncRNA and gene is positive (PCC larger than 0.7 in BRCA patients),

yt = −1, when the tth pair of lncRNA and gene is negative (PCC is zero in BRCA patients). The

enhanced associations between lncRNAs and genes were learned by solving the lower problem

(SVM standard classification model), and the associations between lncRNAs and anti-cancer

drugs were learned by solving the upper problem. The rationale of the upper optimization

model is to perform the overlapping analysis between the drug’s gene-expression signatures

and the lncRNA’s closely associated genes. The optimization procedure forces drug linkage

with the lncRNAs, which were closely associated with drug-induced gene signatures. In addi-

tion, a rank score (RS) was applied to ensure that the above optimization procedure could

reveal as many as possible genes associated with both drugs and lncRNAs: RS ¼ fbþ0:5�fw
N � 100,

where fb is number of lncRNAs with fewer overlapping genes than the predicted one, fw iis the

number of lncRNAs with overlapping genes equal to the predicted one, and N is number of all

lncRNAs.

Model implementation and survival analysis

The above bilevel optimization problem was solved first by solving the lower problem, and

then by finding the optimum solution for the upper problem. The lower problem was actually

the SVM standard classification model, which was performed by using LibSVM in ‘e1071’ R

package [38]. The penalty parameter and the RBF kernel parameter were optimized by the grid

search approach with 3-fold cross-validation. The performance of this SVM model was evalu-

ated through 5-fold cross-validation. The evaluation criteria, AUC (area under the curve),

receiver operating characteristic (ROC) curve [39], AUPR (area under the precision-recall)

curve [40], accuracy (ACC), sensitivity (Sn), specificity (Sp), precision (Pre), and F-measure

(geometric mean of Sn and Sp), were used to assess the performance of the supervised learning

model.

The upper optimization problem is convex quadratic programming, which was imple-

mented through the ‘nlm’ function in the R programming language with zero as the initial

points. Through solving the optimization problem, for each drug, we obtained the correlation

scores for all lncRNAs. By ranking them in descending order, the top five lncRNAs with p-

value less than 0.05 were considered as drug-associated lncRNAs. The p-value displayed the

specificity of the linkage of the lncRNA with the given drug, and was calculated through the

frequency of the lncRNAs in the top score lists of all CMap drugs.

To display the usefulness of the identified lncRNAs in cancer prognosis, the Kaplan-Meier

survival analysis [41] was introduced. Specifically, the survival information was collected from

the TCGA clinical data, and the patients were divided into two classes according to the expres-

sion level of a lncRNA: patients with a high expression level (higher than 6), and patients with

a low expression level (lower than 2). The thresholds for high and low expression levels were

determined by the distribution of lncRNA expression in cancer patients (S3 Fig). Then, the

correlation analysis for patient survival on those two classes of patients was performed via ‘sur-

vival’ R package.

Validations based on the lncRNA2Target database

To demonstrate the effectiveness of the augmented model, the SVM model was applied to the

lncRNA2Target (version 1) lncRNA-gene association data [42]. The lncRNA2Target (version

1) deposits human and mouse lncRNA-to-target genes based on lncRNA knockdown or over-

expression experiments. The expression data for lncRNAs and genes in lncRNA2Target (ver-

sion 1) also came from MiTranscriptiome and TCGA data portal, respectively. The predicted
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score (SVM score), which indicates how strong the relationship between the lncRNA-gene

pairs is, is displayed.

Functional and pathway enrichment analysis

To display the role of gene signatures bridging drugs and lncRNAs, functional enrichment

analysis was performed through using GO terms and KEGG pathway annotations via DAVID

Bioinformatics Resources. The enrichment terms with Benjamini adjusted p-value less than

0.01 was reported, and for those genes without such enrichment terms, the GO molecular

functions (MFs) and KEGG pathways shared by over 60% of the genes were reported.

Results

The supervised learning algorithm increases the coverage of lncRNA-

associated genes

The supervised learning algorithm was introduced to augment the lncRNAs’ coexpressed

genes. To evaluate its performance, a two-step validation process was performed. First, we

asked whether it could simulate the PCCs effectively. Except for OV data with only 39 positives

for training, close to one evaluation criteria were obtained for all other cancer types (Fig 2A

and S4 Fig). Furthermore, the predicted scores with value close to one signified close correla-

tion, and close to zero denoted weak correlation (Fig 2B), which indicated that the supervised

model could simulate coexpression relationships quite well.

Then, we asked whether the supervised model could extend the searching space for

lncRNA-associated genes. The cross-validation results showed that 7.2% to 68.3% of lncRNA-

gene pairs with PCCs larger than 0.5 and smaller than 0.7 (larger than 0.3 and smaller than 0.5

for those PCCs larger than 0.5 as positives) had a predicted score larger than 0.9 (Fig 2C and

S1 Table), while there were more than ten thousand lncRNA-gene pairs with PCC larger than

0.5 and smaller than 0.7 (larger than 0.3 and smaller than 0.5 for those PCCs larger than 0.5 as

positives). This means that the supervised model could increase the coverage of lncRNA-asso-

ciated genes by a factor of at least 1e+3. To further validate this, we introduced the lncRNA tar-

get gene database, LncRNA2Target (version 1), as independent test data. After collecting the

matched expression information from MiTranscriptome and TCGA for human lncRNA-gene

associations in LncRNA2Target (version 1), 18 associations remained (S2 Table). Among all

18 associations, only two of them had PCCs larger than 0.5 (EMX2OS-EMX2, HOTAIRM1-
HOXA4), and except for two low-throughput lncRNA-gene associations (HOTAIRM1-
HOXA1, EMX2OS-EMX2), the SVM scores were much higher than the PCCs for the remain-

ing 16 lncRNA-gene associations (Fig 2D). All these findings indicate that the supervised

learning algorithm could not only increase the coverage of lncRNA-associated genes, but also

detect potential lncRNA target genes. The supervised model could increase the number of

lncRNA-associated genes because it borrows information about the associations from

lncRNAs or genes that have similar expression patterns. That is, the given lncRNA-gene asso-

ciation could be uncovered by searching for lncRNAs that have expression pattern similar to

those of the given lncRNA (S5A and S5C Fig), or for genes that have expression pattern similar

to those of the given gene (S5B and S5D Fig).

The associations between lncRNAs and anti-cancer drugs in TCGA tumors

The ALACD model was applied to ten types of TCGA cancer patients. We summarized the

predictions on all ten types of cancer and addressed the following three observations. First, for

a specific tumor type, a given drug was associated with more than one lncRNA (S6A Fig), and

Associating lncRNAs with small molecules
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a lncRNA was connected with more than one drug (S6B Fig). Second, for a specific drug, asso-

ciations were observed with unique lncRNAs in different cancer types. That is, drugs did not

share lncRNAs across different cancer types. Taking aspirin (acetylsalicylic acid) as an exam-

ple, the ALACD model identified 10 unique lncRNAs for 10 distinct types of cancer (S6C Fig).

Third, when summarizing all drug-associated lncRNAs in a certain cancer type, we found that

different types of cancer had its unique lncRNAs, which increased the potential identification

of specific candidate therapeutic targets. Only breast cancer and lung adenocarcinoma were

associated with the same lncRNAs, which were CAT354 and LINC00665.6, while prostate and

thyroid cancers shared the lncRNA LINC00958.9 (S6D Fig). The potential reason why either

drug or disease did not share lncRNA targets may be because lncRNAs are specifically highly

expressed in certain types of cancer. For instance, the breast cancer-related lncRNA HOTAIR
is silent in most cancer patients (Fig 3A), and is highly expressed in only a few of tumor types,

most of which are breast cancers (Fig 3B). The prostate cancer related lncRNA PCA3 is silent

in most cancer patients (Fig 3C), and is highly expressed in 96% of prostate cancers (Fig 3D).

Fig 2. The performance of the SVM model in estimating correlation coefficients and its advantage. A: The AUC

and AUPR of ten cancer types, and the number of positives in each type of cancer is indicated. B: The boxplot displays

the correlation between SVM score and PCCs. The four groups are generated according to the value of PCCs. C: The

coexpressed lncRNA-gene associations expanded by the SVM model. The green bar indicates the coexpressed

lncRNA-gene associations validated by PCCs (larger than 0.5), and the red bar indicates the increased coexpressed

lncRNA-gene associations from the SVM model with SVM scores larger than 0.9. D: The independent dataset

validation: lncRNA2Target (version 1), and the PCCs and SVM scores for 18 lncRNA-gene pairs are displayed by

green and red bars, respectively.

https://doi.org/10.1371/journal.pcbi.1007540.g002
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While the cancer genes, such as TP53 and PIK3CA, have significantly different distribution

than lncRNAs (p-value less than1e-5 by KS-test). They are highly expressed in most cancer

patients, and silent in only a few of them (Fig 3E * 3H).

The associations between lncRNAs and anti-cancer drugs in an individual

tumor type facilitate understanding of the mechanism of lncRNAs and

their roles in cancer

The drug-associated lncRNAs in cancer patients that were identified through the ALACD

model indicate their unique properties in different tumor types. Therefore, we further ana-

lyzed the lncRNAs in individual tumor types to understand the role of lncRNAs in each partic-

ular type of cancer. The close relationship of lncRNAs with cancer was supported through

three phases: the literature evidence for the linkage between associated genes and cancer types,

the confidence score for relationships between lncRNAs and types of cancer collected from

MiTranscriptome, and the expression specificity of lncRNAs. The linkage between lncRNAs

and anti-cancer drugs was established through the associated genes, and the annotation of

these genes helped us understand the function of lncRNAs in cancer. Thus, functional and

pathway enrichment analysis were performed and enriched GO terms and KEGG pathways

are shown in S3*S12 Tables. For instance, estradiol, a form of estrogen, was associated with

BRCAT2.9 through the ALACD model (Fig 4A), which was specifically expressed in BRCA

patients (Fig 4C). Three out of the five genes associated with estradiol and BRCAT2.9 were

linked to breast cancer according to the literature [43–45], and they shared kinase activity, sug-

gesting that the molecular function of BRCAT2.9 is involved in metabolism. In addition,

Fig 3. The specificity of lncRNAs indicates their unique properties. The expression pattern of lncRNAs (A,C) and

genes (E,G) in all tumor patients. The piecharts show the tumor types in which the lncRNAs (B,D) and genes (F,H)

were highly expressed (expression levels higher than 4 for lncRNAs and larger than 6 for genes).

https://doi.org/10.1371/journal.pcbi.1007540.g003
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MiTranscriptome suggested the association of BRCAT2.9 with breast cancer with a confidence

score larger than 0.6. All these results support the linkage of BRCAT2.9 with breast cancer.

LY294002, which was reported to be related to breast cancer cell apoptosis [46], was associated

with BRCAT64.1 through the ALACD model (Fig 4B). Three out of the five genes that were

associated with LY294002 and BRCAT64.1 were linked to breast cancer, as supported by the

literature [47–49]. In addition, BRCAT64.1 was associated with breast cancer in MiTranscrip-

tome with a confidence score larger than 0.5, and was specifically expressed in breast cancer

(Fig 4D). These results suggested the important role of BRCAT64.1 in breast cancer.

The optimization program (Eqs (2)* (5)) indicated that ALACD could uncover the associ-

ations between lncRNAs and genes through revealing as many associated genes as possible. To

demonstrate that, a rank score (RS) was defined (see Methods). The rank scores that were

close to one hundred (S3*S12 Tables) suggested that there were few of lncRNAs that shared a

larger number of associated genes with a given drug than the predicted one, which supports

the close relationship between drugs and predicted lncRNAs. That is, ALACD suggests drug-

associated lncRNAs through finding as many genes as possible that are closely associated with

them. The functions of these genes provide a way to understand the functions of lncRNAs in

cancer.

To further understand the role of lncRNAs in cancer, the expression variability of lncRNAs

in cancer patients was evaluated. That is, we collected the data for lncRNA expression in

TCGA normal samples, and compared them with the expression in TCGA tumor samples. As

a result, approxinately 70% (75/108) of the predicted lncRNAs had absolute logFC values

Fig 4. Representative prediction examples in BRCA. A, B: Two prediction examples in BRCA. The linkage of

associated genes with breast cancer is suggested by the literature (�), and the linkage of lncRNA with breast cancer is

exhibited by the confidence score. The differential expression of lncRNAs in breast cancer is shown by the logFC and

adjusted Benjamin p-value less than 0.001 (@). C, D: The specificity of lncRNA in breast cancer is displayed by the

expression profile of lncRNA in patients with expression level larger than 4.

https://doi.org/10.1371/journal.pcbi.1007540.g004
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larger than 1.2, and Benjamin p-values less than 0.001 (S3*S12 Tables). All these results

emphasize the importance of the predicted lncRNAs in cancer, and these identified lncRNAs

may provide great opportunities for developing novel target-specific therapeutics.

Specificity of lncRNAs and survival analysis indicate alternative choices for

cancer treatment

The prediction results suggest that ALACD provides information for an alternative choice for

cancer treatment. This is because, through ALACD, we can identify potential lncRNA targets,

that participate in biological processes similar to those controlled by anti-cancer drugs. To vali-

date this, among all our predictions, we focused on the lncRNAs, which were differentially and

specifically expressed in a certain tumor type. The associated drugs were reported to relate

with the corresponding type of cancer, and the associated genes were linked to the tumor type,

as supported either by the literature or by their expression profile. The specificity of lncRNAs

was illustrated by their expression profiles in cancer patients with high expression levels

(expression larger than 4), and if lncRNA is designed as specific to a tumor type, that means

this cancer type had more than 50% of patients with expression higher than 4. As a result, 14

lncRNAs met those criteria and have great potential as therapeutic targets (S13 Table). The

expression profiles of lncRNAs in caner patients with high expression (S7 Fig) and the expres-

sion variation analysis indicate that the predicted lncRNAs were specifically and differentially

expressed in their associated cancer types, and the close relationships between their associated

genes and the diseases and published reports (supplementary information), indicate the close

relationship of lncRNAs and cancer.

To further demonstrate the usefulness of above predicted lncRNAs in cancer treatment,

prognosis validation was implemented through Kaplan-Meier survival analysis. As a result, we

identified 9 lncRNAs that correlated with patient survival (S14 Table and S8 Fig) among above

14 specifically and differentially expressed lncRNAs. In detail, these lncRNAs were not only

specifically and differentially expressed in their associated cancer types, but were also corre-

lated with patient survival. In addition, their associated genes were closely linked to cancer,

and this was supported by either the literature or their expression profiles (S14 Table). Further-

more, among all nine predictions, four of them strongly correlated with patient survival (p-

value less than 0.05), and two of them were associated with cancer, with which the associated

drug had not been previously reported to be linked (HNCAT60 and HNCAT30.1). For

instance, the drug fluphenazine was linked to myeloma according to the literature reports [50],

but had not been previously used for the treatment of patients with HNSC. Therefore,

HNCAT60, which displayed specific and differential expression in HNSC cancer patients and

was closely related to patient survival (S8 Fig), could be a great alternative target for the treat-

ment of HNSC. LncRNA LGAT93.1 was associated with the drug valproic acid (Fig 5A), a fatty

acid with anticonvulsant properties, and was linked to LGG in MiTranscriptome with confi-

dence score of 0.621. In addition, LGAT93.1 was specifically and differentially expressed in

LGG (Fig 5B and 5C), and the expression of its associated gene PJA2 was specifically highly

expressed in LGG patients (Fig 5D). Furthermore, LGAT93.1 significantly related to LGG

patient survival (p-value less than 0.1, Fig 5E), that is, patient subtypes with LGAT93.1 exhib-

ited significantly different survival rates. Thus, targeting LGAT93.1 provides a novel therapeu-

tic choice for the treatment of LGG, which has the potential to improve patient survival. In

the future, further validations could test cancer cell activity after silencing LGAT93.1 to assess

the variations in the expression levels of the associated gene PJA2, which could help to reveal

the underlying role of LGAT93.1 in LGG. Collectively, the results indicate that the ALACD

model provides valuable information about alternative targets for small molecules in cancer
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treatment, and based on similar regulatory functions, identified lncRNAs exhibit novel prog-

nostic evidence in clinical application.

Discussion

The involvement of lncRNAs in the development of complex diseases, including cancer, indi-

cates the potential usage of lncRNAs for the development of novel treatment agents. Several

features of lncRNAs render the possibility of lncRNAs as therapeutic targets and some lncRNA

therapeutics are currently being investigated. In this paper, we propose a computational

method, the ALACD model, to associate lncRNAs with anti-cancer drugs. Through bilevel

optimization, we provide additional information to increase understanding of the mechanism

of action of lncRNAs and their roles in disease. In addition, with their specificity and differen-

tial expression in cancer patients, and strong relationship with patient survival, the lncRNAs

identified by the ALACD model could be treated as alternative agents for their associated

drugs. Here, we attempted to provide three criteria for candidate lncRNAs (S14 Table) that

involve the regulation in cancer and are worthy for further clinical studies. That is, first, the

lncRNAs have to be specifically and differentially expressed in a certain type of cancer patients;

second, the expression of lncRNA has to be associated with patient survival; third, the associ-

ated genes have to be disease-related genes.

The methodology of ALACD indicates that it can adapt to other types of data sources. Spec-

ificity, if including the drug response data from TCGA, the ALACD model will generate the

lncRNAs that associate with drug sensitivity/resistance. This is distinct form determining the

Fig 5. Representative examples of candidates that are worthy for further clinical study. A: The lncRNA LGAT93.1
was predicted as an alternative anti-cancer drug target for the drug valproic acid. B: The volcano plot for lncRNAs

when comparing expression in LGG tumor samples with normal samples, and the lncRNA LGAT93.1 is highlighted by

a darkpink circle. C: The expression of LGAT93.1 in patients with expression levels larger than 4. D: The expression of

the associated gene PJA2 in patients with expression values larger than 13. E: The significantly strong correlation of

LGAT93.1 expression with LGG patient survival suggests a prognostic biomarker for LGG treatment.

https://doi.org/10.1371/journal.pcbi.1007540.g005
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molecular mechanism. Here, we would like to identify the cancer-associated lncRNAs that per-

form regulatory roles that are similar to anti-cancer drugs in cancer patients; if using drug

response data in cancer patients, this method will generate lncRNAs that are related to drug

inhibition effects in cancer patients, and those lncRNAs could be the genomic signatures for

cancer sensitivity. To check how our result was affected by using drug response data in TCGA

to determine the drug-associated lncRNAs, we ran our ALACD model with TCGA drug

response data instead of CMap data. That is, we defined the drug-induced gene signatures as

the genes showing significantly different expression levels in patients who responded or did

not respond to that drug. Specifically, we collected the clinical drug responses of TCGA cancer

patients from previous work [51]. As in [51], the clinical responses were divided into two

classes: responders (including complete response and partial response) and nonresponders

(including stable disease and progressive disease). We removed patients with possible combi-

nation therapy and chemotherapy prior to surgery, and kept the response data for those drugs

that had more than 10 responders and 10 nonresponders. As a result, the response data for 10

drugs in 943 patients with available expression data was introduced for validation. The pre-

dicted drug-lncRNA associations are listed in S15 Table (the MiTranscriptome-suggested can-

cer type and confidence score are also shown). From that table, we could see that, most of the

predictions (77%) were supported by the MiTranscriptome database. Different from the previ-

ous work ([17–20]) aimed at revealing the lncRNAs associated with drug sensitivity/resistance

through gene expression analysis, ALACD, uses bilevel optimization procedure to link

lncRNAs with drug sensitivity/resistance through their associated genes.

The lack of conversion across the species limits the study of function for lncRNAs by trans-

ferring the annotation form validated lncRNA to a newly discovered one, and characterizing

the function of lncRNAs through biological experiments is costly and time-consuming. Cur-

rently, there are some curated databases depositing characterized lncRNAs, such as LNCipe-

dia [52], NONCODE [53], lncRNAdb [54], and lncRNAWiki [55]. Moreover, the

lncRNA2Disease database [56] has deposited more than 1000 lncRNA-disease entries and

475 lncRNA interaction entries, including 321 lncRNAs and 221 diseases from about 500 pub-

lications. These valuable data resources provide a way to build a machine learning-based

computational model to learn the potential rule of lncRNAs in disease. While much more

well-defined lncRNA-disease associations are needed to increase the generalization of the

machine learning model. In addition, the lncRNA2Disease only composed of human associa-

tions, and the low conservation limits the study of lncRNA function by transferring knowl-

edge from known species to unknown ones. However, researchers still developed some

computational models to address this topic, and they could be divided into three types: one is

identifying the differentially expressed lncRNAs to link with cancer; another is revealing

lncRNAs whose expression would be associated with drug sensitivity/resistance; the last is

borrowing the information from some mediator (such as miRNA) to associate lncRNAs with

cancer.

The ALACD model differs from existing models in the following ways: First, the coex-

pressed genes were introduced by both previous works ([16, 57–59] and ALACD. However, to

impute the missing lncRNA-gene coexpressed association, a supervised learning algorithm

was introduced in ALACD. Second, unlike previous works that generated the lncRNA signa-

tures through identifying the lncRNAs that display significantly different expression levels

before/after small molecule treatment, ALACD uses an optimization procedure to link

lncRNAs with drugs through their associated genes. Third, in previous works, the author

either provided the cancer-related lncRNAs ([16]) or drug-lncRNA associations ([19, 20]).

While, through our ALACD model, lncRNAs, the associated anti-cancer drug, and the

induced gene signatures involved in the regulation of cancer, are collectively uncovered.
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Although the initial aim of ALACD was to associate lncRNAs with small molecules, the

lncRNAs identified from the lncRNA-drug associations still exhibit significantly different

expression levels in cancer patients. Moreover, the follow-up functional and molecular path-

way analyses suggest the close relationships of signature genes and lncRNAs with cancer devel-

opment. Importantly, patient survival information and evidence in the literature suggest that

the lncRNAs and drug-lncRNA associations identified by ALACD provide an alternative

choice for cancer-targeting treatment and potential prognostic biomarkers.

Many works discuss the associations between miRNAs and small molecules. Comparing

with prediction of miRNA-small molecule association [60, 61] there are some challenges in

predicting lncRNA-small molecule associations. First, comparing with lncRNA, miRNA is a

type of noncoding RNA that is relatively well studied, and there is some existing knowledge to

help build the similarity network about miRNAs, such as miRNA-disease associations [22–24],

miRNA-mRNA interactions [62, 63], etc. Second, compared with miRNA and other RNA

molecules, lncRNAs have shown low conservation across species, low expression levels in cells,

and high tissue- or condition-specificity. Thus, it is quite challenging in transferring the

knowledge from characterized lncRNAs. Third, lncRNAs with similar functions often lack lin-

ear sequence homology, and the complicated regulatory function of lncRNAs challenges the

development of a predictive model.

The ideal associated genes for lncRNAs are genes that are regulated by lncRNAs, because

identification of genes that are also associated with drugs could help ALACD generate

lncRNAs, that are involved in cancer regulation by actually regulating drug-induced gene sig-

natures. Recently, researchers have developed some curated databases, which deposit experi-

mentally validated lncRNA target genes, such as LongHorn [64], EVLncRNAs [65], RISE [66]

etc. These valuable data sources are certainly ready to be incorporated into our ALACD

model. It would support the interpretation of the current results and allow us to further under-

stand the role of lncRNAs in cancer.
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S1 Fig. CMap data pool and the histogram of the number of treatment instances with

respect to CMap drugs. Only drugs with more than 10 treatment instances were retained for

further analysis.

(TIF)

S2 Fig. The histogram of correlation coefficients between lncRNAs and genes in BRCA
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S5 Fig. The promising advantage of the supervised learning method. The prediction exam-
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