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Cellular senescence is frequently evident at etiologic sites of chronic diseases and involves
essentially irreversible arrest of cell proliferation, increased protein production, resistance
to apoptosis, and altered metabolic activity. Regulated cell death plays a vital role in
shaping fully functional organs during the developmental process, coordinating adaptive
or non-adaptive responses, and coping with long-term harmful intracellular or extracellular
homeostasis disturbances. In recent years, the concept of ‘diabetic tubulopathy’ has
emerged. tubular epithelial cells are particularly susceptible to the derangements of
diabetic state because of the virtue of the high energy requirements and reliance on
aerobic metabolism render. Hyperglycemia, oxidative stress, persistent chronic
inflammation, glucose toxicity, advanced glycation end-products (AGEs) accumulation,
lipid metabolism disorders, and lipotoxicity contribute to the cellular senescence and
different patterns of regulated cell death (apoptosis, autophagic cell death, necroptosis,
pyroptosis, and ferroptosis) in tubular epithelial cells. We now explore the ‘tubulocentric’
view of diabetic kidney disease(DKD). And we summarize recent discoveries regarding the
development and regulatory mechanisms of cellular senescence, apoptosis, autophagic
cell death, necroptosis, pyroptosis, and ferroptosis in the pathogenesis of DKD. These
findings provide new perspectives on the mechanisms of DKD and are useful for
designing novel therapeutic approaches for the treatment of DKD.

Keywords: regulated cell death, diabetic tubulopathy, cellular senescence, diabetic kidney disease (DKD),
regulated cell death (RCD)
INTRODUCTION

In the past 30 years, diabetic kidney disease (DKD) has been considered as the leading reason for
end-stage renal disease (ESRD) (1), with an increasing trend worldwide. Although significant
progress has been recently achieved in the pathogenesis and clinical therapy for DKD, there is still
an unmet need for a better control of DKD progression. DKD is clinically featured by albuminuria
development and a decrease in glomerular filtration rate (GFR), accompanied by
glomerulosclerosis, tubulointerstitial fibrosis (TIF), and atrophy (2). Moreover, DKD is a
typically progressive microvascular complication arising from diabetes (3). The current research
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predominately focuses on the glomerulus, as glomerular change
is critical for DKD. However, it is neither a primary determinant
of renal prognosis in diabetes nor a significant event in the
progression of DKD. Renal tubules and tubulointerstitial account
for 90% of the mass of renal parenchyma, which indicates that
they are critical for the development of DKD.

Recently, the role of cellular senescence in DKD has attracted
extensive attention. Cellular senescence in DKD involves various
mechanisms, including telomere shortening, DNA damage,
epigenetic modifications, and mitophagy deficit (4). Cell death
can be divided into accidental cell death (ACD) and regulated
cell death (RCD) based on functional differences. RCD includes
recognition, triggering, execution, and other effector molecules
and produces signal cascade reaction, which has unique
biochemical characteristics, morphological characteristics, and
immunological consequences. RCD plays a vital role in shaping
fully functional organs during the developmental process,
coordinating adaptive or non-adaptive responses, and coping
with long-term harmful intracellular or extracellular homeostasis
disturbances. When the cellular stress responses are unable to
respond to these disturbances, cell death is a side effect of
attempting to restore balance, regardless of the outcome (5).

The most typical RCD pattern is apoptosis. Many forms of
non-apoptotic RCD have been described in recent years. These
symptoms include autophagic cell death, pyroptosis, necroptosis,
ferroptosis, parthanatos, alkaliptosis, netosis, entosis, oxeiptosis,
and so on (5, 6). It should be noted that a variety of types of cell
death occur in DKD, including apoptosis, autophagic cell death,
necroptosis, pyroptosis, and ferroptosis. In this review, we
reconsider the current “glomerulocentric” paradigm, tune the
focus to the proximal tubule, summarize various forms of
evidence of cellular senescence and the RCD of renal tubular
epithelial cells, describe its underlying mechanism, emphasize
new insights, and provide perspective on the prevention and
treatment of DKD by targeting cell death.
RENAL TUBULAR INJURY IS AN
ESSENTIAL LINK IN THE PATHOGENESIS
OF DKD

Glomerular structural changes, such as mesangial expansion,
reduction in the capillary surface, and podocyte loss, are
undoubtedly the main features distinguishing DKD from other
types of glomerulonephritis (1). However, the renal tubules of
patients with diabetes undergo a series of structural changes,
such as renal tubule atrophy, interstitial fibrosis, and peritubular
capillary rarefaction, each of which is closely related to the
decline of renal function (7). Especially, a close correlation
between the extent of tubulo-interstitial injury and long-term
renal function has been demonstrated (8). Firstly, the high
demand for oxygen in the kidneys is primarily caused by the
proximal tubules’ huge reabsorption function. The reabsorptive
process is an active transport, which in turn makes it particularly
vulnerable to hypoxia. High energy demand and dependence on
aerobic metabolism make renal tubular epithelial cells
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particularly sensitive to disorders in the diabetic state.
hyperglycemia can independently lead to acute renal tubular
necrosis, tubular cell apoptosis, epithelial-mesenchymal
transition, and ECM deposition. In the early stage of glucose
metabolism disorder, proximal tubule hypertrophy due to
increased glucose reabsorption is associated with reactive
oxygen species production, oxidative damage, and TGF-b
production. These effects lead to proximal tubule cell G1 cell
cycle arrest and senescence phenotype, thereby promoting
interstitial inflammation and fibrosis (9, 10). Secondly,
tubulopathy is not secondary to the glomerulus, while its early
and initial characteristic changes (11). Hypertrophy of renal
tubules can be observed in diabetic kidneys several days after
hyperglycemia onset. Besides diabetic glomerular alternations,
even in patients with normal albuminuria, the increase in the
width of the tubular basement membrane (TBM) can be detected
as one of the early-stage structural abnormalities in the diabetic
kidney (12). However, some studies have shown that up to 51%
of patients with diabetes may have kidney damage without prior
proteinuria. Russo et al. proved that the function of proximal
tubule handling of albumin in hyperglycemia state is abnormal,
resulting in albumin-derived peptinuria, excreted in the
nephrotic range, which is not related to the change of
glomerular capillary wall permeability (13). We recognize that
many patients with diabetes and low GFR do not have significant
albuminuria and that the decrease of GFR often precedes the
occurrence of microalbuminuria. Thirdly, It was found that
about 7% of patients showed non-functioning glomeruli
atrophy happening at the critical junction between Bowman’s
capsule and the proximal tubule (14). In the absence of obvious
albuminuria, 26% of the patients still show abnormal
glomerulotubular junction, which was negatively correlated
with creatinine clearance (r = 20.70, P < 0.05) (14). In
groundbreaking research in 2013, Hasegawa et al. provided
evidence of retrograde trafficking between the proximal renal
tubules and the glomerulus (15), indicating that nicotinamide
mononucleotide (NMN) was released by proximal renal tubular
epithelial cells diffused back to the glomerulus, resulting in
podocyte foot process disappearance and proteinuria (16).
Other studies have shown that proximal tubular injury leads to
podocyte damage and more extensive glomerular injury.
Fourthly, recent studies have found that renal tubular
albuminuria is a predictor of DKD progression (17). In
conclusion, tubulopathy is the prime and important factor that
influences the progression of DKD and it is becoming more and
more challenging to ignore renal tubular damage.
CELLULAR SENESCENCE

Previous research has demonstrated that DKD is highly
correlated with the accelerated senescence of renal tubular
epithelial cells, mesangial cells, podocytes, and endothelial cells
(18, 19). It is worth noting that hyperglycemia can also induce
macrophages to secrete senescence-associated secretory
phenotype components (SASP), and promote the development
of low-grade inflammation, directly inducing Cellular senescence
June 2022 | Volume 13 | Article 924299
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of mesangial (20) and renal tubular epithelial cells (21). The
accumulation of damaged mitochondria during DKD may be
responsible for the premature senescence of renal tubular
epithelial cells. Under the condition of DKD disease, in
addition to hyperglycemia, oxidative stress, persistent chronic
inflammation, glucose toxicity, advanced glycation end-products
(AGEs) accumulation, lipid metabolism disorders, and
lipotoxicity contribute to the formation of a growth
microenvironment that promotes Cellular senescence.
Telomeres, as exceptionally conserved tandem nucleotide
repeats, can protect the ends of chromosomes to retain the
genome’s integrity and take place age-related gradual attrition
(22). Shorten and inactive telomeres are thought to be DNA
double-strand fractures that initiate Cellular senescence. In
patients with diabetes, chromosomal telomere loss is related to
renal Cellular senescence, proteinuria, and DKD progression (23,
24). Oxidative stress is considered to be one of the most critical
reasons for telomere shortening, indicating an imbalance
between antioxidants and reactive oxygen species (ROS) (25,
26). DNA damage is seen as the primary cause of cellular
senescence. Under diabetic conditions, the hyperglycemia-
mediated production of ROS and accumulation of AGEs would
lead to DNA damage, which in turn causes premature senescence
of cellular glomeruli and renal tubular epithelial cells (27).

Epigenetic modifications, such as cytosine DNA methylation,
histone post-translational modifications (PTMs), and noncoding
RNAs, coordinate the relationship between genes and the
intracellular environment, which only affect genes expression
and function instead of influencing the DNA sequence (28).
Nutritional status, lifestyle, and environmental factors strongly
affect the occurrence and development of diabetes and DKD
through epigenetic alternations (29). The experimental evidence
supports that DNA methylation is involved in glomerular and
proximal tubular epithelial cells’ normal function, such as
filtration, glucose, and solute handling (30). In the db/db
mouse model of DKD, the transcriptional inhibition of
transcription factor KLF4 increases DNA methylation (31). A
2017 study showed that the proximal tubular cell cultured in a
high glucose environment and the kidneys harvested from mice
pretreated with streptozotocin (STZ) showed decreased DNA
methylation of MIOX, correlated with the enhanced expression
of the encoded protein inositol oxygenase (32). PTM-regulated
gene expression of nucleosome histones in chromatin is an
integral part of epigenetic regulation (33). The primary histone
PTMs include lysine acetylation, methylation, ubiquitylation,
serine/threonine phosphorylation, and arginine methylation
(34). Several db/db mouse model studies of type 2 diabetes
mellitus (T2DM) found that different chromatin-based histone
PTMs were observed in the promoters of PAI1 and AGER
(encoding age-specific receptor RAGE) and enhanced the RNA
polymerase II recruitment, suggesting that activating and
inhibitory epigenetic markers jointly facilitate chromatin
unwinding and improve the recruitment of transcription
factors to the genes associated with DKD. In addition, the
increase of renal inflammation caused by macrophage
infiltration is one of the pathogenesis of DKD. In a high
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glucose circumstance, histone modification mediates the
activities of NF-kB and other inflammatory cytokines in
vascular cells and monocytes (35, 36). Epigenome ncRNAs,
such as small ncRNAs (sncRNAs), miRNAs, and long
ncRNAs, show critical regulatory functions. miR-192 is the
first miRNA demonstrated to play a functional role in DKD,
promoting the expression of extracellular matrix (ECM) and
collagen by targeting key inhibitors and enhancing the fibrogenic
effect of TGF-b (37). lncRNA PVT1 participates in the
pathogenesis of DKD (38). Under high glucose conditions,
miRNAs1204-1208 located at the PVT1 site were also found to
upregulate the expression of ECM-related gene in human
mesangial cells (39). The underlying mechanisms of glucose
metabolism memory and cell death in diabetes may be related
to the long-term persistence of epigenetic modifications and
ncRNAs. For instance, lncRNA MALAT1(metastasis associated
in lung denocarcinoma transcript 1) inhibits the expression of
miR-23c, thereby regulating the pyroptosis of renal tubular
epithelial cells in a DKD model. Epigenetic and epigenomic
alternations have the potential to develop new biomarkers and
treatments for diabetes or DKD. It has been evident that many
renal tubular epithelial cells (>50%) display mitochondrial
fragmentation and autophagy loss under diabetic conditions
(40), accompanied by apparent upregulated mtROS levels in
the renal cortex and massive production of ROS (41). In
addition, functional loss of Klotho protein, activation of the
Wnt/b-catenin signaling pathway, and accumulation of
inflammatory cytokines and uremic toxins may also contribute
to the network of DKD Cellular senescence.
APOPTOSIS

Apoptosis is an RCD process characterized by volume reduction,
cell surface blistering, chromatin condensation, DNA
nucleosome cleavage, and apoptotic body shape. Two apoptosis
pathways have been found in the mammalian system, including
the death factor pathway and extrinsic death pathway. Caspase-
3, at the end of the caspase cascade, can be stimulated by
endogenous and exogenous death pathways, suggesting that
caspase-3 substrates mediate the general features of apoptosis
(42). The renal tubular epithelial cell apoptosis is the primary
characteristic of DKD. The in vitro and in vivo experiments
performed by Guo et al. found that the apoptosis of renal tubular
epithelial cells was elevated significantly under high glucose
conditions. Furthermore, Calcitriol treatment attenuates
tubular epithelial cell apoptosis in DKD by targeting the
Vitamin D receptor. Hyperglycemia can cause the generation
of free radicals and oxidative stress in renal tubular cells (43). On
the other hand, ROS contributes to various biological processes,
such as proliferation, extracellular matrix deposition, and
apoptosis. The activation of apoptosis signal-regulated kinase-1
(ASK-1), an upstream kinase of the p38 mitogen-activated
protein kinase (MAPK) pathway, is due to inflammation and
oxidative stress, which would result in renal fibrosis and promote
DKD development (44).
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AUTOPHAGIC CELL DEATH

Autophagic cell death is a unique RCD pathway, which does not
require caspase and does not have typical morphological features
of apoptosis, necroptosis, or pyroptosis. The accumulation of
many vacuoles in the cytoplasm of the autophagy dead cells is
considered one of autophagy death features (45). It is still
debated that the existence of an autophagic cell death pathway
as a bona fide active mechanism for cellular killing (6). Moreover,
it is catabolic and homeostatic progress in lysosomes to degrade
damaged organelles, protein aggregates, and recycled materials,
and it is the last line of defense to maintain cellular viability (46).
Once the nutrient deficiency persists, it progresses to autophagic
cell death which is irreversible. Autophagy-related gene (ATGs)
is a specific gene family responsible for The initiation, formation,
and maturation of autophagosomes are controlled by one
particular ATG family. And autophagy fuses with lysosomes
and hydrolyzes/degrades encapsulated substances through
autophagy (47). This comprehensive process is mainly
modulated by two widely expressed proteins, the mammalian
target of rapamycin (mTOR) and AMP-activated protein kinase
(AMPK). mTOR complex 1 (mTORC1) is the primary receptor
of intracellular amino acids, facilitating protein synthesis
(anabolism) and inhibiting autophagy. Autophagy can be
significantly stimulated by starvation, energy exhaustion, and
hypoxemia. Autophagy is thought to keep cells alive by
circulating amino acids and the necessary cellular metabolites
(48). Impaired autophagy in patients with diabetes may be
caused by high glucose, leading to the accumulation of
unfolded proteins and dysfunctional organelles. Therefore,
suppressing the clearance of damaged cell contents, such as
AGEs, can result in renal cell damage and fibrosis regulated by
TGF-b (49). It is widely evident that fully functional autophagy is
essential to delay the incidence of DKD. The expression of
SGLT2 mainly occurs in the brush borders of the proximal
tubule segments of S1, which is enhanced by 40-80% with the
increase of persistent glycosuria (50). The increased expression
of SGLT2 can maximize glucose reabsorption and improve Na+-
K+-ATPase activity and oxygen consumption, resulting in
hypoxia and tubular injury. Therefore, inhibiting SGLT2 can
enhance the oxygenation of proximal tubules. Recent findings
suggest that SGLT2i enhances ketolysis and autophagy while
inhibiting mTORC1 expression (51). Proximal tubules are the
main target of putative SGLT2i effects, but a study reported an
upregulation of podocyte SGLT2 expression in a murine model
of protein-overloaded proteinuria induced by bovine serum
albumin (BSA), and treatment with SGLT2i dapagliflozin
significantly improved albuminuria via restoration of
cytoskeletal remodeling in the podocytes (52). It has been
reported that, in DKD, the activation of Smad3 triggers
autophagy dysfunction and promotes DKD (53). Smad3 may
bind and inhibit the expression of TFEB at the transcriptional
level, thereby suppressing the biogenesis of lysosomes and
damaging the clearance of damaged lysosomes, which results
in the depletion of lysosomes in the TECs of renal tubular
epithelial cells during diabetes. Another study showed that, in
PTECs cultured with high glucose, the levels of Beclin1 and LC3-
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II were increased, while the p62 level was reduced, which
indicates that autophagy performance is upregulated in
diabetes. In addition, autophagy deficiency due to autophagy
inhibitors (e.g., chloroquine and 3-methyladenine) and ATG5
siRNA transfection aggravates lipid accumulation and EMT (54).
Therefore, autophagy can be targeted to develop therapeutic
interventions for the prevention or relief of DKD.
NECROPTOSIS

Necroptosis is a cellular response to environmental stress, which
can be attributed to chemical and mechanical influences,
inflammation, or infection. There is growing evidence from
genetic and pharmacological studies proving that necroptosis is
critical for the etiology and progression of many human
disorders, including cell injury induced by ischemia-
reperfusion, inflammation caused by a viral infection,
inflammatory bowel disease, and neurodegenerative diseases
(55, 56). Necroptosis is featured by swelling, loss of plasma
membrane permeability, and membrane rupture (57). It can also
release damage-associated molecular patterns (DAMPs), such as
HMGB1, S100 protein, ATP, IL-33, IL-1a, HSP70, double-
stranded DNA (dsDNA), and mtDNA, and promote the
production of cytokines (e.g., IL-6 and IL-1b) associated with
inflammation (58). Therefore, necroptosis is different from
apoptosis in morphological and biological consequences.
Receptor-interacting protein kinase 3 (RIPK3) and the related
substrate MLKL are seen as critical regulators of necrosis.
Moreover, RIPK1 and RIPK3 independently influence
inflammation without affecting cell death (59). Earlier studies
have shown that RIPK3-related necroptosis is the primary form
of renal tubular epithelial cell death in rats with chronic renal
injury (60). The hyperglycemia/AGEs-activated intrarenal RAAS
system can increase the levels of renin and angiotensin in renal
cells (61, 62). On the other hand, it has been reported that the
cytotoxicity of AngII can cause renal tubular epithelial cell
necroptosis in vitro and in vivo and then elevate the levels of
the regulatory factors Fas and FasL that are involved in cell death
induced by angiotensin-converting enzyme. In addition,
pharmacological inhibition using AngII and FasL inhibitors or
RIPK1/3 and MLKL blockers suppressed excessive death of renal
tubular epithelial cells mediated by AngII in vitro and in vivo
(60). Another study showed that RIPK3 deficiency in UUO
models avoided fibrosis kidneys, which is a common pathway
of DKD.
PYROPTOSIS

Persistent inflammation of circulation and kidney tissue is
considered to be a crucial pathophysiological basis of DKD. In
patients with diabetes, the inflammatory transcriptional signal
NF-kB can be activated simultaneously by high glucose, AGEs,
and oxidative stress (63). Pyroptosis is an inflammatory type of
RCD driven by inflammatory caspase 1, 4, 5, and 11. Pyroptosis
June 2022 | Volume 13 | Article 924299
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is mainly an innate immune response to intracellular pathogens,
which is performed by caspase-dependent GSDMD cleavage. In
the process of pyroptosis, the cleavage fragment of GSDMD at
the amino-terminal permeates the plasma membrane and forms
membrane pores, promoting the release of cytokines (e.g., IL-1b
and IL-18) associated with inflammation. The increased
circulation levels and pro-inflammatory cytokines IL-1b and
IL-18 can cause persistent inflammatory effects, resulting in
kidney damage in diabetes patients. Similarly, the experimental
results of Sassy-Prigent et al. showed that the expression of IL-1b
in renal tissue is upregulated in the DKD animal model (64).

In a typical caspase-1-mediated pyroptosis model, the
activation of intracellular polyprotein signaling complexes
(inflammasomes) is attributed to the recognition of
inflammatory ligands. As a family of NOD-like receptors, the
role of inflammatory bodies containing pyrrole domain 3
(NLRP3) in DKD has attracted much attention. NLRP3
inflammasome compr i s e s nuc l eo t ide -b ind ing and
oligomerization domain-like receptor family NLRP3, and
apoptosis-related spot-like proteins, such as caspase
recruitment domain (ASC), and caspase-1 or caspase-5, in
which NLRP3 is the essential protein. NLRP3 inflammasome is
a potent inflammatory mediator that can activate caspase-1, IL-
1b, IL-18, and other cytokines. Hyperglycemia, hyperlipidemia,
and hyperuricemia can activate pyroptosis caused by the NLRP3
inflammasome. Two signaling pathways are required to activate
NLRP3 inflammasome: a. the first pathway induces the
transcription of NF-kB-dependent NLRP3 and cytokines
through Toll-like receptors (TLR) and cytokine receptors as
primers for NLRP3 activation; b. the second pathway
mediates/activates NLRP3 inflammasome through unclear
mechanisms, promoting the initiation and progression of DKD
mediated by the models of the potassium channel, lysosomal
damage, as well as active oxygen cluster (65). In renal patients,
NLRP3 inflammasome corpuscle activation exists not only in
immune cells (primarily located in macrophages and dendritic
cells) but also in some inherent renal cells, such as renal tubular
epithelial cells. IL-1b and IL-18 are produced by mouse tubular
epithelial cells. It has been reported that these types of cells
consist of all the required components to activate the
inflammasome (66). On the other hand, mouse glomerular
endothelial cells, mesangial cells, and podocytes are not
responsible for IL-1b production or caspase-1 activation.
NLRP3 is considered to be positively associated with renal
tubular epithelial-mesenchymal transformation. The
enhancement of TGF-b signal promotes renal tubular
epithelial-mesenchymal transformation (67). It was found by
Wang et al. that, in STZ-induced DKD with hyperuricemia and
hyperlipidemia, ASC and caspase-1 were overexpressed, and the
levels of IL-1 b and IL-18 were elevated (68). It was reported by
Kim et al. that uric acid-mediated inflammatory activation of
NLRP3 improves chemokine signal transduction in the proximal
tubules of renal cells, thus facilitating DKD development
associated with the regulation of NLRP3 inflammatory bodies.
Additional studies have shown that mtROS is the primary
activator of the NLRP3 inflammasome (69).
Frontiers in Endocrinology | www.frontiersin.org 5
FERROPTOSIS

It has been demonstrated that the accumulation of ROS and
hemochromatosis are critical determinants of DKD in diabetes
patients (70, 71). Excessive iron in cells impairs cell function
through the production of ROS, and eventually leads to cell death
(72). Ferroptosis is a pattern of RCD featured by the
accumulation of iron-dependent lipid hydrogen peroxide to
fatal levels, which has been considered a significant cause of
cell death related to a range of indications, such as diabetes,
cancer, neurodegenerative disorders, and renal failure (73). In
Seonghun Kim’s study, GPX4 mRNA expression in kidney
biopsy samples from diabetic patients was decreased compared
to nondiabetic patients. Recent studies showed that tubular cell
death and intrarenal interstitial edema and proteinuria were
significantly increased in GPX4-deficient mice, suggesting that
GPX4 has a renin protective effect in tubular cells (74). In the
ferroptosis-induced RCD, hemochromatosis initiates lipid
peroxidation under the circumstance with the inhibited activity
of glutathione peroxidase-4 (GPX-4), which is responsible for
plasma membrane disruption (73). Previous studies have noted
that ferroptosis-related markers’ expression was increased, such
as acyl-CoA synthase long-chain family member 4 (ACSL4),
which is a potential biomarker and contributor to ferroptosis
(73). It was recently reported by Wang et al. that a significant
increase in ACSL4 expression and a decrease in Gpx4 expression
were observed in DKDmice, including STZ-type and db/dbmice
(73). Lipid peroxidation products and iron content increased in
the kidney of DKDmice (75). In addition, iron and high levels of
ACSL4 sensitize ferroptosis, while ferroptosis inducers Erastin or
RSL3 could induce renal tubular cell death in vitro (76).
Similarly, another study found hemochromatosis decreased
antioxidant capacity and produced large amounts of ROS and
lipid peroxidation in STZ-induced DBA/2J diabetic mice and
human proximal renal tubular (HK-2) cells cultured with high
glucose, which are symbolic alternations in ferroptosis (77). In
addition, they also observed the morphological changes of
mitochondria characterized by iron death in cells cultured with
high glucose (77). The addition of iron statin-1 (Fer-1) to the
DKD model can significantly rescue the above alterations in
diabetic mice and reduced pathological renal damage in diabetic
mice (77). Therefore, ferroptosis could become a research
direction to discover the potential treatments for DKD.
INTERSECTIONS BETWEEN DIFFERENT
PATTERNS OF REGULATED CELL DEATH

There is growing evidence to demonstrate that different RCD
patterns are interconnected on multiple levels and should
perhaps be viewed in less discrete terms. However, these
different cell death patterns crosstalk each other, engaging with
mitochondria. Autophagy and apoptosis, primarily through the
role of Beclin-1, result in substantial crosstalk. The Beclin-1-Bcl2
complex generation is sufficient to suppress autophagy while
interrupting the formation of the Beclin-1-Vps34 complex (78).
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Besides, in the process of apoptosis, caspases cleave Beclin-1 and
inactivate autophagy (79), while its carboxyl-terminal fragment
is relocated in mitochondria, which can thus promote the
generation of cytochrome C (80). This offers an additional
shutdown pathway to limit autophagy and an amplifying loop
that promotes apoptosis. In addition to Beclin-1, other
autophagy proteins can modulate the balance between
autophagy and apoptosis. For example, Atg12 and Atg3
suppress apoptosis (81), while the cleavage of Atg5 produces
pro-apoptotic fragments (82). Autophagy is generally considered
a protective process. However, in some specific cases, it can
damage tissue and induce cell death through apoptosis or
necrosis (83). In contrast, excessive autophagy can also lead to
apoptosis, which is harmful to the human body. The abnormal
relationship between autophagy and apoptosis may cause the
development of diabetic complications.

It has been reported that the accumulation of mitochondria
and the aggregation of qstm1/p62 are improved in the damaged
kidney of distal tubule specific autophagy-deficient mice,
resulting in elevated levels of the NLRP3 inflammasome, IL-1b,
and caspase-1. Moreover, autophagy is highly related to
necroptosis, which can inhibit necroptosis directly by
degrading RIPK1. In contrast, autophagy can be suppressed by
RIPK1 through its effects on the TFEB transcription factor’s ERK
phosphorylation (84). On the other hand, RIPK3 facilitates
caspase8 to cleave p62, thus inhibiting LC3-p62 interaction in
autophagy (85). About the relationship between ferroptosis and
autophagy, ferroptosis has been recognized as a form of
autophagy-dependent cell death in some conditions. for
instance, ferritinophagy and lipophagy play a significant role in
promoting ferroptosis (86). In addition, autophagy has been
demonstrated to improve ferroptosis by degrading ferritin,
resulting in a higher level of iron (87). On the contrary, their
interaction also promotes survival through the additional
function- of the p62-SQSTM1 autophagy receptor as an
oxidative stress sensor (86).

In a recent study, Ferroptotic agent-induced PUMA (p53
upregulated modulator of apoptosis) plays an important role in
the crosstalk between ferroptosis and apoptosis. In detail,
ferroptotic agents induce ER stress and elevate the expression
of the proapoptotic molecule PUMA through the ER stress-
mediated PERK-eIF2a-ATF4-CHOP pathway without inducing
apoptosis (88). however, Ferroptosis proceeds even in the
absence of key effectors of apoptosis and necroptosis, such as
BAX, BAK, caspases, MLKL, RIPK1, and RIPK3 (75).

Caspase-8 is essential for growth and progression,
homeostasis, and prevention of tissue damage in adulthood,
involved in the regulation and initiation of RCD mediated by
the death receptor. Moreover, caspase-8 is a molecular switch
controlling apoptosis, necroptosis, and pyroptosis. Necroptosis
and apoptosis share the same upstream signaling pathway (89).
RIPK1 is one of the upstream signal elements, which is
considered to be the trigger switch of CASP8-dependent
apoptosis or RIPK3/MLKL-dependent necroptosis (90). Under
certain circumstances, RIPK3 can be used as a pro-apoptotic
aptamer, utilizing the death domain (FADD) to recruit RIPK1
Frontiers in Endocrinology | www.frontiersin.org 6
and Fas-related proteins to activate caspase-8, thereby leading to
apoptosis. When RIPK3 is inactive or MLKL is missing, this
effect depends on the participation of caspase-8 (91, 92). Both
pyroptosis and necroptosis are hemolytic and inflammatory
RCD that need to destroy the membrane and form membrane
pores. The difference is that the pore formation of pyroptosis is
mediated by GSDMD and necroptosis is mediated by MLKL.
Both GSDMD and MLKL signals can result in potassium efflux,
initiate NLRP3 inflammasome, and lead to IL-1b-mediated
inflammatory response. It has been recently validated that
RIPK3 is a substantial mediator for the generation of
inflammatory bodies in NLRP3 (93). Some studies have
suggested that RIPK3-induced NLRP3 inflammasome is
correlated with necroptosis. In particular, RIPK3–MLKL
initiates the activation of NLRP3 when caspase 8’s activity is
inhibited (59). In general, RIPK3-mediated activation of NLRP3
inflammasome can be either necroptosis-dependent or
independent, relying on the activity of caspase-8.
CONCLUSION

DKD has a variety of origins and potential mechanisms.
However, ACE inhibitors (ACEIs) or angiotensin II receptor
blockers (ARBs) for anti-RAS therapy and blood glucose level
control are applied as currently available treatments for DKD.
Moreover, anti-RAS therapy only exhibits limited efficacy on
DKD, partially due to renin’s upregulated expression levels. Due
to the previous exposure to hyperglycemia recorded in metabolic
memory, a single blood glucose control treatment cannot prevent
kidney disease progression. Therefore, to slow down the progress
of DKD, there is an unmet need to explore more effective
treatments. In recent years, many studies have further
demonstrated different RCD patterns in the renal tubular
epithelial cells of DKD. Although significant progress has been
achieved to better understand cell death’s underlying
mechanisms in cellular and molecular levels, there is no
research focused on treating the RCD signaling pathway except
for the promising preclinical studies. Given the many different
RCD patterns in DKD, it is necessary to consider combined
therapy that blocks multiple regulatory pathways of cell death
simultaneously or at specific time windows to guarantee cell
survival and renal function.
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