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Abstract

Due to its unique capability to analyze a large number of single cells for several parameters
simultaneously, flow cytometry has changed our understanding of the behavior of cells in culture
and of the population dynamics even of clonal populations. The potential of this method for
biotechnological research, which is based on populations of living cells, was soon appreciated.
Sorting applications, however, are still less frequent than one would expect with regard to their
potential. This review highlights important contributions where flow cytometric cell sorting was
used for physiological research, protein engineering, cell engineering, specifically emphasizing
selection of overproducing cell lines. Finally conclusions are drawn concerning the impact of cell
sorting on inverse metabolic engineering and systems biology.

Introduction

The establishment of flow cytometry as the first single cell
analysis method with the potential to describe the distri-
bution of cellular properties within a large number of cells
has considerably changed our knowledge of cell popula-
tions. Before the establishment of flow cytometry our
understanding of the immune system was limited to the
knowledge that there are leukocytes, monocytes and mac-
rophages, but the complex interplay of the different B-
and T-cells, effector and killer cells was only resolved
when monoclonal antibodies became available and were
used for immunophenotyping by flow cytometry. Today
the most frequent use of flow cytometry is still in medical
diagnosis. Prior to flow cytometry it was also common
belief that in a single strain culture all cells behave homo-
geneously. Flow cytometry has shown that in reality quite
surprising variations are present, which may be caused
both by genetic or epigenetic alterations or by differences
in the state of individual cells which will diversify their

reaction to present culture conditions. Analysis of cells in
culture has shown that with the exception of DNA con-
tent, all other cellular components are distributed over a
wide range, which is the reason why such parameters are
usually presented on a logarithmic scale in flow cytometry
histograms. This variation of cellular properties is of spe-
cial interest for strain improvement purposes, as it allows
the sorting of cells with diverging and potentially opti-
mized properties.

The principle of flow cytometry can be described as a flu-
orescent microscope without morphological resolution
where the cells travel in a liquid stream instead of resting
on a slide. Each single cell, as it passes the exciting light
and the measuring optics, sends out a number of signals,
including the size and structure related forward and side
scatter and the fluorescent signals, which in turn are
dependent on the staining procedure that has been used.
These signals are measured and stored for each individual
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Multiparameter analysis methods. By gating on different subpopulations, their properties with regard to additional param-
eters can be determined. Most commercial flow cytometers can measure between 4 and 8 fluorescence signals in addition to
forward scatter (FSC) and side scatter (SSC). As an illustration of the compexity of multiparameter data, the graph below
shows a sample of yeast cells stained for viability with ethidium bromide. A: ethidium bromide fluorescence (FL2) against cell
size (FSC). B: size (FSC) against granularity characteristics (SSC). Cells marked in panel A as belonging to distinct subpopula-

tions are identified by the same colors in panel B.

cell. One of the revolutionary properties of flow cytometry
is the possibility to measure correlated data: by staining
with several fluorescent labels, it is possible to obtain the
distribution of each of these parameters within the popu-
lation, but also their interrelationship (Fig. 1). This infor-
mation can of course also be obtained using a fluorescent
microscope and image analysis, but only from a limited
number of cells. With flow cytometry, analyzing 104 cells
is standard procedure and it is possible to look at millions
of cells without much trouble. This feature is especially
important for biotechnological applications, because it is
usually the rare cell which is of interest: the cell with
altered properties, a higher production rate, better meta-
bolic parameters or containing the protein with a higher
binding affinity. Such rare cells with altered properties are
the main target of cell sorting. To be able to sort, it is a pre-
requisite that flow cytometric methods have been estab-
lished that allow the characterization of a specific cellular
property. Analysis by flow cytometry will provide the dis-
tribution of parameters within the population and thus
tell the researcher how good the chances are to find a cell
with outstanding properties. Development of a suitable
flow cytometry protocol also paves the way to the estab-
lishment of a good sorting protocol. Indeed, analytical

procedures have quickly found their way into biotechno-
logical research. Frequently analyzed cellular properties
include: viability and cell performance in recombinant
fermentations, cell growth under different culture condi-
tions, characterization of heterogeneous populations
from the environment or waste treatment plants, charac-
terization of production cell lines with respect to product
content and other cellular properties, to name only a few.
The main goal of these analyses is to describe and under-
stand cellular behavior, in the hope that a better under-
standing will allow to select cells with a desired property.
Surprisingly, although the potential of flow cytometry in
cell line characterization is widely accepted, the use of cell
sorting as a tool to optimize cell lines and protein proper-
ties is still lagging behind, with only few publications that
take advantage of its obvious potential.

In principle, the term cell sorting can be used for any tech-
nique that separates cells according to their properties.
Such techniques include panning [1], fluorescence acti-
vated cell sorting (FACS) [2] or magnetic cell sorting
(MACS) [3]. Novel developments based on dielectro-
phoresis to move cells in microfluidic devices should be
mentioned [4,5] but their application in biotechnology
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Table I: Overview of cell sorting applications in biotechnology

http://www.microbialcellfactories.com/content/5/1/12

General aim Sorting target Selected examples References
Physiological research Viability, vitality bacteria, yeasts [2-8]
Protein engineering ligand binding antibody surface display [22-24]
peptide surface display [15, 16, 26-29]
enzyme engineering intra- and extracellular enzymes [30-33]
Cellular properties cell hybridization, cloning yeast hybridization, library cloning [37, 38]
promoter trapping bacteria [45, 46]
robustness acid tolerance [51]
process related properties high cell density, low growth rate [51-55]
Overproduction product stained by immunofluorescence protein [I, 56-69]
Autofluorescence of product alkaloids [76]
Unspecific staining FITC/antibiotic production [78]

still needs to be shown. Both panning and magnetic cell
sorting can be used for the selection of cells according to
the expression of a surface molecule, because only such
surface expressed molecules can be detected by these tech-
niques using specific ligands. Both techniques also are
bulk methods, that allow the rapid isolation of a large
number of cells, without the ability to fine-grade accord-
ing to expression level. Basically, they operate with a yes
or no decision, but are unable to differentiate e.g. between
low and high producing cells [6]. The only method that
allows both single cell selection as well as a (relative)
quantification of the production of a specific compound,
is flow cytometry. In addition, intracellular markers such
as green fluorescent protein (GFP) or markers that
describe a physiological activity, such as an enzyme activ-
ity or membrane potential, can only be measured and
used for sorting by flow cytometry. Even though not a
bulk method, desirable cells can be isolated quickly and
efficiently. With a traditional cell sorter one can easily
look at a few million cells to find the rare outstanding per-
formers (17 minutes at 1000 cells per second). With the
modern high speed sorters this will take less than a
minute.

In the following, utilization of cell sorting in biotechnol-
ogy will therefore be highlighted with the main emphasis
on fluorescence activated cell sorting. The actual selection
of single cells is achieved by different types of sorters, the
most frequently used ones being jet-in-air sorters. The lig-
uid stream with the cells, after passing the laser light and
the optics, is split up into defined droplets. The droplets
containing a cell to be sorted is charged and then deflected
into either a separate tube or directly into the individual
wells of a microtiter plate. Table 1 provides an overview of
typical applications of cell sorting in biotechnology.

Physiological research
Flow cytometry, but also cell sorting have become valua-
ble tools for physiological research in biotechnology. Cell

sorting allows a more in depth characterization of cells
with specific properties observed in flow cytometric anal-
yses, by sorting cells from different observed subpopula-
tions. Subsequently, these cells are analyzed by other
methods, thus linking different types of information and
analytical methods to enhance the understanding of cell
behavior.

Cell viability is probably the most widely used parameter
in this respect. A comprehensive study of viability assess-
ment by flow cytometry and cell sorting has been
described by Nebe-von Caron et al. [7]. By triple fluoro-
chrome staining using propidium iodide, ethidium bro-
mide and bis-oxonol, it is possible to discriminate
between undamaged, damaged (membrane depolarized)
and dead cells, which was verified by sorting and plating
of the different subpopulations. Similar approaches have
been followed for lactic acid bacteria [8,9], further under-
lying the validity of fluorescent viability staining. Comas-
Riu and Vives-Rego extended this concept for Paenibacillus
polymyxa by including the forward scatter signal into the
assessment, thus discriminating between live and dead
vegetative cells as well as viable and non-viable
endospores [10].

Using a similar approach as described above for bacteria,
the utility of flow cytometric viability assessment was ver-
ified for baker's yeast by sorting and plating [11]. Miiller
and Losche analyzed populations of brewing yeast for the
content of DNA, neutral lipids and hydroxysterol by flow
cytometry, verifying the data with cell sorting and image
analysis [12]. Petit et al. described the use of cell sorting
(combined with flow cytometry and confocal micros-
copy) for the study of respiratory dysfunction in yeast
[13]. During the last years the distribution of cellular
properties, as observed by flow cytometry, and the sorting
of specific subpopulations have attracted additional atten-
tion for transcriptomic studies. Many biological samples
are cell mixtures, and it was shown that sorting the differ-
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Figure 2
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Pro- and eukaryotic surface display systems. A: phage display, e.g. phage M13. plll: minor capsid protein, pVIII: major cap-
sid protein [19]. B: gram negative bacteria, e.g. E. coli. Anchor protein: OmpA, CM: cytoplasma membrane, OM: outer mem-
brane, PP: periplasma, PG: peptidoglycan [20]. C: gram positive bacteria, e.g. Staphylococcus sp. Anchor protein: SpA: S. aureus
protein A [21]. D: yeast, direct display, e.g. S. cerevisiae. Anchor protein: Aga.: agglutinin o.. CWV: cell wall [22]. E: yeast, indirect
display. Aga: agglutinin a: dimeric protein, Agal and Aga2, connected by disulfide bonds. Agal acts as surface anchor, while the
target protein is fused to Aga2 [23]. F: baculovirus (right) and insect cells (left). Anchor protein: major coat protein gpé4, which

is present on virions and infected insect cells [24].

ent cell types of model cell mixtures and of cord blood
prior to microarray analysis revealed gene expression pat-
terns that were otherwise hidden [14].

Biotechnological applications of cell sorting

As outlined above, cell sorting is an extremely powerful
technique for screening of very large populations of single
cells. Therefore it is quite obvious to apply cell sorting to
screen for rare events. The potential applications are wide-
spread and very versatile, being confined mainly by the
technical potentials of the sorting method. Biotechnolog-
ical applications can be grouped into either the screening
for specific features of biomolecules, mainly proteins, or
the screening for cells with specific superior features.

Protein engineering

The optimization of protein structures to improve specific
features like enzymatic activity, specificity, binding to lig-
ands, affinity, or stability is an important task for the
development of biotechnological products and processes.
While rational design of proteins is a challenging task
[15], screening of random libraries has been proven to be
a valuable alternative in numerous cases (for reviews see
[16,17]). A classical random screening approach is phage
display of antibody libraries (first described in [18]).
Phage display can be regarded as the first example of sur-
face display techniques, which share the common princi-
ple that a protein which is encoded in the genome of a
host cell (or a virus) is displayed as a fusion protein on the
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outer surface of the same cell. Consequently, the genetic
information is always linked to the respective protein var-
iant in the same cell. Numerous applications of phage and
cell surface display have been published. As a comprehen-
sive overview, typical examples of pro- and eukaryotic sur-
face display systems are illustrated in Fig. 2. As a general
rule, the target (poly)peptide is fused to a native surface
bound protein, be it on a virus capsid, the cell membrane
or the cell wall.

Screening for binding

Two main features of binding molecules are targets for
optimization: specificity and affinity. Phage display (for a
comprehensive review see [19]) has proven to be a most
valuable tool for the screening for proteins binding specif-
ically to different classes of ligands, and usually employs
"panning" as the screening step (reviewed in [25]). The
idea of panning is the gold-miners principle of cleaning a
sample in a pan (represented by a test tube or a microplate
well) from all undesired debris. While panning of phage
libraries is a robust and easy to handle method, there exist
some handicaps concerning the introduction of diversity,
and the screening of kinetics, which can be overcome by
employing cell surface expression and FACS (reviewed in
[26]). Surface display on bacterial cells [27] and yeast cells
[28] has been employed successfully in cell sorting for
improved affinity of single chain Fv antibody fragments
out of mutant libraries. As an extreme, a dissociation con-
stant Ky~ 50 fM was achieved after four rounds of muta-
genesis with error prone PCR and FACS screening of 105-
106 cells each [29].

Apart from selecting antibody mutants, surface display
and FACS have also been applied for the screening of pep-
tide libraries for ligand binding peptides. Escherichia coli
surface display was employed in a combined MACS and
FACS procedure to isolate peptides that bind with high
affinity to different protein ligands [20]. Alternatively,
Wernerus and Stahl [21] described the development of a
stable Staphylococcus carnosus surface display system, its
usability for FACS screening, and its application for the
screening of ligand binding peptides based on Staphyloco-
ccus aureus protein A domains, so-called affibody ligands
[30].

Viewing beyond the microbial world, baculovirus was
exploited as a carrier for surface displayed proteins
[31,32]. Peptides or even complex proteins can be dis-
played either on the virion [31] or on the infected insect
cell [33]. Consequently, the selection of displayed peptide
sequences was achieved by FACS screening of the Sf9 cells
infected with a baculovirus surface display library [34].

http://www.microbialcellfactories.com/content/5/1/12

Screening for enzymatic activity

Screening for ligand binding is quite straight forward in a
cell sorting frame, as binding of the fluorescent probe to
the cell is an intrinsic feature of the desired setup. On the
contrary, a system for the screening of novel or improved
enzymatic activities has to be much more elaborate. The
major problem to solve is to link the signal (a product of
the desired reaction) to the cell that produced an enzyme
catalyzing this reaction. While it is rather straightforward
to link an enzyme (or a mutated library) to the expressing
cell via one of the above described cell surface display sys-
tems, the linkage of enzymatic reaction products is more
limited and needs consideration in every case. Olsen et al.
have employed the negative charge of the cell surface to
bind a protease substrate containing a positively charged
moiety. The generation of a fluorescence signal upon pro-
teolytic cleavage was enabled by a fluorescence resonance
energy transfer (FRET) quenching pair of dyes that was
separated upon cleavage, leaving only the fluorescent
partner containing25 the positive charges on the cell sur-
face. Using the surface bound serine protease OmpT as a
model, a 5000 fold enrichment of E. coli expressing active
OmpT out of cells expressing an inactive variant could be
achieved, as well as the isolation of OmpT variants with
an altered substrate specificity with 60 fold enhanced cat-
alytic activity [35]. Recently, this group has demonstrated
the simultaneous screening for activity and selectivity by
FACS, using again OmpT as a model [36].

An example of intracellular enzyme evolution with the aid
of FACS was described by Santoro et al. [37]. Using a cas-
cade of T7 RNA polymerase containing amber stop
codons, and green fluorescent protein (GFP), they
screened for mutants of aminoacyl-tRNA synthetase
finally leading to the incorporation of unnatural amino
acids into proteins. Kawarasaki and coworkers [38]
described the screening of intracellular activity of glutath-
ione S-transferase using a fluorogenic product that was
contained within the cells.

A more radical approach to screening for optimized
enzymes is based on cell free transcription and translation
in water-in-oil emulsions (in vitro compartmentalization,
IVC) [39], which can be also screened by FACS [40]. For a
general overview on high throughput screening for
enzyme engineering, the reader is referred to [41].

Cell engineering

Expanding the field beyond protein engineering, one can
envisage an extremely wide array of cell engineering appli-
cations of single cell sorting. Despite the opportunities to
screen for a multitude of different cellular features, cell
sorting has been applied so far only in a rather small
number of cases to cell engineering.
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One of the basic challenges of strain improvement is the
isolation of successful hybridization events, e.g. after cell
(or protoplast) fusion or cell mating. As an example, FACS
was applied to isolate rare yeast mating hybrids without
selective markers. The parents strains were stained with
two different fluorescent dyes, and a third, double stained
population appeared appr. 16 h after mixing, which con-
tained several mated cells [42].

A conceptual expansion would enable the screening for
widely different genetic modifications, like the cloning of
a random library to a specific position, or of genes with
specific desired functions. The dual-fluorescence reporter
system described in [43] refers to a method of library
screening without plating, by the use of a plasmid encod-
ing two different fluorescent proteins. Upon insertion of a
DNA fragment, expression, and hence fluorescence, of
one marker is impaired, so that all cells containing a plas-
mid with insert can be sorted based on the single fluores-
cence of the remaining dye. There is only a limited
number of examples for FACS based cell engineering in
the scientific literature, however, some patents describe
high-throughput screening for novel bioactivities [44,45].
These methods are based on homologous or heterologous
gene libraries employing either intracellular enzyme sub-
strates or gel microdroplet encapsulation of cells. The gel
microdroplet technique, first published by Weaver and
coworkers 1988 [46] is also described in section 3.3. for
use as a method to sort for high production rates. How-
ever, it can also be used for physiological studies, measur-
ing individual growth rates, acid production or other
physiological parameters [47-49].

Dunn and Handelsman described a method for promoter
trapping by cloning a Bacillus cereus genomic library
upstream of GFP [50]. However, the authors only tested
the efficacy of the sorting protocol with cell mixtures con-
taining a 10%fold excess of non-fluorescent cells (resulting
in 95 % fluorescent cells after 3 sorts), but did not prove
the applicability of the method to the initial goal of isolat-
ing promoters. In a similar approach strong promoter ele-
ments of Mycobaterium smegmatis were isolated by FACS
sorting of a genomic library cloned upstream of a GFP
gene [51].

Some other examples are the optimization of protocols
for transfection of recombinant cells as well as the selec-
tion of new and strong promoters. A destabilized GFP,
which does not accumulate in the cells, was used to char-
acterize the kinetics of new promoters or the identifica-
tion of sequences that enhance secretion [52]. Frequently
used tools for this type of research are reporter genes such
as B-galactosidase [53] or GFP [54].

http://www.microbialcellfactories.com/content/5/1/12

While the examples described above relate to broad
method development, there are some specific applica-
tions of cell sorting to improve cellular characteristics for
technological application. Viscardi and coworkers applied
cell sorting for immunoselection of phage-resistant Strep-
tococcus thermophilus (to be used in the dairy industry). By
incubating the cells first with phage, followed by anti-
phage antibodies and a fluorescent secondary antibody,
the authors could isolate clones that lost interaction with
the phage. While it is widely accepted that such a system
of "negative staining", i.e. sorting of rare non-fluorescent
cells, is more cumbersome and error-prone, these authors
were able to successfully isolate desired clones after a sin-
gle sort [55].

The improvement of cellular properties like viability or
stress tolerance may be directly connected to improved
overproduction of a desired biotechnological product. As
an obvious example, it was demonstrated that the screen-
ing for yeast cells with enhanced resistance to weak
organic acids in an acidic environment leads directly to
strains with enhanced ability to produce lactic acid. Based
on the observation that cells with a higher intracellular pH
(pH;) have a better tolerance to acidic conditions, a FACS
sorting strategy was developed. By screening for cells
within the highest range of pH;, clones with a higher tol-
erance to acidic environment and a higher productivity of
lactic acid were achieved (M. Valli, D. Mattanovich et al.,
manuscript in preparation).

Other cellular properties that have been selected by cell
sorting concern the behaviour of cells during large scale
production as well as the stability of recombinant gene
expression in CHO cells. Bohm et al. selected for cells with
high expression rates during stationary phase or at high
cell densities, so that the resulting clones would be better
suited for a high density fermentation system [56]. As the
production of therapeutic proteins needs to be performed
without the usually toxic substances used as selective
markers, they also screened for increased stability of
recombinant gene expression under these conditions.
With a similar objective, a bicistronic vector expressing
GFP and interferon gamma was used to sort for cells
expressing GFP after serum deprivation under growth
arrested conditions [57]. Schlatter and coworkers used a
surface marker to sort for proliferation controlled cells,
employing both FACS and MACS [58].

Recently, Borth and coworkers were able to select for
recombinant CHO cells with altered glycolytic metabo-
lism: cells selected for low mitochondrial membrane
potential were found to have lower uptake rates for energy
substrates such as glucose and glutamine. At the same
time the production rate of lactate was decreased, while
the growth rate of cells increased due to the more efficient
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Immunofluorescence based screening methods for intracellular and secreted proteins. A: Screening for secreted
proteins, developed for mammalian cells. A product specific catching antibody is immobilized on the cell surface, which binds an
amount of product proportional to the secretion rate. After staining with a product specific antibody and a secondary anti-
body, cells with high secretion rate can be sorted and subcloned. B: Screening system for intracellular, plasmid encoded pro-
teins, developed for E. coli. Cells are fixed with ethanol and stained with a product specific antibody and a secondary antibody
After sorting, plasmids are isolated and retransformed into the host strain.

energy metabolism. Incidentally, the specific production
rate for monoclonal antibody was also increased (G. Brug-
ger, N. Borth et al., manuscript in preparation).

Overproduction

When sorting is used for the selection of over-producing
cells, there are three main objectives: (1) to reduce the
work load necessary to find over-producers, (2) to reduce
the time required and (3) to find the cells with the highest
possible production rates, ideally combined with other
advantageous properties (see section 3.2.). Brezinsky et al.
have nicely illustrated in their work how cell sorting can
effectively resolve all three of these objectives [59]. When
sorting for high producing recombinant CHO cells, the

obtained clones fell into the following categories: 12%
very low, 50% low, 32% average and 8% high producers.
Clones obtained by limited dilution cloning were 90%
very low, 10% low producers, no average or high produc-
ers. The timeline for sorting was 6-12 weeks, compared to
at least the double with traditional methods, as it was nec-
essary to amplify the gene copy number to reach compa-
rable production rates. Amplification takes more time, it
requires another round of subcloning by limited dilution
and an additional load of immunoassays for clone testing,.
In general, simply by eliminating the non- or low-produc-
ing cells, sorting will reduce the number of assays to be
performed, because only the interesting cells will get to
this stage. To obtain stable high producers, it is necessary
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to isolate single cells, which is not guaranteed by classical
limited dilution, because otherwise the faster growing low
producers will outgrow any high producers present
[60,61].

As many biotechnological products are secreted and thus
dissociated from the cells that produced them, three strat-
egies have been described to sort cells directly for high
production rates: the first is to catch the product on the
surface of the cell that secreted it by applying an artificial
matrix on the surface of cells which will bind the product.
This affinity matrix approach was establish by Manz and
coworkers to study the secretion of immunoglobulin G
(IgG) by plasma cells and later on of cytokines by T-cells
[62]. It has been used both for the isolation of hybridoma
cells [63,64] and for the selection of recombinant CHO
cells [65]. An outline of the affinity matrix approach is
presented in Fig. 3A. The use of the same approach for
yeast cells was less successful for so far unknown reasons
[66]. The second strategy was established in 1988 by
Weaver et al. and relies on the capture of the secreted
product within a microcapsule or gel that surrounds the
producer cell [46,67,68]. Finally, Brezinsky et al. devel-
oped a strategy that simply "freezes" the product secreted
at that moment in the cell membrane by putting the cells
on ice. Subsequent staining with a fluorescent antibody
against the product allowed to discriminate between cells
according to their secretion rate [59].

Before the establishment of these methods, several
authors used the correlation found in some hybridoma
cell lines between surface expressed IgG and IgG produc-
tion rate to sort for high producers. This correlation is a
specific feature of some hybridoma cell lines, deriving
from B-cell development [69-73], and does not apply for
recombinant proteins. Native surface expression must be
differentiated from the surface capture or entrapment
methods described above. Sorting for surface expression
directly after hybridoma fusion will loose many specific
monoclonal antibody producing cells, which happen to
have no surface expression, while both the microcapsule
technique and the affinity matrix method have been used
successfully for this purpose [64]. Another strategy is the
use of GFP-product fusion genes to sort for cells with high
GFP production, which will also have high production
rates of the gene of interest. However, this strategy has an
inherent problem: the cells need to produce two proteins,
of which only one is required. This puts a considerable,
unnecessary stress on the cell. Although it was shown that
the clones with a 3x higher specific product formation
rate could be found and that the expression of both prod-
uct and GFP is reasonably stable, no data on growth rates
of these clones or on performance in bioreactors was
given [74]. However, these properties are of equal impor-

http://www.microbialcellfactories.com/content/5/1/12

tance for an industrial production cell line as high produc-
tivity.

Even though cell fixation to access intracellular product
seems to be contradictory, as the cells are necessarily
killed prior to sorting, immunofluorescence staining of
fixed cells was successfully applied for sorting of E. coli
cells expressing recombinant superoxide dismutase [75].
As strong overexpression of this as well as many other pro-
teins proved to retard cell growth, the rationale was to
screen for promoter mutants out of a mutation library
which guide less overexpression, thus enabling continued
growth. As the mutation library was localized on a plas-
mid, it was possible to isolate the plasmids out of fixed
sorted cells, retransform them into E. coli, thus rescuing
the desired promoter variant. Interestingly, most of the
sorted promoter variants had multiple point mutations,
which essentially cannot be screened by low throughput
techniques. Figure 3B outlines the principle of plasmid
screening with fixed E. coli cells.

While it seems obvious to apply cell sorting for the selec-
tion of overproducing clones, the number of published
examples dealing with non-protein products is interest-
ingly quite limited. One example is the screening of high
producers of polyhydroxyalkanoates (PHAs). Vidal-Mas et
al. have described a flow cytometry protocol to measure
PHA content of Pseudomonas aeruginosa after Nile red and
SYTO-13 staining, indicating the utility of this method for
cell sorting [76]. Alternatively, Vijayasankaran et al. used
heterologous co-expression of GFP in Pichia pastoris for
the flow cytometry screening of clones with increased
overexpression of three PHA biosynthesis genes, thus iso-
lating strains that accumulated appr. 7 % PHA of the cell
dry weight instead of 3 % for unsorted strains [77]. As GFP
was expressed with an inducible and the PHA biosynthe-
sis genes with a constitutive promoter, the above
described problem of an extra load of GFP synthesis dur-
ing production was avoided. In this setup, GFP was
induced only for sorting, while for PHA production the
gene was silent. While the same group has developed sen-
sitive staining of PHA by BODIPY 493/503 [78], this
probe was apparently not used for sorting.

Several studies have been published on the sorting of
plant protoplasts, e.g. for alkaloid production [e.g. [79]].
For more details the reader is referred to references in [80].
In some cases quite unspecific staining has been success-
fully used for sorting of overproducers. One example is
gramicidin S production by Bacillus brevis, based on the
observation that gramicidin S overproducing cells gave
higher fluorescence signals after fluorescein-isothiocy-
anate (FITC) staining as compared to low or non produc-
ers. By sorting for high FITC fluorescence these authors
were able to isolate a strain with appr. twofold more
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gramicidin S production [81]. It should be noted that the
potentials of sorting based on autofluorescence or unspe-
cific staining are extensive, hence it is not the intention of
this review to list every single application available in the
literature.

Conclusion

While cell sorting is still mainly applied for clinical pur-
poses, there is an increasing interest in biotechnology to
utilize its potential for library screening or strain develop-
ment. The aim of this review was to structure the fields of
cell sorting applications in biotechnology, and to high-
light many of the examples published over the last years.
It turns out that the major fields of use are protein engi-
neering and screening for protein overproduction, both
with microbial and animal cells. However, the potential,
especially for non-protein products, is still by far not fully
utilized.

To design a novel sorting strategy for the improvement of
a product or a production strain, the development of a
suitable analytical method describing the desired proper-
ties adequately is most critical. The full potential of flow
cytometry methods, based on autofluorescence, physio-
logical and metabolite specific probes, immunofluores-
cence, etc. can be utilized for this purpose. After
identifying cell populations with superior properties,
these can be sorted by FACS, thus directly employing the
flow cytometry protocol on a preparative scale. The multi-
parameter analysis option of flow cytometry is an espe-
cially appealing feature, as it enables the simultaneous
screening for overproduction and desirable cellular prop-
erties like robustness under production conditions. The
general screening rule "you get what you screen for" is
especially true for cell sorting, which emphasizes the
importance of development and design of analytical
methods.

By closing the loop back to molecular physiological char-
acterization of sorted strains and to strain development,
one can elegantly perform "inverse metabolic engineer-
ing" [82]. Gaining understanding of the genetic back-
ground of sorted phenotypes enables novel rational
approaches for cell and metabolic engineering which may
further improve the performance of production strains.

Finally, one may envisage a further refinement of systems
biology. At present, most physiological data fed into mod-
els were obtained as average values of cell populations. As
it becomes more and more obvious that clonal cultures
also evolve significant heterogeneities, one can postulate
a significant role of flow cytometry and cell sorting in the
quantitative description of (multi)cellular systems.

http://www.microbialcellfactories.com/content/5/1/12
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