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Abstract

Motivation: Optical mapping is a technique for capturing fluorescent signal patterns of long DNA

molecules (in the range of 0.1–1 Mbp). Recently, it has been complementing the widely used

short-read sequencing technology by assisting with scaffolding and detecting large and complex

structural variations (SVs). Here, we introduce a fast, robust and accurate tool called OMBlast for

aligning optical maps, the set of signal locations on the molecules generated from optical mapping.

Our method is based on the seed-and-extend approach from sequence alignment, with modifica-

tions specific to optical mapping.

Results: Experiments with both synthetic and our real data demonstrate that OMBlast has higher

accuracy and faster mapping speed than existing alignment methods. Our tool also shows signifi-

cant improvement when aligning data with SVs.

Availability and Implementation: OMBlast is implemented for Java 1.7 and is released under a

GPL license. OMBlast can be downloaded from https://github.com/aldenleung/OMBlast and run

directly on machines equipped with a Java virtual machine.

Contact: kevinyip@cse.cuhk.edu.hk and tf.chan@cuhk.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online

1 Introduction

Despite recent advances in sequencing technology, read lengths of

typical next generation sequencing instruments and the latest PacBio

sequencer are still on the order of 100 bp and 10 kbp, respectively

(Van Dijk et al., 2014). Optical mapping, however, can produce

molecules of lengths on the order of 0.1 Mbp to even 1 Mbp (Lam

et al., 2012). Optical mapping complements sequencing by resolving

complex regions and has been used in several areas including guided

sequence assembly (Lin et al., 2012), guided sequence scaffolding

(Dong et al., 2013), structural variation (SV) detection (Cao et al.,

2014) and pathogen identification (Miller, 2013). In fact, optical

mapping was used by the Assemblathon 2 organizers to validate the

sequence assemblies provided by various teams (Bradnam et al.,

2013). With an increasing number of optical maps and multiple ap-

plications, bioinformatics tools specific for optical mapping are

needed (see Mendelowitz and Pop, 2014 for a recent survey).

Aligning optical maps is very different from aligning short reads

from sequencing due to the vast discrepancy in data type. Various

types of error in optical maps pose challenges to error tolerant align-

ment. Notwithstanding the problems, fast, robust and accurate
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alignment is fundamental to any downstream analysis of optical

maps. In this article, we introduce OMBlast for aligning optical

maps, and compare its performance with other alignment methods

on synthetic data based on different prokaryotic and eukaryotic or-

ganisms of varying genome sizes at different error rates. We also

studied the effects of SVs on alignment performance. Finally we

tested our alignment method on optical maps generated from an ac-

tual experiment. Our results show that OMBlast is both fast and ac-

curate, and its performance is superior to other methods when SVs

are present.

This paper is organized as follows. Section 2 gives an overview

of optical mapping and outlines the terms used for the remainder of

this paper. The methods behind OMBlast are explained in Section 3.

In Section 4, we evaluate our method against several existing tools

using both synthetic and real data sets. Finally, Section 5 summar-

izes our findings and offers directions for future work.

2 Background

2.1 Overview
In recent years, two commercialized methods have renewed interest

in optical mapping so that it could complement current short-read

sequencing methods. Both OpGen Inc. and Bionano Genomics Inc.

have independently devised ways of generating high-throughput

data of optical maps. OpGen Inc.’s method relies on the static imag-

ing of restriction maps (Dimalanta et al., 2004) while Bionano

Genomics Inc.’s is based on continuous imaging of nicked DNA

molecules attached with fluorescent labels passing through nano-

tubes (Das et al., 2010). These two technologies produce optical

maps with similar data types. An optical map contains a series of

smaller DNA segments, separated by fluorescent labels in Bionano

Genomics Inc.mi system, or by digestion cut in OpGen Inc.’s system

(Supplementary Figure S1). As data generation becomes easier, a

good alignment method for handling large amounts of data becomes

important for further downstream analysis.

2.2 Terminology
Since the two methods were independently developed, the termin-

ology used to describe errors differs slightly; we summarize them in

Supplementary Figure S1. Irrespective of the technology, an optical

map consists of two pieces of information: (i) the size of each seg-

ment situated between two consecutive cuts/nicks and (ii) the order

of the segments. As a result, assuming a single optical map i consists

of ni segments, these segments are separated by ni � 1 fluorescent

signals [alternatively, cuts in OpGen data (From this point onward,

we will always use the term ‘signals’)]. We can represent such data

as an ðni � 1Þ-tuple such that each element is the absolute location

of the signal (i.e. number of base pairs) relative to the beginning of

the molecule.

In this article, we consider the problem of aligning one optical

map against another. This problem setting is analogous to the map-

ping of a query DNA sequence against another DNA sequence.

Instead of processing sequences made up of the four bases ({A, C, G,

T}), an optical map consists of signal positions which are positive in-

tegers. We denote one of these optical maps as the reference and the

other as the query. Usually the experimentally generated optical

maps are aligned to a longer optical map obtained from either in sil-

ico digestion of the reference sequence, or an optical map assembly,

but this is not a restriction on how the OMBlast software can be

used. The tuples of signals are denoted as R and Q. Let the xth sig-

nal on the reference and the yth signal on the query be represented

as Rx and Qy, respectively. We define the matching signal pair RxQy

to be the pairing of a reference signal with a query signal.

Our aim is to output the best alignment of each query against the

reference, in terms of the similarity between the patterns of fluores-

cent labels on the reference and query. As illustrated in

Supplementary Figure S1, this is non-trivial since the optical map it-

self can contain various types of error. For example, an optical map

can have missing and extra signals. Furthermore, unlike short-read

sequencing which provides single base resolution, optical mapping is

accurate to only 0.7–1.5 kbp for OpGen (Nagarajan et al., 2008)

and Bionano data (Lam et al., 2012). Measurement error (i.e. error

in measuring the length of the DNA segments) and scaling factor

[i.e. an indicator of the extent that a DNA molecule is stretched,

which remains constant within a DNA molecule but varies between

different DNA molecules (Reinhart et al., 2015)] also exist in optical

mapping data.

Other than the experimental and instrumental errors, the mis-

match between reference and query due to genetic variation also

poses challenges to alignment. Single nucleotide polymorphism

(SNP) could toggle ‘on’ a new enzyme site or ‘off’ an existing en-

zyme site. Segment size matching is also affected by the presence of

large insertions or deletions. In more complicated cases, part of the

query could be reversely and separately aligned to the reference due

to SVs. Despite the challenges, genetic variations carry important

biological insights and need to be accurately identified. To overcome

these obstacles, an alignment method has to perform both local

alignment and joining of the separate local alignments of different

parts of a query map in order to capture various types of genetic

variations.

2.3 Related work
Some publicly available alignment software for optical mapping in-

cludes RefAligner (Shelton et al., 2015), the one described by

Valouev et al. (2006) (whose software we will call Valouev here-

after), Scaffolding using Optical Map Alignment (SOMA)

(Nagarajan et al., 2008), and TWIN (Muggli et al., 2014). Both

Valouev and SOMA are based on dynamic programming (DP)

coupled with scoring functions which quantify how well a query

matches the reference. Valouev employs probability distributions to

model the types of errors found in optical maps while SOMA uses

scoring functions that model the distribution of segment lengths as

well as to what extent the lengths agree between the query and the

reference. Meanwhile, TWIN takes a different approach by con-

structing an FM-Index on the segment lengths of the reference and

then performing a near-exact match of the query by using the metric

used by SOMA. Another program for aligning optical maps is

RefAligner, a tool developed by Bionano Genomics Inc. for perform-

ing alignment using dynamic programming.

In this article, we introduce OMBlast for the alignment of optical

maps. Although dynamic programming is also used in certain mod-

ules within OMBlast, our method is mainly based on a seed-and-

extend approach (Altschul et al., 1990), as implied by the name of

our software. By using a seed-and-extend approach, our framework

is superior in speed, and provides better alignments in complex re-

gions by joining local alignments, in comparison to the dynamic pro-

gramming approaches for global alignments.

3 Methods

Our objective is to find the best way to locate regions on the refer-

ence optical map that is most similar to the query optical map.

312 A.K.-Y.Leung et al.

Deleted Text: paper
Deleted Text: structural variations (
Deleted Text: )
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw620/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw620/-/DC1
Deleted Text: 1
Deleted Text: 2
Deleted Text: (
Deleted Text: <sup>1</sup>)
Deleted Text: paper
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw620/-/DC1
Deleted Text: -
Deleted Text: (
Deleted Text: )
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: structural variation
Deleted Text: W
Deleted Text:  paper
Deleted Text: While 


BLAST has been proven to be a fast and accurate seed-and-extend

method for handling sequencing data (Altschul et al., 1990). We

introduced some novel elements to adapt the key ideas of seed-

and-extend to handle optical maps. As illustrated in Figure 1, the

entire algorithm is broken down into three main modules. The first

module aligns queries against the reference using a seed-and-

extend approach and yields partial alignments as local matches.

Next, the second module merges overlapping partial alignments

into consensus partial alignments. Finally, the last module joins

the consensus partial alignments into a global match of the query.

In this module, merged partial alignments will be trimmed and

joined for the final alignment. We explain each of the three mod-

ules below.

3.1 Alignment
3.1.1 Seed generation phase

A basic assumption behind the seed-and-extend approach is that

good alignments usually involve some aligned regions on the refer-

ence and the query that are almost identical. Therefore, the seeding

module of OMBlast aims at efficiently identifying all regions on the

reference that are almost identical to each region on the query, such

that these matched regions can be further processed by the other

modules to form complete alignments.

Specifically, efficient seeding is performed by matching k-tuples

(the ‘seeds’). Consider a reference with n segments and a query

with m segments. For convenience, here we represent the reference

by the lengths of its segments, r1; r2; . . . ; rn, following their order of

occurrence on the reference. Similarly, the query is represented by

its segment lengths q1; q2; . . . ; qm. A k-tuple on the reference is the

list of segment lengths for k consecutive segments, ri, riþ1,. . .,

riþk�1, for any i between 1 and n� kþ 1. The k-tuples on the query

are defined in the same way. The goal of seeding is to find, for each

k-tuple on the query, all matching k-tuples on the reference. A

query k-tuple qj; . . . ;qjþk�1 is said to match a reference k-tuple

ri; . . . ; riþk�1 if all pairs of the corresponding segment lengths (qj,

ri),. . ., ðqjþk�1; riþk�1Þ match, where two segment lengths qx and ry

match if they are considered sufficiently close subject to the level

of errors tolerated:

ry � ð1� TsÞ � Tm � qx � ry � ð1þ TsÞ þ Tm; (1)

where Ts and Tm represent the maximum scaling and measuring

errors tolerated, respectively.

To find out all matching k-tuples efficiently, two searching strat-

egies are implemented in OMBlast, namely (A) Sorted list merging

and (B) Binning. Method A begins with an indexing phase whereby

every reference k-tuple ri; . . . ; rkþiþ1 has its k segment lengths and

segment IDs placed into k corresponding lists ((ri, i) to the first list,

(riþ1, iþ1) to the second list etc.). Each list is independently sorted

according to the segment lengths. With this index, to find all

matches for a query k-tuple qj; . . . ; qkþ1, qj is first used to perform

two binary searches from the first sorted list, to find out the smallest

and largest reference segment lengths that satisfy Inequalities (1).

The corresponding IDs of these segments are recorded. The length

of the second query segment qjþ1 is then used to perform a similar

search from the second sorted list. Among the matching segments,

only those segments (say, x) with their previous segment (x � 1) also

retrieved from the previous search are recorded. This process con-

tinues until either no segments are reported in an iteration, in which

case the query has no matches in the reference, or searching to all k

lists has been performed, in which case all k-tuples on the reference

that match the query k-tuple are obtained.

In Method B, k-tuples are converted to strings and matched

k-tuple pairs are identified by looking for identical strings.

Specifically, segment sizes are discretized into bins of 5 kbp, and

each bin is represented by a single character. For each reference

k-tuple, the segment lengths are converted to the corresponding bin

characters and the resulting string is stored in a hash table. When

searching for the matches of a query k-tuple, each segment length of

it is first used to determine the minimum and maximum matching

segment lengths based on Inequalities 1, and the characters of all the

bins that overlap this range are recorded. The query k-tuple is then

converted to a set of strings by considering all combinations of the

Fig. 1. Overview of the OMBlast algorithm, which comprises of three modules: seed-and-extend (Details in Supplementary Figures S2-S6), overlapping alignment

merging (Details in Supplementary Figures S7-S8) and alignment joining (Details in Supplementary Figures S9-S11)
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recorded characters of each segment, and each string is used to

search the reference hash table for identical matches. Finally, a post-

filtering is performed to remove false hits, which can happen be-

cause bin characters rather than exact segment lengths were used in

the searches.

Methods A and B produce identical results, and their running

time is compared in Supplementary Material Section S4. Based on

the results, Method B with k ¼3 usually achieves the best perform-

ance, and is thus set as the default option of OMBlast and used in

our experiments.

For both methods, in order to reduce the amount of time spent

on regions of low complexity, a query k-tuple is removed if it

matches over 10 other query k-tuples.

3.1.2 Extension phase

The seeding phase produces matching query and reference k-tuples

that are almost identical. The extension phase takes each matching

pair and attempts to extend it to include more adjacent segments on

the query and reference that are also similar. In order to perform

these extensions efficiently, we assume that the factor involved in

scaling errors remains constant within a single DNA molecule, as

suggested previously (Reinhart et al., 2015). Based on this assump-

tion, for a given scaling factor, we can compute the error-corrected

segment length of each query segment by dividing it by the scaling

factor. These corrected segment lengths are then used to extend the

matching k-tuples from the seeding phase, by checking whether the

accumulated segment lengths from the reference and query also

match according to Inequalities (2).

r0y � Tm � q0x � r0y þ Tm; (2)

where Tm represents the maximum measuring errors tolerated, q0x
and r0y represent the accumulated query segment length (scaling

error-corrected) and accumulated reference segment length, respect-

ively. Since the actual scaling factor is unknown, we use a process

called ‘recursive refinement’ (Supplementary Figure S4) to search for

it based on the extension results. Briefly, a set of reasonable values

of the scaling factor are used at the beginning to start the extension

of the first extra segment. Scaling factor values that lead to poor ex-

tensions are dropped, and the remaining ones are used in the next it-

eration for extending another extra segment. This process is

repeated until no more extensions can be performed without intro-

ducing five consecutive mismatches. The consequence of such early

termination is minimal (Supplementary Figure S6) since local align-

ments involving different parts of a query can be further joined to-

gether, to be described in Section 3.3.

As shown later in Section 4.3, a notable benefit of using a con-

stant scaling factor over dynamic programming (which allows the

scaling factor to change flexibly from segment to segment) is the

drastic reduction of running time, while alignment accuracy is still

preserved.

3.2 Overlapping alignment merging
The seed-and-extend module produces local matches as partial

alignments. Some partial alignments are overlapping as they are ex-

tended from different seeds in close proximity on the reference. This

module aims at merging these overlapping partial alignments into

consensus partial alignments. We define two partial alignments as

overlapping if they are on the same orientation and share at least

one matching signal pair RxQy (See Supplementary Material Section

S2.2 for further details).

In order to effectively construct a consensus partial alignment that

favors fewer extra and missing signals from a set of overlapping par-

tial alignments, we convert the overlapping partial alignments into a

weighted directed acyclic graph. Specifically, each matching signal

pair RxQy is represented as a node in the graph. From each partial

alignment with a list of m matching signal pairs Ri1 Qj1 ;

Ri2 Qj2 ; . . . ;Rim Qjm , we build a directed edge between every consecu-

tive matching signal pairs ðRix Qjx ! Rixþ1
Qjxþ1

Þ. The weight of an

edge is inversely proportional to the number of missing signals

ðjixþ1 � ixj � 1Þ, and extra signals ðjjxþ1 � jxj � 1Þ (see

Supplementary Material Section S2.2 for further details). Next, we

use a dynamic programming approach that marks the cumulative

weight to the nodes in a bottom-up manner. Each node’s cumulative

weight is assigned the highest weight among each sum of weight of in-

coming edge and node, or zero if the node has no incoming edge or

the highest weight is negative. After traversing all nodes in the graph,

we select the node with highest weight and use backtracking to obtain

the path leading to the highest weight. Collectively, matching signal

pairs from the best path are taken as the consensus partial alignment.

3.3 Alignment joining
Previous modules produce consensus partial alignments as local

matches for a query. Here, we aim at picking and joining these par-

tial alignments into a complete, final alignment as the global match

for the query. This module constructs a link for every two partial

alignments that could be connected, and from them finds the best

series of links to obtain the chain of partial alignments as the final

alignment.

First, the module checks if a pair of partial alignments, px and py,

could be connected based solely on their reference position, with de-

tails described in Supplementary Material Section S2.3. For every link,

we assign them a connection relationship rx;y, which is taken as the

penalty for connection later on. Next, a weighted directed acyclic

graph is constructed with these links as nodes. Edges are automatically

created for every two nodes with relationship rx;y and ry;z, as the se-

cond partial alignment of the former node is the first partial alignment

of the latter node. The weight is dependent on the score of the second

partial alignment and the relationship penalty. We use a dynamic pro-

gramming approach to update the weight of nodes in a bottom-up

manner, similar to Section 3.2. Finally, we backtrack from the node

with the highest weight to obtain the path which indicates the best

combinations of rx1 ;x2
; rx2 ;x3

; . . . ; rxi�1 ;xi
, where the partial alignments

px1
; px2

; . . . ; pxi
are selected as the components of the final alignment.

Using this approach, local partial alignments separated by high

errors in the data or SVs could be joined into the global, final align-

ment. As demonstrated in Section 4.3, OMBlast could handle

queries with SVs better, and even capture potential sites of

inversion.

3.4 Score calculations
OMBlast employs a scoring system that assigns the final alignments

with a quality score based on the extent of the tolerated errors. This

score reflects the alignment quality that could be ranked and com-

pared with qualities of other alignments. At first, the score for each

partial alignment is calculated, followed by a combined score for the

overall alignment. The score for the ith partial alignment p is calcu-

lated as:

pi ¼ ðtm � um � tes � ues � tms � umsÞ � ð1� j1� sjÞ (3)

where tm, tes and tms represent the score for a match, extra signal

and missing signal, respectively, as provided by the user.
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Meanwhile, the variables um, ues and ums represent the number of

matches, extra signals and missing signals, and s is the scaling factor

representing the ratio of the aligned query length to the aligned ref-

erence length. Note that in the score calculation, we assume the ref-

erence is a true correct reference. When one reverses the role of

reference and query, the score for partial alignment is slightly differ-

ent. The score o for the overall alignment with q partial alignments

is calculated as:

o ¼
Xq

i¼1
pi �

Xq�1

i¼1
ri;iþ1 (4)

where ri;iþ1 denotes the relationship penalty between partial align-

ment pi and piþ1 as indicated in Supplementary Figure S9. Briefly, this

is composed of a constant penalty from either one of the relationships

(Insertion/Deletion or Inversion), and the number of extra and missing

signals between the two partial alignments. OMBlast also employs an

alternative scoring scheme that takes into account uniqueness in align-

ments (see Supplementary Material Section S2.3.4). More information

on parameter selections could be found in the software manual of

OMBlast.

4 Experiments

The performance of OMBlast was evaluated against RefAligner,

Valouev, SOMA and TWIN. The software versions and where these

tools were obtained are summarized in Supplementary Table S2. In

our experiments, we evaluated OMBlast using both simulated and

real data sets.

4.1 Data sets
4.1.1 Simulated data

We downloaded the genomes of four prokaryotic and eukaryotic

organisms from GenBank, namely Escherichia coli, Saccharomyces cer-

evisiae, Caenorhabditis elegans and Homo sapiens (see Supplementary

Table S4 for the corresponding accession numbers). We then digested

them in-silico with the nicking enzyme BspQI, which recognizes the se-

quence GCTCTTC. The result is the four reference optical maps sum-

marized in Supplementary Table S5.

From each of these four reference optical maps, we extracted

1000 optical maps at random to act as queries. This procedure was

performed three times, so that error bars in the graphs below repre-

sent SDs. Variations on these data sets were produced through the

introduction of four different error rates (i.e. none, low, medium

and high). In general, as the error rate increases, more extra and

missing signals are induced and with a larger variation in scaling

error. Supplementary Material Section S5.3 summarizes the details

of the simulated data generation.

The SVs considered included insertions and deletions of various

sizes as well as sequence inversions. Since optical mapping aims at

resolving large SVs, we incorporated 50 and 100 kbp insertions and

deletions, and inversions equal to half the length of the optical map

(See Supplementary Material Section S5.3.2 for details). All simula-

tion scripts and data sets are available in the Git repository.

4.1.2 Real data

Although synthetic data allow us to measure the performance of

OMBlast using various error models against a known gold standard,

it is important to verify our method using a real data set generated

from an actual experiment.

To test how our alignment method performs on real data

sets, we generated two sets of optical maps by using DNA from

a sample of Acinetobacter baumannii 718 532 (Yim et al.,

2015) and a sample of E. coli K-12 MG 1655. The DNA was

loaded onto the Bionano Iryschip for optical mapping data

generation (Supplementary Material Section S8.1). The test results

of A. baumannii and E. coli are included in Section 4.3.5 and

Supplementary Material Section S8.5 respectively. We also tested

the alignment methods on a human data set from the individual YH

produced previously (Cao et al., 2014) and the results are included

in Section 4.3.6.

4.2 Analytic method of simulation results
Performance of the various alignment methods is compared using

running time and curves that plot precision versus recall. All of these

values are averaged across the three replicates.

We performed experiments on an Intel Xeon CPU E5-4640

(2.40 GHz) with 512 GB of main memory running the Ubuntu

14.04.2 operating system. Running time includes only the amount

of time used by the alignment method (also called the ‘user time’).

As for the accuracy of alignment methods, each method returned

an alignment score for each query molecule. Although the meaning

and even the range of these scores varied between alignment meth-

ods, most systems returned a single score for each alignment, which

we used to rank the results. Valouev provided two sets of scores—

we used the one that gave the better results. The list of alignments

was sorted by score such that the best alignments appeared at the

top of the list.

Then, we calculated precision and recall levels at regular inter-

vals of 10% of the entire result list to yield points on the curves.

Precision was defined as the percentage of query molecules that

were aligned correctly to the reference while recall was the percent-

age of correctly aligned results out of the 1000 molecules. More de-

tails on precision and recall analysis are described in Supplementary

Material Section S3.3.

4.3 Experimental results
We tuned the default parameters for OMBlast empirically. We took

into account the trade-offs between the results portrayed in

precision-recall graphs and running times. The default values of

OMBlast perform well, albeit not the best, for data sets with differ-

ent error rates from various species. Users need not set them unless

they think these values are not suitable for their purpose. Details of

the preliminary experiments are described in Supplementary

Material Section S4 with default values highlighted in the graphs.

The default values in OMBlast were used throughout the following

analysis unless otherwise mentioned. Note that the default param-

eters were tuned against Bionano data. However, OMBlast could

also be applied on OpGen data, as depicted in Supplementary

Material Section S8.6.

4.3.1 Running time

Figure 2 shows the alignment speed of the alignment methods across

the four species, with the error rate fixed at medium and SVs being

absent. RefAligner was about 10 times faster than Valouev across

all organisms. The speed of OMBlast was similar to that of

RefAligner for small organisms like E. coli but OMBlast ran faster

than RefAligner as the genome size increased. For H. sapiens,

OMBlast was about 10 times faster than RefAligner. SOMA was the

slowest alignment method, and was 1000 times slower than

OMBlast for E. coli and S. cerevisiae. Because of this, our experi-

ments with SOMA on the C. elegans and H. sapiens data sets could

not complete within a reasonable time limit. TWIN was the fastest
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among all alignment methods, but was only slightly faster than

OMBlast for H. sapiens. TWIN achieves the higher speed by sacri-

ficing error tolerance, which leads to much lower accuracy, as ex-

plained later in Section 4.3.3. The presence of SVs has little impact

on the running time of each of the alignment methods (Results not

shown).

4.3.2 Memory

Except TWIN, memory usage of the other alignment methods was

inversely correlated with the mapping speed (Supplementary Figure

S23). TWIN used the least memory despite its shortest running time.

OMBlast used the most memory in the alignment process.

The reported number does not reflect the true memory usage of

OMBlast because OMBlast is written in Java, which performs gar-

bage collection automatically and reclaims memory only when

needed. To check the minimum memory required by OMBlast, a

range of thresholds was applied to limit Java’s memory usage. The

minimum memory requirement for OMBlast was 250 MB, but

higher running times were observed, which could be attributed to

the system being pre-occupied with garbage collection. When the

memory limit was set to 5 GB, which was similar to the memory

usage of RefAligner, OMBlast attained its shortest running time

(Supplementary Figure S26).

4.3.3 Alignment accuracy without SVs

Next, we examine the performance of the various alignment methods

in the absence of SVs. Due to the exceptionally long running time as

described in Section 4.3.1, SOMA was only run on the E. coli and

S. cerevisiae data sets. Figure 3 and Supplementary Material Section

S6.2 show the precision-recall graphs on H. sapiens and other data

sets respectively, across all four error rates. Intuitively, as the error

rate increases, more molecules are not aligned, or are aligned to the

incorrect location, lowering both precision and recall.

There is only tiny difference among the five programs in the ab-

sence of errors. However, the difference in performance becomes

more noticeable as error rate increases. TWIN, as indicated by

Muggli et al. (2014), is not suitable for data with extra or missing

signals. Its performance drops much more significantly than other

alignment methods upon introduction of any error even with only

measurement and resolution errors introduced. (For more details

please refer to Supplementary Material Section S6.2). Valouev per-

forms better than SOMA and TWIN in terms of both precision and

recall. OMBlast and RefAligner perform the best among all align-

ment methods and their precision-recall graphs are very similar. The

only difference appears at the end of the precision-recall graphs,

where RefAligner tends to report more alignments. In this way,

RefAligner attains higher recall than OMBlast, but sacrifices preci-

sion in the process.

4.3.4 Alignment accuracy with SVs

Next, we considered the performance of the alignment methods in

the presence of artificially created SVs. The trade-offs between preci-

sion and recall are summarised in the precision-recall graphs of

Figure 4 for the H. sapiens data set with a medium error rate and

various SVs incorporated as different sub-panels. TWIN, as men-

tioned before, does not perform well due to the lack of error toler-

ance. The performance of Valouev dropped significantly upon any

SVs being introduced. OMBlast and RefAligner performed the best.

Like the results without SVs, RefAligner sacrifices precision for

higher recall for 50 kbp insertions, 50 kbp deletions and 100 kbp de-

letions. Among these cases, precision of RefAligner drops even more

significantly to beyond 75%. OMBlast outperforms RefAligner on

both precision and recall for the 100 kbp insertion and inversion

data sets.

It is generally harder to achieve high recall in the presence of

large insertions as compared with the presence of large deletions.

This can be attributed to (i) extra signals appearing in the inserted

part as noise and (ii) reduced number of signals on the molecules

that come from the reference due to the inserted part. OMBlast can

handle inversions with similar performance as 50 kbp deletions.

Figure 5 depicts an example of an alignment of an inversion-

containing query. Valouev, RefAligner and OMBlast with Insertion/

Deletion mode ‘on’ have failed to align the query correctly. Valouev

aligns the query to an incorrect genomic position. Alignments of

RefAligner and OMBlast with Insertion/Deletion mode ‘on’ are

Fig. 2. Alignment speed (user time) of different alignment methods at me-

dium error across four species, without any SVs. Along the horizontal axis is

the user time in seconds on a logarithmic scale. (*) Results of SOMA for the

C. elegans and H. sapiens data sets are missing from this graph

Fig. 3. Precision-recall graphs for the H. sapiens data set for the four error

rates. Results for SOMA are unavailable because the executions for this data

set could not complete
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located at the correct genomic region, but they could not reflect the

presence of an inversion in the molecule. OMBlast with Inversion

mode ‘on’ provides the correct alignment with the indicated

inversion.

4.3.5 A. baumannii data

Since no complete genome was available, the data were filtered

(Supplementary Material Section S8.3) and aligned against the

concatenated scaffolds assembled from A. baumannii 718532 (Yim

et al., 2015) and the representative genome ATCC_17978 (NC_

009085.1).

In the absence of an artificially created set of correct answers, we

chose to compare the alignment methods with each other in a pair-

wise fashion. We define consistency as the ratio of the number of

consistent alignments between two alignment methods to the num-

ber of molecules with alignments that are reported by both align-

ment methods. Two alignments from two alignment methods are

consistent if their corresponding regions on the reference and query

overlap. Limitations in the comparison include false alignments not

being captured, and the value is less accurate when an alignment

method produces very few results. Our findings show that OMBlast

and RefAligner produced highly consistent results, while SOMA had

low consistency with other alignment methods (Table 1). Valouev

has reported the highest number of alignments (Table 2), because it

attempted to align almost all optical maps. Similar consistency val-

ues were obtained when using ATCC_17978 as the representative

genome (Supplementary Material Section S8.5).

Aligning molecules with SVs with actual experimental data is

exemplified by the alignment shown in Figure 6. Only OMBlast and

Valouev have output alignments for the target molecule on the rep-

resentative genome ATCC_17978. The alignments of OMBlast and

Valouev are coherent in region 2. However, Valouev aligns region 1

by matching the query to the reference without considering the po-

tential deletion event. OMBlast, instead, aligns region 1 to a region

nearby and explicitly indicates a deletion event in the reference.

Valouev attempts to align region 3, but such an alignment is of

lower confidence than region 2.

4.3.6 Human data

To investigate the performance of alignment methods on high-

throughput human data, a real data set from the individual YH

(Cao et al., 2014) was downloaded for alignment against the human

reference genome hg38. Here we only compared the performance of

OMBlast and RefAligner, because Valouev alignments could not be

completed within a month. Duplicated optical maps were removed

Fig. 4. Precision-recall graphs of the alignment methods (without SOMA) in

the absence (left, center panel) and presence (all other panels) of different

SVs. The other panels from left to right, top to down are: deletion of 100 kbp,

deletion of 50 kbp, insertion of 50 kbp, insertion of 100 kbp and inversion. The

synthetic H. sapiens data set is used, with a medium error rate

Fig. 5. An example of aligning simulated data in the presence of inversion.

The scale represents the genomic position of the alignment and each tick

mark on the scale represents 10 kbp. Only OMBlast with Inversion mode ‘on’

provides the correct alignment. Valouev aligns the query at a completely

wrong genomic region. RefAligner and OMBlast with Insertion/Deletion

mode ‘on’ align the query at the correct place, but the alignment is in fact in-

correct and could not reflect the presence of inversion

Table 1. Consistency of pairs of optical mapping alignment meth-

ods on the concatenated scaffold of A. baumannii 718 532

OMBlast RefAligner Valouev SOMA

OMBlast 99.4% 84.1% 51.2%

RefAligner 87.2% 48.5%

Valouev 34.5%

Percentages represent the ratio of consistent alignments to the total number

of alignments reported by both alignment methods.

Table 2. Number of alignments reported by each alignment meth-

ods on the A. baumannii data set with 4531 filtered optical maps

No. of Alignments 718 532 ATCC_17978

OMBlast 1821 1937

RefAligner 1944 1745

Valouev 4495 4492

SOMA 333 281

TWIN 0 0
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(Supplementary Material Section S8.2) and further filtering by the

number of signals and length was performed (Supplementary

Material Section S8.3).

To report on the accuracy, we developed a precision estimation

scheme that we call precision metrics. The precision metrics estimate

the precision of real results based on the relationship between align-

ment scores and the alignment accuracy observed from the

alignment results of the simulated data in Section 4.3.3. First, align-

ments from the simulated data sets were sorted by descending

order of alignment score and separated into 10 equally-sized bins.

The accuracy of each bin can be calculated based on the number of

correct and wrong simulated alignments inside. After constructing

these bins, each alignment from the real data set was categorized

into a bin according to their alignment score so that the accuracy of

the bin could be assigned to that alignment.

Precision metrics were then calculated by summing up the as-

signed accuracy across the alignments. Our findings show that both

alignment methods yield largely consistent results. Although

OMBlast aligns fewer optical maps than RefAligner (Table 3, Total

alignments) due to the more stringent default options, it attains

higher estimated overall precision (Table 3, Estimated Pecision). To

compare the estimated precision under the same recall level as

OMBlast, we pruned the RefAligner results so that only the top 382

429 alignments with the highest score were retained. From this

pruned result set, the estimated precision is very similar to that of

the observed OMBlast results. The pruning of the RefAligner results

illustrates the trade-off between precision and recall of the two

systems.

5 Discussion

We have described OMBlast, a fast alignment method aimed at

aligning high-throughput optical maps while preserving overall

alignment precision and recall. The underlying algorithm of

OMBlast is a seed-and-extend method, where seeds are initially

formed from consecutive segment lengths. Using this approach,

OMBlast can retrieve local alignments from various portions of the

molecules. After extension, overlapping partial alignments are

merged and then joined. These two steps further link the local align-

ments and give a more comprehensive alignment result, which is ex-

tremely useful when handling data with SVs.

Experiments with synthetic data without SVs have shown that

alignment with OMBlast gives recall levels that are just below

RefAligner and Valouev. However, precision is high and running

time is equal to or less than the current state-of-the-art. RefAligner

and OMBlast achieve the best trade-off between precision and re-

call. More importantly, OMBlast has superior performance with

data with insertions, deletions or inversions due to the seed-and-

extend approach coupled with alignment joining.

Properly dealing with SVs for larger eukaryotic genomes is para-

mount—it is one of the main applications of optical mapping (Cao

et al., 2014). Furthermore, assisted scaffolding of NGS contigs re-

quires accurate alignment of contigs on optical mapping scaffolds.

This underlying technique of OMBlast is crucial in handling a wide

range of variations and mis-assemblies in the contigs during scaf-

folding. Since optical mapping assembly relies on pairwise align-

ment, a high mapping speed would help accelerate the process.

Instead, RefAligner and Valouev do not support combination of par-

tial alignments and thus could not handle the inverted alignment of

a sub-region.

We note that our experiments included both SOMA and TWIN.

Since SOMA had noticeably longer running times, it is not suitable

for larger eukaryotic genomes. Also, Muggli et al. (2014) indicated

that TWIN is not applicable to data with SVs. Both SOMA and

TWIN are designed for sequence assembly finishing and not align-

ment of high-throughput optical maps, the focus of OMBlast. Of

course, SOMA and TWIN have other advantages, which may influ-

ence the future direction for OMBlast. We will further demonstrate

the use of OMBlast in scaffolding, especially in polyzygous genome.

In addition, a more complicated relationship system will be built for

alignment in complex regions to include other cases of genome

Fig. 6. The alignment of molecule 28925 (query) from the A. baumannii data set on to the ATCC_17978 in silico genome map (reference). Although RefAligner for-

goes the alignment of this molecule, OMBlast and Valouev align the molecule to similar genomic regions. Three sub-regions are highlighted in the alignments.

One could distinguish the alignment confidence by looking at the number of extra or missing signals, and the deviation in difference in size of segments between

the query and the reference. Region 2 is consistently aligned by OMBlast and Valouev. In contrast, the alignment of Valouev in region 1 appears less correct than

the alignment of OMBlast. Valouev attempts to align region 3 but such an alignment is of lower confidence

Table 3. Alignment statistics of OMBlast and RefAligner on the YH

data set

OMBlast RefAligner

Unpruned Pruned

Total optical maps 1 457 446 1 457 446 1 457 446

Total alignments 382 429 843 768 382 429

Consistency
98.4%

N/A N/A332 587
337 997

� �

Depth of coverage 21.2% 45.3% 27.0%

Fraction of
91.6% 97.9% 96.3%

genome aligneda

Estimated precision 99.5 6 0.5% 82.0 6 1.2% 99.7 6 0.2%

Precise alignments 380 466 6 1893 691 990 6 9841 381 113 6 775

Unique alignments 44 432 505771 N/A

Estimated precision 99.5 6 0.5% 71.5 6 1.7% N/A

Precision metrics were estimated from the simulated data set.
aPortion of the genome covered by at least one alignment. The percentage

approaches 100% with increasing data coverage. A low percentage implies

that some regions are always missed by the alignment method. Also, if the ref-

erence used in the alignment is not perfect and contains errors, a very high

percentage suggests non-specific alignment at misaligned regions.
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arrangements. In this manuscript, we demonstrated the ability of

OMBlast to align optical maps correctly and the alignment could re-

flect the presence of SV. Yet we did not present any comprehensive

SV results. An automated, statistically-based method is still required

for proper SV detection and verification of aligned optical maps as

one direction for our future work. Our experiments have shown that

all alignment methods have difficulties in dealing with SVs.

OMBlast performs well, but the low recall clearly indicates that

there remains room for improvement.
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