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Abstract

Modeling spatially explicit data provides a powerful approach to identify the effects of exoge-

nous features associated with biological processes, including recruitment of stream fishes.

However, the complex spatial and temporal dynamics of the stream and the species’ repro-

ductive and early life stage behaviors present challenges to drawing valid inference using

traditional regression models. In these settings it is often difficult to ensure the spatial inde-

pendence among model residuals—a key assumption that must be met to ensure valid infer-

ence. We present statistical models capable of capturing complex residual anisotropic

patterns through the addition of spatial random effects within an inferential framework that

acknowledges uncertainty in the data and parameters. Proposed models are used to

explore the impact of environmental variables on Lake sturgeon (Acipenser fulvescens)

reproduction, particularly questions about patterns in egg deposition. Our results demon-

strate the need to apply valid statistical methods to identify relationships between response

variables, e.g., egg counts, across locations, and environmental covariates in the presence

of strong and anisotropic autocorrelation in stream systems. The models may be applied to

other settings where gamete distribution or, more generally, other biotic phenomena may be

associated with spatially dynamic and anisotropic processes.

Introduction

Ecology, hydrology, statistics, and interrelated subdisciplines in aquatic sciences are increas-

ingly integrated to study complex relationships between stream physical features and the life

histories of stream fishes at multiple spatial scales [1–3] that have important implications for
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management and conservation [2]. Research must be conducted in a spatially explicit fashion

because stream hydrogeomorphological features are highly heterogeneous. Data are currently

available for many fluvial systems (e.g., [4]) allowing studies of associations between aquatic

physical data and biological phenomena (e.g., [3, 5]). However, practitioners face challenges

developing and applying models capable of adequately accommodating non-Gaussian

response variables and spatially complex autocorrelation, e.g., directional dependence, of phys-

ical and biotic variables within and among different watersheds and stream segments [1, 3, 6].

Spatial heterogeneity in physical stream characteristics associated with spawning means

that eggs, during and after spawning event, will experience a range of environmental condi-

tions that affect deposition and ultimately survival to subsequent development stages. From a

management perspective, egg count is commonly used as a measure of year class strength;

hence, there is a need to understand the relationships between the complex spatial and tempo-

ral dynamics of stream characteristics and reproductive output. It is, however, often challeng-

ing to develop valid statistical models to draw inferences about processes of interest from such

complex systems—let alone assessing the extent to which findings can be extended to novel

domains. For example, many standard parametric tests or model frameworks require data that

is independent across space [7]. Failing to account for spatial correlation may result in inaccu-

rate parameter estimates and erroneous conclusions regarding associations between environ-

mental covariates and the response variable(s) of interest. Geostatisical methods attempt to

account for spatially correlated residuals by including model components that estimate the

characteristics of the underlying spatial process (see, e.g., [8, 9]).

Most available geostatisical models assume the relationship between point-referenced

observations can be described using a function of Euclidean distance. Specific examples of

such methods within the fisheries literature appear in classical kriging [10] and model-based

survey design [11]. [12] extend these ideas to specify model random effects that accommodate

both space and time dependence structures for modeling fish population dynamics.

Here, we define spatial regression models to quantify the effects of stream environmental

covariates and the spatial dimensions of these effects associated with egg deposition within

and among stream segments. We worked within a geostatistical setting, given that egg counts

(the response) are point-referenced. Because spawning is confined to small stream segments,

modeling spatial dependence using Euclidean distance is sensible. If observations were

recorded along longer stream segments, or entire networks, then we would need to consider

modeling approaches that are not strictly based on Euclidean distance to describe spatial

dependence, see, e.g., [13–16]. Although we do not deal with network distance metrics, care is

needed to specify models capable of accommodating complex residual patterns, e.g., anisot-

ropy, through the addition of spatial random effects, and the use of inferential frameworks

that acknowledge uncertainty in the data and parameters. The models proposed in this paper

were developed to explore relationships between environmental variables and the deposition

of gametes within and among spawning sites.

Many aspects of stream fishes reproductive ecology and physiology are tied to environmen-

tal variables associated with stream habitats [17]. Fishes often rely on exogenous cues to decide

on the location and timing of reproduction [18–21]. Many fish species exhibit behaviors

whereby parental decisions result in gametes being placed into a specific location (e.g., nest)

characterized by a selected suite of environmental features [22, 23]. Other species, such as stur-

geon (family Acipenserformes) are broadcast-spawners. For example, lake sturgeon (Acipenser
fulvescens) are characterized by a promiscuous and aggregate mating system (Bruch and Bin-

kowski 2002). Females are highly fecund (�11,000 eggs/kg; [24]) and have adhesive eggs (2.7-

3.8 mm diameter). Negatively buoyant eggs and sperm are released by groups of females and

males into the water column. Eggs are distributed over broad areas and exposed to spatially
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heterogeneous environmental variables without post-ovulatory parental care. Reliance on

environmental cues suggests that environmental variables that are associated with time and

location of reproduction may be consistent across multiple spatial and temporal scales.

The lake sturgeon mating system and broad distribution of gametes creates a natural exper-

imental setting to develop and illustrate models to investigate the effects of environmental vari-

ables on egg distribution. Because eggs from a single female are distributed passively over large

expanses of stream habitat, micro-spatial heterogeneity in physical stream characteristics asso-

ciated with the location of egg deposition means that eggs will experience a range of environ-

mental conditions. Spawning time and location within and across years are characterized by

differences in several environmental variables including temperature and river flow [20],

which can be high during incubation [25]. High rates of egg mortality in other sturgeon species

have been attributed to developmental arrest, predation, and physical stream processes that

dislodge eggs [26, 27]. Features of stream habitat shown to be associated with egg loss include

substrate [28, 29], ground and surface water exchange [30–32], and water velocity [29, 33].

The goals of this study were to provide insight into the: i) relationship between stream

covariates and lake sturgeon egg deposition; ii) extent to which these relationships can be gen-

eralized to other locales and systems; and iii) level of model sophistication needed to draw

valid inference about these relationships. Regarding the third point, we specifically wanted to

know if failure to account for spatial structure, beyond that described by covariates, results in

inaccurate characterization about the effect of covariates on egg deposition. To explore these

questions, we developed spatial regression models that characterize egg deposition within dif-

ferent stream sections and allow us to quantify the effects of covariates that might affect the

location of egg deposition.

Materials and methods

Study location

The models developed were applied to data from a well-studied lake sturgeon population that

spawn in the Upper Black River (UBR), the primary tributary of Black Lake, MI (Fig 1). The

UBR is relatively narrow and shallow with low average discharge. Spawning occurs within a

shallow (<1.5 m) and wadable section (1.5 km) of the river. Within this section, individuals

spawn during the spring (depending on the year between late April and early June) within six

primary areas over a period of 28-45 days [21]. Seasonal patterns in water temperature and dis-

charge are well characterized and have been shown to predict the timing and location of

spawning activities [20, 21]. The stream hydrology at spawning sites allow unrestricted access

to spawning adults, resulting in detailed observations of spawning behavior (e.g., spawning

location, number of spawners, sex ratios, and spawning duration). Further, accessibility in the

study site allows for the majority of the spawning population to be observed and captured at

the spawning grounds. Enumeration of adult spawning aggregations also identifies the loca-

tion of early life stage rearing habitats. Deposited eggs can be easily collected from stream sub-

strates using sampling gear that is well suited to these stream conditions though not widely

uses in larger rivers. Access to the stream also allows measurement of environmental covariates

that might contribute to egg placement.

Field sampling

Surveys for spawning adults were conducted daily, starting upstream and moving downstream

through the 1.5 km section of river. Upon capture, adults were tagged uniquely by sex with

external floy tags (details in [27]). The location of each spawning aggregation was recorded

using a handheld GPS and permanent stakes were placed along the stream bank. Data were
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collected at four spawning sites selected by spawning lake sturgeon in the UBR. Site 1 was sam-

pled on 5/19/03, Sites 2 and 3 were sampled on 5/10/05 and 5/12/05, and Site 4 was sampled

on 4/25/06, respectively (Fig 1). Transects were conducted across the stream channel

starting�1 m below the observed spawning group and were repeated every 5 m downstream

to cover the area of egg deposition. To ensure spawning had ceased and no new eggs were

deposited, transects were conducted one day after spawning was completed and adults had left

Fig 1. Left panel: star symbol on the inset map of Michigan indicates the Upper Black River study location. The inset box of the Upper

Black River identifies the four spawning site locations with circle symbols. Right panels: provide a characterization of each spawning site

with flow direction indicated with an arrow. River segment lengths over which measurements were taken are approximately 45, 25, 60,

and 30 m, for Sites 1-4.

https://doi.org/10.1371/journal.pone.0204150.g001
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the site. Counts of eggs and measurements of environmental covariates were collected at a 1 m

interval along each transect (see, e.g., Fig 2) using kick nets. Kick nets are a widely used

approach to sample stream benthos including sturgeon [34] and have been used successfully to

collect eggs in other studies (e.g., [35, 36]). Substrate was thoroughly disturbed for 5 seconds

in the area (�0.125 m2) immediately upstream of a small triangular net (305×305×305 mm

opening). The kick net was held immediately down stream of the agitated area to ensure

Fig 2. Point symbols indicate the locations where egg count and environmental covariates were measured at site 3. Underlying surfaces were generated by passing

the given point values through an interpolator.

https://doi.org/10.1371/journal.pone.0204150.g002
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displaced materials were swept into the net. We assume the egg counts are proportional to the

actual eggs present across the range of habitats encountered (deep vs shallow, coarse substrate

vs fine). Materials collected by the kick net were emptied into white bottom trays and all con-

tents were sorted and the number and status (live versus dead) of collected eggs were recorded.

Data on environmental covariates (water depth, water velocity, and substrate size) were col-

lected concurrent with surveys of egg deposition. Stream depth (Depth) was recorded in

meters using a stadia rod. Water velocity (Velocity) at the stream bed was recorded in cubic

meters per second using an electromagnetic flow meter (Marsh-McBirney, Inc.). Average sub-

strate size (AvgSub; mm length along the longest axis) was estimated using four stones col-

lected from either the kick net sample or from the corresponding point on the transect.

Maximum substrate size (MaxSub; mm) was estimated by measuring the largest stone col-

lected within the transect point. Data available from the Dryad Digital Repository: https://doi.

org/10.5061/dryad.tg706dv.

Statistical analyses

Egg deposition. A Poisson regression model was used to relate egg count at sampling

points along the transects and coinciding measures of environmental covariates. This model is

adequate if spatial correlation in the response is completely explained by the covariates.

Because lake sturgeon are broadcast spawners and eggs are extruded into a spatially complex

fluvial environment, egg counts are expected to exhibit strong spatial dependence along the

down-stream and across-stream sampling axes (i.e., similar egg counts in the proximate loca-

tions). Unmeasured covariates or covariates measured at the wrong scale can result in spatial

dependence among the residuals, which violates the model assumptions. Therefore, to accom-

modate any lingering spatial structure, we include a spatially structured random effect in the

model intensity. Given observations arise over a set of locations, say S ¼ fs1; . . . ; sng, where si

is a sample location’s spatial coordinates, we specify the log-link model as:

yðsiÞ � PoissonðmðsiÞÞ; log ðmðsiÞÞ ¼ xðsiÞ
0βþ wðsiÞ; ð1Þ

where y(si) is the i-th sample location egg count, which is assumed to be distributed (“�”) as a

Poisson variable with location specific conditional expectation μ(si). This conditional expecta-

tion comprises vectors of covariates and associated slope parameters, x(si) and β respectively,

and w(si) which provides local adjustment (with structured dependence) and captures the

effect of unmeasured or unobserved spatial covariates.

We assume the random effects follow a zero mean Gaussian Process (GP), w(s)� GP(0,

σ2 ρ(�; θ)), with variance σ2, and correlation function ρ(s, s�; θ), where s and s� are two generic

locations. The vector of parameters θ control the correlation function’s behavior. For a collec-

tion of n locations the n × 1 vector of random effects follows a Multivariate Normal distribution,

w�MVN(0, σ2R(θ)), where RðyÞ ¼ ½rðsi; sj; θÞ�
n
i;j¼1

is the correlation matrix. Spatial correlation

functions of varying complexity are available for defining ρ(s, s�; θ), see, e.g., [37]. A common

choice for the correlation function is an isotropic exponential, ρ(s, s�; θ) = exp(−ϕks − s�k),

where ϕ is the spatial range parameter. Here it is assumed the spatial dependence is the same in

all directions. Given the dynamics of the stream’s flow, isotropy is a rather unrealistic assump-

tion. To explore the possibility of a more complex spatial structure we use an anisotropic form

ρ(s, s�; θ) = exp[−(s − s�)0 [G(ψ)Λ2G0(ψ)]−1(s − s�)]. Here, the rotation matrix G(ψ) controls

directional dependence given the angle parameter ψ and the diagonal matrix Λ defines the rate

of spatial decay along perpendicular axes. Specifically, the positive diagonal elements λ0 and λ1

corresponding to spatial decay parameters for the major and minor axes, respectively [38, 39],

which in our situation corresponds to down stream vs cross stream, respectively.

A lake sturgeon case study in natural stream settings
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When describing a spatial process it is useful to report the distance at which spatial depen-

dence is negligible. This distance is referred to as the effective spatial range, and is defined here

as the distance at which the spatial correlation drops to 0.05. For the isotropic exponential cor-

relation function this is −log(0.05)/ϕ and for the anisotropic form this is −log(0.05)λ, where λ
is a diagonal value in Λ. Note, there are two effective spatial ranges for each anisotropic pro-

cess, one oriented with ψ, and the other perpendicular to ψ.

Implementation and model selection. The proposed models were fit following a Bayes-

ian paradigm [40, 41]. As such, a prior distribution must be assigned to each parameter to

complete the model specification. For all models the β’s received flat prior distributions and

the spatial variance parameters were assigned inverse-Gamma (IG) priors with hyperpara-

meters IG(2, �). This is considered a non-informative prior; with a shape value of 2, the IG dis-

tribution has infinite variance and is centered on the scale value, which is data set specific. The

spatial range parameters λ’s and ϕ’s followed Uniform priors, which are chosen to support a

spatial range from 0 to the maximum inter-location distance in the data set. The rotation

parameters ψ’s also received a data set specific Uniform prior providing rotation estimates

consistent with possible stream flow direction.

To compare several alternative models, we used the Deviance Information Criterion (DIC)

[42]. Letting O be the generic set of parameters being estimated for each model (including ran-

dom effects), we computed the expected posterior deviance DðOÞ ¼ EOjY½� 2 logLðDataj OÞ�,
where L(Data|O) is the first stage likelihood from the respective model and the effective num-

ber of parameters (as a penalty) as pD ¼ DðOÞ � Dð�OÞ, where �O is the posterior mean of the

model parameters. The DIC is then given by DðOÞ þ pD and is easily computed from the pos-

terior samples with lower values indicating better models.

For all models, three MCMC chains, with unique starting values, were run for 50,000 itera-

tions. The CODA package in R (www.r-project.org) was used to diagnose convergence by

monitoring mixing using Gelman-Rubin diagnostics and autocorrelations (see, e.g., [40]). For

all analyses, acceptable convergence was diagnosed within 10,000 iterations (which were dis-

carded as burn-in). The sampler was coded in C++ and Fortran and leveraged Intel’s Math

Kernel Library threaded BLAS and LAPACK routines for matrix computations.

Results

Summary of spawning groups and environmental covariates

As illustrated in Fig 3, the four sampling sites exhibited similar ranges in environmental covar-

iate characteristics including substrate sizes (1-200 mm), maximum substrate size (1-300 mm),

water depth (0.1-1.6 m), and water velocity (0.1-1.6 m3/s). However, the distribution of values

for each environmental covariate indicate that the physical features of areas where eggs were

deposited varied considerably among sites, Fig 3. These distributions suggest Sites 1 and 3

have many sample locations with average and maximum substrate smaller than Sites 2 and 4.

Also, Site 3 has several locations with water velocity greater than the other sites. Fig 2b–2e)

offers a spatial representation of the distribution of these covariates for Site 3. Corresponding

figures for Sites 1, 2, and 4, as well as figures for subsequent analysis results are provided as

supplemental material.

Embryo deposition and environmental covariates

A total of 9,426 eggs were collected across all spawning locations from 651 kick net samples.

Egg counts varied across locations (Site 1 = 2,509, Site 2 = 564, Site 3 = 2,111, Site 4 = 4,242).

Within each site, egg deposition exhibited non-random and spatially-dependent patterns, see,

A lake sturgeon case study in natural stream settings
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e.g., Fig 2(a), often occurring in discrete patches. Eggs were primarily deposited along the

downstream axis on the side of the river where spawning took place and from 0 to 60 m down-

stream from spawning locations.

Both the non-spatial and spatial versions of Model (1) were fit using observations from the

198, 60, 249, and 144 sampling locations surveyed at Sites 1-4, respectively. Table 1 provides

candidate models’ parameter estimates for each site. Looking first at the spatial model’s effec-

tive spatial range parameter estimates, λ0 and λ1, we see there is relatively strong but variable

spatial patterns among the residuals. For example, Site 2 exhibits the shortest effective spatial

range of�5 m, whereas Site 3 shows the longest range of�54 m. For Sites 1, 3, and 4, the dis-

parity between λ0 and λ1 suggests there are strong anisotropic patterns in spatial dependence

and hence an isotropic spatial covariance function would not be appropriate. In each of these

sites ψ describes the orientation of the major spatial range parameter axis λ0. Here we present

ψ in both radians and degrees, where in both cases zero is perpendicular to the west river

bank. Not surprisingly, parameter estimates of λ1 suggest a shorter range of spatial dependence

Fig 3. Frequency histograms for average substrate size, maximum substrate size, water depth, and water velocity for sites 1-

4.

https://doi.org/10.1371/journal.pone.0204150.g003
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perpendicular to water flow. Sites with the maximum egg dispersal distance, e.g., Site 3, also

had the highest average water velocity.

The relatively long effective spatial ranges as well as the magnitude of the spatial variance

parameter values, i.e., σ2, suggest that even after accounting for the covariates there is substan-

tial unexplained spatial pattern in the number of eggs within the spawning sites. The presence

of this residual spatial autocorrelation violates an assumption of the non-spatial equivalent to

Model (1). As noted in Section 1, this violation can result in erroneous estimates of the regres-

sion coefficients associated with the covariates.

Comparison between the non-spatial and spatial model regression coefficients, i.e., β’s, in

Table 1 shows that ignoring the residual autocorrelation does in fact result in very different

conclusions about the association between the covariates and egg deposition. For example, in

Site 1 the non-spatial model estimates the median and 95% credible interval (CI) for βDepth at

-0.44 (-0.61, -0.28), which excludes zero and can hence be considered statistically significant at

a 0.05 level. This estimate suggests that water depth is negatively associated with the number of

Table 1. Summary of egg deposition non-spatial and spatial models’ parameter estimates for each site. Parameter posterior credible intervals, 50 (2.5 97.5) percentiles.

Those β parameters that are significant at the 0.05 level are bolded.

Site 1 Site 2

Parameters Non-spatial Spatial Non-spatial Spatial

β0 1.86 (1.71, 1.99) -1.94 (-4.61, 0.43) 1.42 (0.90, 1.93) -0.27 (-2.54, 2.04)

βDepth -0.44 (-0.61, -0.28) 1.89 (0.11, 3.84) 0.96 (0.33, 1.39) 0.87 (-2.18, 3.44)

βVelocity -0.04 (-0.19, 0.15) 1.18 (-0.21, 2.60) -0.79 (-1.29, -0.35) -0.20 (-2.84, 2.25)

βAvgSub 0.014 (0.012, 0.015) 0.004 (-0.005, 0.013) -0.012 (-0.014, -0.009) -0.015 (-0.034, 0.001)

βMaxSub 0.003 (0.002, 0.004) 0.007 (0.002, 0.012) 0.015 (0.012, 0.018) 0.022 (0.008, 0.039)

σ2 – 5.19 (2.96, 9.56) – 2.42 (1.36, 4.93)

ψ degree – 10.78 (-36.31, 39.46) – -14.49 (-43.19, 43.08)

λ0 – 10.96 (5.00, 16.10) – 2.23 (0.37, 9.51)

λ1 – 5.66 (2.94, 11.65) – 1.83 (0.39, 9.29)

Eff. range (−log(0.05)λ0) – 32.85 (14.98, 48.25) – 6.68 (1.13, 28.50)

Eff. range (−log(0.05)λ1) – 16.97 (8.81, 34.91) – 5.48 (1.17, 27.85)

DIC -8710 -14115 -1548 -2139

pD 5 117.4 5.7 48.5

Site 3 Site 4

Parameters Non-spatial Spatial Non-spatial Spatial

β0 0.02 (-0.12, 0.25) -3.49 (-5.79, -0.41) 0.87 (0.72, 1.01) -4.20 (-7.02, -0.81)

βDepth -0.34 (-0.58, -0.18) 0.68 (-1.36, 2.82) 0.81 (0.62, 0.93) 7.26 (2.05, 9.16)

βVelocity 1.71 (1.57, 1.87) 0.22 (-1.02, 1.50) 1.78 (1.58, 1.96) 2.64 (0.42, 4.42)

βAvgSub 0.016 (0.013, 0.019) 0.019 (0.005, 0.035) 0.009 (0.008, 0.010) 0.002 (-0.004, 0.009)

βMaxSub -0.001 (-0.003, 0.001) -0.009 (-0.020, 0.002) 0.003 (0.003, 0.005) -0.002 (-0.007, 0.003)

σ2 – 10.43 (6.33, 17.35) – 5.84 (3.54, 10.51)

ψ degree – 5.88 (-7.44, 19.98) – 16.94 (-8.51, 64.34)

λ0 – 18.12 (10.84, 22.05) – 10.33 (5.87, 12.14)

λ1 – 6.30 (3.71, 10.40) – 5.045 (2.83, 10.31)

Eff. range (−log(0.05)λ0) – 54.29 (32.48, 66.07) – 30.97 (17.60, 36.37)

Eff. range (−log(0.05)λ1) – 18.89 (11.13, 31.18) – 15.11 (8.47, 30.89)

DIC -6163 -11080 -22051 -28620

pD 5 117.1 5.1 95.4

https://doi.org/10.1371/journal.pone.0204150.t001
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eggs deposited. The relationship between depth and number of eggs changes to positive and

significant after model assumptions are satisfied through the addition of the spatial random

effects. This is presumably a more accurate portrayal of the system. The non-spatial model

identifies more covariates as significant than the spatial model across all sites. Further, once

the residual space dependence is accommodated, there is little consistency in regression coeffi-

cient across the sites. For instance, the spatial model parameter estimates suggest water depth

is significant and positive for Sites 1 and 4, but not in Sites 2 and 3. Maximum substrate size is

significant in Sites 1 and 2 suggesting that larger or coarser substrate is positively associated

with number of eggs deposited—a relationship that does not hold for Sites 3 and 4. In addition

to meeting model assumptions, and presumably providing a more accurate view of the rela-

tionship between deposition and the environmental covariates, the spatial random effects in

Model (1) improves fit to the data as reflected in the consistently lower DIC values given in

Table 1. The larger effective number of parameters, pD, for the spatial models versus the non-

spatial model, is due to the addition of the random effects. The fit of the non-spatial and spatial

models is illustrated in Fig 4(a) and 4(b), respectively. These surfaces can be compared to the

observed values illustrated in Fig 2(a) and shows the spatial model does, in fact, more closely

approximate the distribution of eggs across the stream segment. Fig 4(c) provides the spatial

random effects surface that illustrates where local adjustment to μ(s) is needed to fit the

observed data after accounting for the covariates.

Fig 4. Interpolated surfaces of fitted values from the non-spatial and spatial models (a) and (b), respectfully, and spatial model random effects (c) for site 3. These

fitted values can be compared to the observed egg counts illustrated in Fig 2(a).

https://doi.org/10.1371/journal.pone.0204150.g004
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Discussion

Following from Section 1, the non-spatial models’ parameter estimates provided misleading

conclusions about the relationship between deposition and the covariates. Of 16 environmen-

tal covariates measured across sites (i.e., 4 covariates times 4 sites), 14 were found to be signifi-

cant predictors of egg deposition based on the non-spatial model, compared with only six

when using the more statistically appropriate spatial models, Table 1. Several lines of evidence

including measures of model fit (DIC, pD; Table 1) and the magnitude of spatial range param-

eters demonstrate that without accounting for spatial dependencies, predictions of egg deposi-

tion, and subsequent uses of these predictions, would be inaccurate and misleading from a

biological or management perspective.

The spatial models showed that lake sturgeon egg depositional profiles were spatially auto-

correlated and highly anisotropic across all spawning sites. Comparison of spatial range

parameters revealed that spatial dependence was always greater in the downstream than across

the stream direction. Environmental covariates did not show consistent significant impact

across sites and generally did not explain a substantial portion of responses’ variability. Rather,

the spatial random effects explained the majority of spatial variability in egg distribution.

Importantly, results underscores the need to work within modeling frameworks capable of

capturing residual spatial dependence if we wish to draw valid inference about those covariates

that are included in the model. Examples of egg deposition studies that have failed to use spa-

tial models are common (see, e.g., review by [43]). Failure to incorporate spatial models can

mis-direct efforts to use direct estimates of total egg counts as a measure of recruitment poten-

tial [44]. Comparisons of the actual egg depositional surface (Fig 2(a)) to spatially and non-

spatially fitted egg surfaces in Fig 4 clearly show that if egg count estimates are based on non-

spatial models, results should be interpreted with caution. In dynamic stream environments,

estimates based on a sample of available habitat should not be extrapolated to larger areas to

estimate total reproductive effort (total numbers of eggs).

Despite the specificity of spawning habitats typically selected by lake sturgeon [45], the

known importance of “high quality” habitats [17], the spatial model results suggested consider-

able heterogeneity across sites in the relative magnitude and direction of effects of stream

environmental variates on egg depositional patterns. Assumptions that adult reliance on

environmental cues to time and select locations for reproduction imply that effects of environ-

mental covariates would be comparable across multiple spatial and temporal scales. Adult

behavioral plasticity in spawning site selection (e.g., four sites sampled in this study) resulted

in heterogeneous egg depositional profiles across sites dictated by site-specific environmental

covariates.

Spatial dependence is likely due to the species’ spawning behavior and the physical system

[45, 46]. Eggs are released and subjected to site-specific fluvial dynamics near the stream bed

that non-randomly determine the direction of egg drift and the distance traveled. Model

results suggest some environmental covariates are useful for explaining patterns in egg deposi-

tion, supporting our prediction that hydro-geomophological environmental stream variables

will explain some variability in egg deposition within a site. Specifically, egg deposition was sig-

nificantly associated with substrate maximum and average size. Water velocity and depth were

also found to be significant predictors of egg deposition. Our results are concordant with other

studies that found stream variables including water depth, water velocity, and substrate size

are predictive of egg deposition for migratory fishes [47–49]. The magnitude and direction of

association between numbers of lake sturgeon eggs deposited with substrate size, depth, and

velocity reported in other studies (e.g., [50, 51]) might differ if spatially explicit models were

considered. The effect of flow to generate “hot spots” has been widely described in other
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aquatic organisms (e.g., macroinvertebrates) and is frequently observed in river systems [52].

Our results are consistent with other studies of behaviors such as nest site selection in birds

and in migratory fishes which exhibit clustered or patchy distributions due to abiotic (i.e., hab-

itat) specificity related to the species reproductive ecology [53, 54]. Our proposed models, can

be used in future studies to quantify the impact of additional spawning behavior and physical

system covariates that might help explain patterns seen in the spatial random effects. Poten-

tially useful covariates that influence where eggs ultimately settle include flow at the substrate

subsurface, hyporheic discharge, and other microhabitat characteristics (e.g., interstitial spac-

ing or substrate embeddedness).

Summary

Properly linking components of the physical and biotic environment to currencies of repro-

ductive performance is important to understand population, species, and community

responses to anthropogenic change and abilities of natural systems to deliver ecosystem ser-

vices [55–57]. Our study demonstrates the need to employ appropriate statistical methods to

properly elucidate relationships between response and environmental covariates in the pres-

ence of strong and anisotropic autocorrelation in complex stream systems. As demonstrated

here, ignoring spatial dependence can result in falsely precise estimates of regression coeffi-

cients associated with environmental covariates and erroneous predictions of egg deposition.

If estimates are based on non-spatial models, results should be interpreted with caution. In

dynamic stream environments, estimates based on a sample of available habitat should not be

extrapolated to larger areas to estimate total reproductive effort (total numbers of eggs).

Most commonly applied regression models require the residuals, i.e., after accounting for

covariates, to be independent and identically distributed. In many settings the biotic phenom-

ena of interest exhibit spatial dependence that cannot be completely explained by covariates.

Exploratory analyses of non-spatial model residuals using surface plots, e.g., Fig 4, or vario-

grams (if the response is Gaussian) will typically reveal if there is lingering spatial structure

and hence if a spatial random effect is needed. As shown in this study, residual spatial patterns

can exhibit directional dependence, in which cases an anisotropic spatial correlation function

should used. Failing to account for spatial correlation can result in inaccurate parameter esti-

mates and erroneous conclusions regarding associations between environmental covariates

and the response variable(s) of interest.
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