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Background. In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation;
its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus
laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. Methodology &

Principle Findings. Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both
mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-
apoptotic protein Bcl-xL; Bcl-xL’s effects are dependent upon IkB kinase-mediated activation of the bipartite transcription
factor NF-kB. NF-kB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs
encoding the NF-kB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9
RNA. Conclusions/Significance. These studies reveal a Slug/Snail–NF-kB regulatory circuit, analogous to that present in the
early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both
in development and in the course of inflammatory and metastatic disease.
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INTRODUCTION
The process of transforming relatively immotile epithelial cells into

actively migrating mesenchymal cells, known as epithelial to

mesenchymal transition (EMT), is central to a wide range of

biological processes from mesoderm, mesenchyme, and neural

crest formation to pathogenic fibrosis and metastasis [1–4].

Important players in the regulation of EMT are the zinc finger

transcription factors Snail (Snai1) and its vertebrate paralog Slug

(Snai2). In addition to Snail and Slug, a number of other members

of the Snail family have been identified. In Drosophila melanogaster

there are the Snail-like genes Escargot and Worniu [5–7], and the

more divergent Scratch genes [8]. The duplication event that gave

rise to Snail-like and Scratch-like genes appears to have occurred

before the divergence of proteostomes and deuterostomes [9,10].

The involvement of Snail-like proteins in EMT was first

suggested by genetic studies in Drosophila. Mutations in Snail lead to

the disruption of mesoderm and embryonic lethality [11–13]. As in

Drosophila, mice homozygous for a null mutation in the orthologous

Snail gene fail to form normal mesoderm and exhibit early

embryonic lethality [14]. No mesodermal phenotype was observed

in mice homozygous for a null mutation in Slug [15,16]. The

absence of Slug does lead to defects in melanocyte, hematopoietic

stem cell and germ cell development, and epidermal healing [17–

19]. Slug is expressed in the mesoderm in the chick and exposure

of the early embryo to anti-sense oligonucleotides leads to defects

in mesoderm emergence [20]. In X. laevis Slug mRNA is expressed

zygotically in the dorsal mesendoderm; interference with its

function, through the injection of RNAs encoding dominant

negative proteins, leads to defects in the expression of organizer

(Chordin, Cerberus) and ventrally (Xwnt8, Xvent1) expressed genes

[21]. An important concern about such studies involves the

specificity of ‘‘anti-morphic’’ reagents, given the known regulatory

cross-talk between E-box binding Snail, Slug and basic helix-loop-

helix (bHLH) transcription factors (see below).

In both X. laevis and the chick, Slug appears to have an essential

role in neural crest formation [20,22–24]. In contrast, mutation of

Slug has no apparent effect on neural crest formation in the mouse

[15]. This apparent discrepancy was initially ascribed to

a swapping of Slug and Snail expression domains in the mouse

[25,26]. More recent studies, using a combination of constitutive

and conditional knock out mutations, indicate that neither Slug

nor Snail are required for neural crest formation in the mouse, at

least in the cranial region [16].

Snail-like proteins are generally thought to act as transcriptional

repressors, although Sakai et al [27] report that Slug positively

regulates is own expression. Snail, Slug, and Scratch all bind to E-

box sequences (CANNTG) and can antagonize the activity of

bHLH proteins [8,28–31]. In their role as regulators of EMT, Slug

and Snail have been found to suppress expression E-cadherin and

tight junction components and the forced expression of Slug

disrupts adherens junctions, tight junctions, and desmosomes [32–

39]. Slug and Snail also act as inhibitors of apoptosis [40–44]. Slug

has been found to negatively regulate the expression of the pro-

apoptotic p53 [43] and Puma [45] genes. Subsequent studies have

found that Slug is required for the metastasis of human melanoma

cells [46] and has been implicated in lung adenocarcinoma and

breast carcinoma invasiveness [47–49].
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Sequence analysis indicate that Slugs are more conserved than

vertebrate Snails [50]. Lespinet et al [10] grouped chick (Gallus

gallus) and X. laevis Snails with Slugs rather than with other

vertebrate Snails. Slug and Snail have been found to be

functionally similar, but not identical. For example, injection of

RNA encoding Snail rescues the effects of anti-sense Slug RNA

injection in X. laevis [22] and ‘‘Slug and Snail can be can be

functionally equivalent when tested in overexpression studies’’

[23]. Over-expression of Snail leads to expansion of the neural

crest domain in the chick, much as observed following over-

expression of Slug [51,52]. On the other hand, the need for Snail

expression in the early Drosophila embryo cannot be replaced by

either Escargot or Worniu [53]. Snail and Slug differ in their

ability to induce neural crest markers in X. laevis ectodermal

explants [23], even though Slug alone has been found to rescue

the effects on neural crest following the blocking of both Slug

and Snail activity [see 24]. Slug appears to bind less strongly to

regulatory regions in the E-cadherin protein than does Snail

[38], while Slug, but not Snail, has been found to mediate

genotoxin resistance in human mesothelioma cells [54]. A

microarray-based analysis of MDCK epithelial cells found both

common and distinct sets of genes regulated by Slug and Snail

[55]. Given that Snail [56–59] and Slug [60] can be post-

translationally regulated in terms of both stability and in-

tracellular localization, it remains unclear whether the differences

between the two proteins are intrinsic or are due to protein-

specific post-translational effects.

Previous studies of Slug’s role in X. laevis have used either anti-

sense RNA [22] or dominant-negative proteins [21,23,24,61,62]

to disrupt Slug expression and/or activity. As part of a study to

separate the role of Slug in EMT from its role as a regulator of

apoptosis, we designed a modified anti-sense DNA oligonucleotide

(a morpholino) that blocks Slug expression. In the course of

analyzing the ability of the anti-apoptotic protein Bcl-xL to rescue

the phenotypic effects of this morpholino, we uncovered an

essential role for NF-kB as a regulator of Slug expression in the

early embryo, a regulatory interaction analogous to that observed

in the early Drosophila embryo, and not apparently described

previously in a vertebrate.

RESULTS
Previous studies on the role of Slug in Xenopus have relied on

injection of either anti-sense RNA directed against 39 untranslated

region of the SlugA mRNA [22] or RNAs encoding various

dominant-negative proteins [21,23,24,61,62]. To complement

these studies, we developed a morpholino (Slug MO) directed

against the Slug mRNAs. There are two Slug pseudoalleles in X.

laevis, SlugA and SlugB [63]. The Slug MO is a perfect match to the

SlugA mRNA, has three mismatches to the SlugB mRNA and 12

(out of 25) mismatches with the analogous region of the Snail

mRNA (FIG. 1A). The Slug MO blocked the in vitro translation of

SlugA RNA that contained its target sequence but had no effect on

the translation of mycGFP-Slug RNA, which lacks SlugA’s 59

untranslated region (data not shown).

When injected into one cell of two-cell embryos, the Slug

MO (10 ng/embryo) inhibited expression of the mesodermal

markers Xbra (FIG. 1B,C), Xmenf (FIG. 1D,E), and Antipodean

(Apod)(FIG. 1F,G) in late blastula/early gastrula stage embryos.

In neurula stage embryos, the Slug MO inhibited expression of

Sox9 (FIG. 1H), a marker of cranial neural crest and otic

placodes [64,65]. In later stage embryos, the Slug MO led to the

loss of craniofacial cartilages and the otic vesicle (data not

shown), very much as observed in embryos injected with Slug

anti-sense RNA [22]. Injection of a control MO had no apparent

effect on any of the markers examined (Table 1). As a control for

the specificity of the Slug MO, embryos injected with Slug MO

were injected with RNA encoding mycGFP-tagged Slug; both

normal Sox9 expression (FIG. 1I) and craniofacial morphology

(data not shown) were rescued; injection of RNA encoding myc-

GFP did not rescue either phenotype (Table 1 and data not

shown). Previously, we found that injection of Snail RNA rescued

the phenotypic effects of anti-sense Slug RNA injection [22].

This is also the case with the Slug morpholino; injection of

500 pg/embryo Snail RNA rescued expression of both meso-

dermal and neural crest markers in Slug MO injected embryos

(FIG. 1J–L; Table 1).

Maternal Slug RNA can be detected by RT-PCR [22 and data

not shown] and is expressed zygotically in mesoderm [21]. The

loss of Slug function during late bastula/early gastrula stages

would be expected to influence both neural crest and placodal

development, which depend upon signals from the mesoderm [66–

70]. We generated plasmids that encode chimeric proteins

consisting of glucocorticoid-binding regulatory domain [71,72]

and either Slug alone (GR-Slug) or Slug linked to a C-terminal

GFP moiety (GR-Slug-GFP). In the absence of dexamethasone,

both GR-Slug proteins are inactive and had no apparent effect on

the Slug MO’s ability to block Sox9 expression (Table 2). When

Slug MO and GR-Slug RNA injected embryos were exposed to

dexamethasone beginning at stage 11, Sox9 expression was

efficiently recovered (Table 2).

To examine the timing of Slug’s role in neural crest formation,

we compared the effects of activating the GR-Slug-GFP protein in

mid-blastula (stage 8), early gastrula (stage 11), and late gastrula/

early neurula (stage 13) embryos (FIG. 2; Table 2). Activation of

Slug at stage 8 lead to a complete rescue of both mesodermal

(Xbra) and neural crest/placodal (Sox9) marker expression. Efficient

rescue of neural crest/placodal marker expression was also

observed when Slug was activated at stage 11, but rescue was

much less efficient when Slug was activated at stage 13 (FIG. 2;

Table 2).

Bcl-2/Bcl-xL suppression of the Slug MO phenotype
Inhibition of Slug activity by injection of Slug MO (FIG. 3A),

antisense RNA (data not shown) or RNA encoding a dominant

negative version of Slug (ZnfSlug) leads to increased numbers of

apoptotic cells as visualized by TUNEL staining, while injection of

Slug RNA suppresses apoptosis [61]. In our studies, carried out at

stage 16/17, the increase in TUNEL positive cells was most

prominent outside of the neural crest stage Slug expression

domain, and so presumably represent effects on earlier de-

velopmental events.

To distinguish Slug’s pro-EMT and anti-apoptotic activities, we

injected embryos with RNAs encoding the anti-apoptotic proteins

Bcl-2 (human) and Bcl-xL (X. laevis); both had similar effects and

observations using Bcl-xL are show here. As expected, injection of

Bcl-xL RNA blocked the Slug MO induced increase in TUNEL

staining (FIG. 3B). Bcl-xL also rescued the expression of the early

mesodermal markers Apod (FIG. 3C,D) and Xbra (FIG. 3E,F), the

neural crest/otic placode marker Sox9 (FIG. 3G,H; Table 1), and

craniofacial morphology (data not shown). In stage 16/17

embryos, injection of Bcl-xL RNA led to a dramatic increase in

the level and spatial extent of Slug expression (FIG. 3I). In

ectodermal explants (animal caps), prepared at stage 8/9 from

embryos injected with Bcl-xL RNA, and analyzed at stage 11

(,3 hours later), there was a small (,26) but reproducible

increase in the level of Slug mRNA, as determined by quantitative

RT-PCR (FIG. 3J).

A Vertebrate NF-kB-Slug Loop
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Bcl-xL and Slug regulate NF-kB activity
Bcl-2 and Bcl-xL are structurally similar cytoplasmic proteins. Bcl-

2 can influence gene expression through effects on IkB kinase

activity (IkK)[73–77]. To examine Bcl-xL’s effects on NF-kB

activity in Xenopus, we used the NF-kB responsive p3XkB-Luc

reporter plasmid together a mutated form of human IkBa (IkBsa)

and acetyl-11-keto-b-boswellic acid (AKBA). In IkBsa serines 32

and 36, normally phosphorylated by IkK, are mutated to alanines.

The stable IkBsa polypeptide acts as a dominant repressor of NF-

kB activity [78]. AKBA inhibits IkK activation [79–81]. Treating

animal caps with 50 mM AKBA stabilized an epitope-tagged form

of Xenopus IkBa (FIG. 4A). Fertilized eggs were injected with

p3XkB-Luc plasmid DNA, pTK-Renilla luciferase plasmid DNA

(as a normalization control), and Bcl-xL RNA alone or together

with IkBsa RNA; animal caps were prepared and analyzed for

luciferase activity at stage 11. Alternatively, fertilized eggs were

injected with p3XkB-Luc and pTK-Renilla DNAs and Bcl-xL

RNA, animal caps were prepared and then incubated in control

media or in media containing AKBA. Bcl-xL increased NF-kB

reporter activity and this increase was blocked by both IkBsa and

AKBA (FIG. 4B). On its own, AKBA had little effect on reporter

activity.

Bcl-xL and Slug regulation of Rel expression
Five NF-kB subunit genes have been characterized in X. laevis:

RelA/Rel1 [82,83], Rel2 [84], Rel3 [85], RelB [86] and Xp100

[87]. All five RNAs are supplied maternally and their levels drop

at the onset of zygotic transcription (stage 8/9)(FIG. 5A). As

development proceeds Rel2, Rel3 and Xp100 RNAs are again

detectable by RT-PCR (28 cycles), while RelB RNA does not

reappear until after stage 35 [86]. Bcl-xL RNA levels appear

constant throughout this period [88](FIG. 5A). In stage 16/17

embryos, RelA, Rel2, Rel3, and Xp100 RNAs can be readily

detected by RT-PCR in the anterior-dorsal quadrant of the

embryo; the same region where Slug and Sox9 are normally

expressed (FIG. 5B). RelA appears concentrated in the anterior

dorsal sector, while Rel2 and Rel3, and to a lesser extend Xp100

appear to be present at similar levels throughout the embryo.

To explore the mechanism of Bcl-xL regulation of Slug and NF-

kB, we generated a plasmid encoding a glucocorticoid-binding

Figure 1. Slug morpholino effects: Panel A is a comparison of the Slug morpholino sequence (‘‘MO’’) with X. laevis SlugA, SlugB, and Snail RNA
sequences; start codons are underlined. B–G: Injection of the Slug MO (10 ng/embryo) blocks the expression of Xbra (B-uninjected, C-Slug MO
injected), Xmenf (D-uninjected, E-injected), and Antipodean (Apod)(F-uninjected, G-injected). Arrows (C,E,G) point to region of suppression; vegetal
pole (‘‘VP’’) is indicated. In G, the red staining is due to a b-galactosidase lineage marker. H: Injection of the Slug MO into one cell of a two cell embryo
blocks the expression of Sox9 on the injected side (arrow); ‘‘*’’ marks otic placode domain of Sox9 expression. I: Sox9 expression in Slug MO injected
embryos is rescued by co-injection of mycGFP-Slug RNA (650 pg/embryo). In analogous studies, the effects of the Slug MO (10 ng/embryo) on Xbra
(J), Apod (K) and Sox9 (L) expression were rescued by injection of Snail RNA (500 pg/embryo). In H, I and L, the line marks midline of the embryo, with
anterior (‘‘An’’) and posterior (‘‘Ps’’) indicated.
doi:10.1371/journal.pone.0000106.g001
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domain-Bcl-xL-GFP (GR-BclxL-GFP) chimera. In the absence of

dexamethasone, GR-BclxL-GFP does not alter Slug, RelA, Rel2

or Rel3 RNA levels, while addition of dexamethasone leads to

their increase (FIG. 5C,D), similar to that seen using the non-

hormone regulated form of Bcl-xL (FIG. 3J). No effect was

observed on Xp100 RNA levels (data not shown). While these

effects are small, i.e., 2–3 fold, they are highly reproducible.

Adding the protein synthesis inhibitor emetine blocks the

dexamethasone-dependent increase in Slug and Rel2 RNA levels,

but not the increase in RelA or Rel3 RNA levels; emetine alone

had no reproducible effect on RNA levels (FIG. 5C,D). These

results suggest that Bcl-xL acts directly to regulate RelA and Rel3,

and indirectly to regulate Slug and Rel2 RNA levels. By ‘‘direct’’

we mean a regulatory interaction that does not require on-going

protein synthesis (see Discussion). Bcl-xL activation also leads to an

increase in the level of Snail RNA (FIG. 5E); this increase does not

appear to involve effects on Slug RNA, since it occurs in the

presence of the Slug morpholino.

AKBA treatment blocked Bcl-xL’s ability to increase levels of

Slug, Snail and RelA RNAs (FIG. 5F), suggesting that Bcl-xL acts

on these RNAs, as it does on the NF-kB responsive reporter, by

increasing IkB kinase activity. RelADSP is a dominant negative

form of RelA [89]; it dimerizes with other NF-kB subunit proteins

and blocks their activity. When co-injected with RNAs encoding

Rel3 or Xp52, the active form of the NF-kB subunit protein

Xp100 [87], RelADSP inhibited their ability to activate of the

3XkB-Luc reporter (FIG. 5G) and inhibited Bcl-xL’s ability to

increase RelA and Slug RNA levels (FIG. 5H), indicating that

active NF-kB is required for Bcl-xL to induce increases in Slug and

RelA RNA levels.

Assuming that Bcl-xL acts to rescue the effects of the Slug MO

through its ability to regulate NF-kB activity, injection of RelA

RNA should be able to rescue the Slug MO phenotype. In

embryos injected unilaterally with the Slug MO, injection of RelA

RNA lead to re-appearance of both Xbra (FIG. 6A,B) and Apod

(FIG. 6C,D) RNAs. In later stage, Slug MO-injected embryos,

injection of RelA RNA lead to the reappearance of Sox9

expression in both the neural crest and otic placode regions,

(FIG. 6E,F). A similar rescue of Sox9 expression in Slug MO

injected embryos was observed upon injection of Rel3, or Xp52

RNAs (600 pg/embryo)(Table 1). We have not examined RelA’s

effects on Slug RNA in Slug MO injected embryos because

morpholinos typically stabilize, rather than induce the degradation

of, their target RNAs (unpubl. obs.); RelA does induce an increase

in Slug RNA levels, as monitored by in situ hybridization, when

injected on its own (data not shown – see below).

To complement these studies, we examined the effects of treating

embryos with AKBA or injecting one cell of two cell embryos with

either IkBsa or RelADSP RNAs. AKBA treatment, beginning at the

4-cell stage, led to a noticeable decrease in the intensity of Xbra

RNA staining in early gastrula stage embryos (FIG. 6G), but had

little reproducible effect on Sox9 RNA levels in neurula stage

embryos (data not shown). Injection of IkBsa RNA lead to the

suppression of Xbra (FIG. 6H; Table 1) and the reduction of Sox9

(FIG. 6I) expression. Injection of RelADSP RNA inhibited

expression of Xbra (FIG. 6J), Apod (FIG. 6K), and Sox9 (FIG. 6L).

NF-kB regulation of Slug
To examine whether of NF-kB directly regulates Slug and Snail

RNA levels, we first characterized the effects of RelA and

RelADSP in animal caps; injection of RelA RNA lead to an

increase, while RelADSP RNA lead to a decrease in Slug RNA

levels (FIG. 7A). Using a dexamethasone-regulated form of RelA,

GR-RelA, we found a similar effect – in the presence of

Table 1. Slug Morpholino and Rescue experiments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Injection N Unaffected Reduced/absent In situ

Slug MO@ 42 2/42 (5%) 40/42 (95%) Sox9
(stage 16)

39 11/39 (28%) 28/39 (72%)

20 6/20 (30%) 14/20 (70%)

37 4/37 (10%) 33/37 (92%)

47 4/47 (8%) 43/47 (90%)

Control MO 40 40/40 (100%) 0/40 (0%) Sox9

32 32 (100%) 0/32 (0%)

26 26/26 (100%) 0/26 (0%)

Slug MO+mycGFP-Slug
RNA

45 39/45 (87%) 6/45 (13%) Sox9

42 37/42 (83%) 5/42 (17%)

23 20/23 (87%) 3/23 (13%)

43 28/43 (65%) 15/43 (35%)

Slug MO 30 5/30 (16%) 25/30 (84%) Xbra

27 2/27(7%) 25/27(93%) Xmenf

22 4/22(18%) 18/22(82%) Apod

26 3/26 (12%) 23/26(88%) Sox9

Slug MO+Snail RNA 56 53/56(95%) 3/56(5%) Xbra

28 25/28(89%) 3/28(11%) Xmenf

24 25/28(89%) 3/28(11%) Apod

46 42/46 (91%) 4/46(9%) Sox9

Slug MO+mtGFP RNA 28 5/28 (18%) 23/28 (82%) Sox9

Slug MO+hBcl2 RNA 24 22/24 (92%) 2/24 (8%) Sox9

15 14/15 (93%) 1/15 (7%)

41 27/41 (66%) 14/41 (34%)

49 32/49 (65%) 17/49 (35%)

Slug MO+Bcl-xL RNA 32 26/82 (81%) 6/32 (19%) Sox9

22 16/22 (72%) 2/22 (28%)

Slug MO 51 8/51 (15%) 43/51 (84%) Sox9

33 6/33 (18%) 27/33(82%)

SlugMO+RelA 40 23/40 (58%) 17/40 (42%) Sox9

SlugMO+Re3 86 65/86 (75%) 21/86 (25%) Sox9

SlugMO+Xp52 72 46/72 (64%) 26/72 (36%) Sox9

RelADSP 11 3/11 (27%) 8/11 (72%) Slug

26 8/26 (31%) 18/26(69%)

Slug MO 46 4/46 (9%) 42/46 (91%) Xbra
(stage 11)

Slug MO+Bcl-xL 35 26/35 (74%) 9/35(26%) Xbra

Slug MO+RelA 40 29/40 (73%) 11/40 (27%) Xbra

RelADSP 28 6/28 (22%) 22/28 (78%) Xbra

IkBsa (500 pg/embryo) 32 9/32 (28%) 23/32 (72%) Xbra
(stage 11)

16 5/16 (31%) 11/16 (69%) Slug
(stage 16)

27 11/27 (41%) 16/27 (59%) Sox9
(stage 16)

@The SlugMO was injected at 10 ng/embryo into one cell of a two-cell embryo;
mycGFP-Slug RNA was injected at 500 to 650 pg/embryo; Snail RNA was
injected at 500 pg/embryo, Bcl-2, Bcl-xL, and RelA RNAs were injected at
600 pg/embryo, the RelADSP was injected at 650 pg/embryo.

doi:10.1371/journal.pone.0000106.t001..
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dexamethasone GR-RelA produced an emetine-insensitive in-

crease in Bcl-xL (FIG. 7B), Slug, and Snail RNAs (FIG. 7C). Given

RelA’s ability to induce Sox9 expression in Slug MO injected

embryos (see above), we examined RelA’s effect on Sox9 RNA

levels; activation of RelA led to an increase Sox9 RNA levels even

in the presence of emetine (FIG. 7C).

Targets of Slug regulation

In Drosophila Dorsal, which encodes a RelA homolog, regulates Snail

expression, and Snail in turn regulates Dorsal expression [see 90,

91]. In animal caps, the Slug MO decreased and mycGFP-Slug

increased RelA RNA levels (FIG. 8A), suggesting an analogous

Table 2. Timing of Slug Rescue
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Injection * Probe Number of embryos Percentage unaffected Percentage reduced

Slug MO+GR-Slug

2Dexamethasone Sox9 27 6/27 (22%) 21/27 (78%)

+Dexamethasone at stage 11 Sox9 43 35/43 (81%) 8/43 (19%)

Slug MO+GR-Slug-GFP

2Dexamethasone Sox9 35 9/35 (25%) 26/35 (75%)

+Dexamethasone at stage 11 Sox9 85 77/85 (91%) 8/85 (9%)

Activation time-course

Slug MO+GR-Slug-GFP

2Dexamethasone Sox9 32 6/32 (18%) 26/32 (82%)

+Dexamethasone at stage 8 Sox9 36 30/36 (83%) 6/36 (17%)

+Dexamethasone at stage 11 Sox9 29 20/29 (68%) 9/29 (32%)

+Dexamethasone at stage 13 Sox9 31 8/31 (26%) 23/31 (74%)

2Dexamethasone Xbra 25 0/25 (0%) 25/25 (100%

+Dexamethasone at stage 8 Xbra 33 33/33 (100%) 0/33 (0%)

*One cell of a two-cell embryo was injected with SlugMO (10 ng/embryo) and GR-Slug-GFP (650 pg RNA/embryo). Ethanol-dissolved dexamethasone (20 mM) was
added to the culture medium at stages 8,11,13; and maintained until the embryos were fixed at stage 10 for in situ hybridization analysis for XBra or at stage 16/17 for
Sox9.

doi:10.1371/journal.pone.0000106.t002..
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Figure 2. Timing of Slug rescue of Slug MO phenotypes: To analyze the timing of Slug activity in the early embryo, we injected one cell of two cell
embryos with Slug MO (10 ng/embryo) together with RNA (650 pg/embryo) encoding the chimeric GR-Slug-GFP protein. A: In the absence of the
activating drug dexamethasone, the Slug MO phenotype, i.e. suppression of Xbra expression in stage 11 embryos (A)(arrow) and suppression of Sox9
expression in stage 16 embryos (D), was unaltered. When embryos were treated with dexamethasone (20 mM) beginning at stage 8, there as an
essentially complete rescue of Xbra (B,C) and Sox9 expression (E,H). Treatment of embryos with dexamethasone at stage 11 (early gastrulation) was
also effective at rescuing Sox9 expression (F,H), while addition of dexamethasone at stage 13 (late gastrulation/early neurulation) produced at most
a partial and inefficient rescue of Sox9 expression (G,H).
doi:10.1371/journal.pone.0000106.g002
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regulatory circuit. To characterize Slug’s interactions with

regulatory targets, we used the GR-Slug construct; its activity in

the presence of dexamethasone is similar to that of mycGFP-

tagged and untagged versions of Slug. In animal caps, both

mycGFP-Slug and dexamethasone-activated GR-Slug lead to

increased levels of the neural crest marker Zic5 [92,93](data not

shown) and Sox9 (FIG. 8B). In contrast Aybar et al., [23] reported

that Slug did not induce neural crest markers in animal caps

analyzed at stage 20, ,22 hours after fertilization. To reconcile

these observations, we analyzed animal caps derived from embryos

injected with Slug RNA at stage 11 (our standard analysis time

point) and stage 16; Sox9 RNA levels were increased at stage 11

but had returned to control levels by stage 16 (FIG. 8C), indicating

that factors in addition to Slug are required to maintain Sox9

expression. In independent studies we have found that levels of

Sox3 and SoxD RNAs, whose expression is associated with early

germ layer and neural differentiation, change dramatically in the

period between stage 11 and 14 (C. Zhang, T. Grammer & M.W.

Klymkowsky, unpubl. obs). GR-Slug positively but indirectly

increased levels of Bcl-xL (FIG. 8D), Sox9 (FIG. 8E), RelA, Rel2,

and Rel3 RNAs (FIG. 8F), but had no effect on Xp100 RNA levels

(data not shown).

Figure 3. Rescue of Slug MO effects by Bcl-xL A: Injection of the Slug MO leads to an increase in TUNEL staining. B: This increase is blocked by the
injection of Bcl-xL RNA (600 pg/embryo and co-injected with LacZ RNA). Injected sides of embryos are marked by an ‘‘*’’ and red staining; line marks
midline of the embryo, with anterior (‘‘An’’) and posterior (‘‘Ps’’) indicated. Injection of Bcl-xL RNA (600 pg/embryo) rescues Apod (C- Slug MO
injected, D-Slug MO+Bcl-xl RNA injected), Xbra (E- Slug MO injected, F-Slug MO+Bcl-xl RNA injected), and Sox9 expression (G- Slug MO injected, H-
Slug MO+Bcl-xL RNA injected). I: Injection of Bcl-xL RNA into one cell of a two-cell embryo led to a dramatic increase in the intensity and extent of
Slug expression at stage 16; the region of Slug expression on the uninjected (control) side of the embryo is indicated by the dashed circle. J: Injection
of Bcl-xL RNA produced an increase in Slug RNA levels in animal caps prepared at stage 8/9 and analyzed by QRT-PCR when uninjected embryos
reached stage 11. Ornithine decarboxylase (ODC) was used as normalization control. RNA levels in the control case were set to 100%.
doi:10.1371/journal.pone.0000106.g003

Figure 4. Characterization of Bcl-xL effects on NF-kB activity. A: Fertilized eggs were injected with RNA (650 pg/embryo) encoding Xenopus IkBa-
V5. Beginning at stage 8, experimental embryos were treated with 50 mM AKBA and analyzed at stage 11 by SDS-PAGE/immunoblot using an anti-V5
antibody and the antiSOX3c antibody to visualize endogenous Sox3 protein as a loading control. AKBA treatment stabilized the IkBa-V5 polypeptide.
B: Fertilized eggs were injected with p3XkB-firefly luciferase (‘‘3kB-Luc’’) and pTK-Renilla luciferase (‘‘RL-TK’’) DNAs (10 pg/embryo each) either alone
(‘‘Con’’) or together with Bcl-xL (500 pg/embryo) RNA, or Bcl-xL and IkBsa (600 pg/embryo) RNAs. Alternatively, animal caps prepared from Bcl-xL
RNA injected embryos were cultured in either control buffer (0.1% DMSO), 20 mM or 50 mM AKBA. At stage 11, caps were analyzed for luciferase
activity. Bcl-xL induced an increase in 3XkB-Luc activity that was blocked by either IkBsa or AKBA. Error bars in B reflect standard deviation from the
mean of multiple experiments.
doi:10.1371/journal.pone.0000106.g004
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Caspase-9 encodes an initiator caspase involved in the maternal/

early embryonic apoptotic program in X. laevis, while the effector

caspases-3 and -6 act downstream [94]. Caspase-9 appears to be

a direct and negatively regulated target of Slug, while caspases-3

and -6 appear to be indirect targets (FIG. 8G). In embryos, Slug

MO induced an increase in caspase activity as indicated by

staining with the anti-activated caspase antibody CM1 and

increased cleavage of a caspase-3 target peptide (data not shown).

These results extend those of Tribulo et al., [61] and establish,

apparently for the first time, a direct regulatory interaction

between Slug and caspase-9.

DISCUSSION
In analogy with polymerization reactions, scientific studies often

involve distinct initiation and catalytic events. In this work, the

Figure 5. Bcl-xL regulation of NF-kB RNAs: A: RNA was extracted from eggs and embryos at various stages and analyzed by RT-PCR (28 cycles); levels
of RelA, Rel2, Rel3, RelB and Xp100 RNAs drop between stage 7 and 9 and, except for RelB, increase following gastrulation (stage 12/13). Levels of Bcl-
xL RNA appear relatively constant throughout this period of development. B: At stage 16, embryos were dissected into anterior dorsal (AD), posterior
dorsal (PD), anterior ventral (AV), and posterior ventral (PV) quadrants and RNA was analyzed by RT-PCR; RelB was not expressed at this stage;
expression of RelA, Slug and Sox9 are restricted to the anterior dorsal quadrant, while Bcl-xL, Rel2, Rel3, and Xp100 RNAs can be detected throughout
the embryo. C, D: Animal caps were prepared from embryos injected with GR-Bcl-xL-GFP RNA (‘‘GRBclxL’’)(600 pg/embryo) and either left untreated
(0.1%DMSO)(‘‘Con’’), treated with 20 mM dexamethasone (‘‘+Dex’’), treated first with 100 mg/ml emetine and then dexamethasone (‘‘+Dex+Eme’’), or
treated with emetine alone (‘‘+Eme’’), and analyzed at stage 11 for Slug, RelA (C), Rel2 and Rel3 (D) RNA levels. Treatment with emetine blocked the
increase in Slug and Rel2, but not RelA and Rel3 RNAs; emetine treatment alone produced control or slightly reduced levels of Slug and Rel RNAs. E:
Activation of the GR-Bcl-xL-GFP protein in embryos injected with the Slug MO produces an increase in the level of Snail RNA, analyzed at stage 11. F:
In animal caps derived from GR-BclxL-GFP RNA injected embryos, AKBA (50 mM) inhibited the dexamethasone-induced increases in Slug, Snail, and
RelA RNA levels; while treatment with AKBA alone lead to a decrease in Slug, Snail and RelA RNA levels. G: In animal caps, injection of RelADSP RNA
(600 pg/embryo) blocked Rel3 and Xp52 RNA induced activation of the 3XkB reporter. H: The ability of Bcl-xL RNA to increase levels of RelA and Slug
RNAs in animal caps was blocked by the co-injection of RelADSP RNA. Error bars in C–H reflect standard deviation from the mean of multiple
experiments.
doi:10.1371/journal.pone.0000106.g005

A Vertebrate NF-kB-Slug Loop

PLoS ONE | www.plosone.org 7 December 2006 | Issue 1 | e106



Figure 6. NF-kB regulation of mesodermal and neural markers: The Slug MO induced loss of Xbra (A,B), Apod (C,D) and Sox9 (E,F) expression was
rescued by injection of RelA RNA (600 pg/embryo)(A, C, E-Slug MO alone, B, D, F-Slug MO+RelA RNA). G: Treatment of early embryos with AKBA
(50 mM from the 4-cell stage on) lead to a decrease in Xbra staining (control and AKBA-treated embryos marked). Injection of RNA encoding IkBsa
(H,I) or RelADSP (J–L) had effects similar to that seen in Slug MO injected embryos; that is, both induced the reduction of Xbra (H,J), Apod (K) and
Sox9 (I,L) RNA staining. AKBA treatment had no reproducible effect on Sox9 expression (data not shown). Arrows mark affected regions.
doi:10.1371/journal.pone.0000106.g006

Figure 7. NF-kB’s regulatory targets: A: In animal caps, RelA lead to an increase in Slug RNA levels, while RelADSP produced a decrease. When
activated by dexamethasone (+Dex), the hormone-regulated form of RelA, GR-RelA (600 pg RNA/embryo), induced a similar increase in the levels of
Slug RNA, as well as Snail, Sox9 (B), and Bcl-xL (C) RNAs compared to animal caps from GR-RelA injected embryos not exposed to dexamethasone.
Similar effects were seen in the presence of emetine (+Dex+Eme,), while emetine alone (+Eme) had little effect on any of measured RNA levels. Error
bars in reflect standard deviation from the mean of multiple experiments.
doi:10.1371/journal.pone.0000106.g007
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initiator was the observation that anti-apoptotic proteins rescue

the effects of blocking Slug expression on mesodermal and neural

crest markers. Bcl-xL produced an increase in both Slug and Snail

RNAs and Snail itself is sufficient to suppress the Slug morpholino

phenotype (FIG. 1J–L)[22]. The role of catalyst was played by the

observations of Kirshenbaum and colleagues [73–75,95], who

found that Bcl-2 regulates NF-kB activity by activating IkB kinase

(IkK). Activation of IkK induces the degradation of inhibitory IkB

proteins, leading to increased NF-kB activity. Our studies using

the dominant negative IkBsa protein, the IkK inhibitor AKBA,

and the dominant negative form of RelA, RelADSP, indicate that

Bcl-xL regulates Slug RNA expression via NF-kB in the early X.

laevis embryo (FIG. 9).

Mapping regulatory interactions
In mammalian epithelial cells over-expression of Bcl-2 has been

found to promote EMT [96] and suppress cadherin expression

[97]. Neither study, however, examined the effects of Bcl-2

expression on the levels of Slug or Snail RNAs. NF-kB itself has

been implicated in EMT [98], and has been found to regulate Snail

stability and activity through effects on glycogen synthase kinase 3

[99]. In X. laevis, few promoters have been rigorously defined. It is

possible, however, to tentatively classify regulatory interactions as

direct or indirect based on the ability of hormone-regulated

proteins to influence target RNAs in the presence of protein

synthesis inhibitors. If a regulatory interaction requires or depends

upon on-going protein synthesis, it is classified as ‘‘indirect’’;

‘‘direct’’ interaction are not blocked by protein synthesis inhibitors.

Regulatory interactions are often complex and multifaceted; it is

important to remember that conclusions based on hormone-

regulated proteins need to be characterized further. For example,

if a transcription factor regulates the expression of a gene encoding

a microRNA, which in turn regulates the stability of a target RNA,

its effects will appear as direct even though they are mechanis-

tically indirect. As another example, NF-kB acts as both

a transcriptional regulator [100] and has been reported to

destabilize certain RNAs [101]. This latter activity would appear

as direct in our system. In this light it is interesting to note that

activation of GR-RelA leads to a protein-synthesis independent

decrease in levels of p53 RNA (unpubl. obs); whether this reflects

transcriptional, post-transcriptional, or microRNA-mediated reg-

ulation is not yet resolved.

Neither Bcl-2 or Bcl-xL are thought to regulate gene expression

through direct interactions with DNA or transcription factors, but

rather through effects on various kinases [see 74–76]. Using

a hormone-regulated form of Bcl-xL, RelA and Rel3 appear to be

direct, while Rel2 and Slug appear to be indirect targets of Bcl-xL

regulation. The ability of Bcl-xL to induce changes in RelA, Slug

and Snail RNA levels is inhibited by both the dominant negative

form of RelA, RelADSP and the IkK inhibitor AKBA, suggesting

that Bcl-xL activates IkK, which initiates the destruction of IkB

polypeptides, leading to the activation of pre-existing NF-kB,

which in turn regulates target genes (FIG. 9). The presence of

RelADSP or AKBA blocks these NF-kB-dependent processes and so

blocks the effects of Bcl-xL on both ‘‘direct’’ and ‘‘indirect’’ targets.

NF-kB regulation of Slug
NF-kB subunit proteins are expressed ubiquitously and play a key

role in cellular inflammation and tumor progression [102–106].

NF-kB is known to have a number of regulatory targets, including

IkBa [107,108], which acts to repress, and so limit, NF-kB

activity. In mammalian systems, NF-kB regulates the expression of

a range of anti-apoptotic proteins, including the anti-apoptotic

caspase inhibitor proteins (IAPs), Bcl-2, and Bcl-xL [109–113] and

decreases the activity of the pro-apoptotic p53 protein in renal cell

carcinoma cells [114]. In addition, NF-kB and p53 can inhibit

each other’s activities by competing for the limited pool of CBP/

p300 within the cell [115]. In X. laevis RelA/NF-kB is a positive

regulator of Bcl-xL, Slug and Snail. Slug’s ability to down-regulate

the pro-apoptotic genes Caspase-9 [61] and Puma [45] would be

expected to generate an over-all anti-apoptotic state.

In this light, the decrease in NF-kB RNA levels at the

midblastula transition (FIG. 5A) may be permissive in the

regulation apoptotic processes in later stage embryos [116–118].

A number of drugs, e.g. AKBA and curcumin [79,81,119–121],

inhibit NF-kB activity and increase apoptosis, perhaps by reducing

levels of Slug and/or Snail expression, which may explain at least

part of their anti-tumor effects.

Slug regulation of NF-kB
In X. laevis Slug activates an NF-kB responsive reporter and acts

indirectly to increase levels of RelA, Rel2, and Rel3 RNAs. In

Drosophila Snail also acts indirectly to regulate Dorsal (RelA) by

inhibiting expression of WntD, which acts to inhibit activation of

Dorsal [90,91]. How Slug regulates RelA/Rel3 expression in

Xenopus remains unclear, but preliminary studies indicate that

Drosophila WntD, as well as a number of Xenopus Wnts, inhibit

Bcl-xL-mediated activation of the 3XkB-Luc reporter and reduce

RelA RNA levels (Zhang & Klymkowsky, unpubl. obs.). Whether

Slug acts through the regulation of a Wnt or some other

intermediate, it is apparent that Slug can increase NF-kB activity

and RNA levels in the early Xenopus embryo. Our studies

indicate that NF-kB regulates both Slug and Snail RNA levels and

plays an essential role in mesoderm formation. The presence of

a heretofore unrecognized NF-kB–Slug/Snail regulatory loop in

a vertebrates should have important consequences for our

understanding the conserved and divergent evolutionary mechan-

isms involved in germ layer specification, as well as practical

implications for therapeutic interventions that target NF-kB and

Slug/Snail-mediated EMT and anti-apoptotic processes.

MATERIALS AND METHODS

Embryos and animal caps
X. laevis embryos were obtained following standard protocols

[22,72] from adult animals purchased from Xenopus I, Inc.

(Dexter, MI). Embryos were staged according to Nieuwkoop and

Faber [122]. Fertilized eggs or one-cell of two-cell embryos were

injected with 10–20 nL of solution; ectodermal explants (animal

caps) were prepared from stage 8/9 embryos using a Gastro-

Figure 9. Bcl-xL-Slug-NF-kB network: This diagram focuses on the
regulatory interactions uncovered in the course of our studies (see text
for caveats associated with the identification of direct interactions).
Protein names are underlined, gene names are in italics. Bcl-xL appears
to activate NF-kB through effects on IkK activity and IkB stability. NF-kB
acts directly to regulate Slug, Snail, RelA, and Rel3 levels; NF-kB
regulation of the expression of its inhibitor IkB is based on data from
mammalian systems. Caspase-9 was the only direct target of Slug
identified in our studies; indirect interactions are indicated by dotted
lines.
doi:10.1371/journal.pone.0000106.g009
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masterTM (Xenotech) and cultured until control embryos reached

either stage 11 or stage 16/17 [72,123]. In experiments involving

hormone activation of chimeric polypeptides, whole embryos or

animal caps were treated with 20 mM dexamethasone (Sigma)

alone, or were pretreated for 30 minutes with 100 mg/mL of the

protein synthesis inhibitor emetine (Sigma)[124], prior to dexa-

methasone and emetine treatment. In contrast to cycloheximide

[125], emetine does not induce nodal gene expression under these

conditions [126,127]. RNA was isolated and subjected to either

standard or quantitative RT-PCR (QRT-PCR) analysis as

described previously [123]. Primers for PCR analyses were:

caspase-3 [F59AAGTCTGGAACATCGCAGG39; R59TAAAT-

GAGCCCCTCATCACC39];

caspase-6 [F59TGGACATCAAGGACTGTGGA39; R59CTG-

AACATCAAACCCCAGGT 39];

caspase-9 [F59CCGATGGAGTTTCAAGCAAA39; R59GAC-

TGGGCAGAAGGATTCAG39];

Bcl-xL/Xr11 [F59GTCGGCCTGTATGGAAAGAA39; R59C-

ATGATAGGCGACCCAGTG39] [61];

Slug [F59CAATGCAAGAACTGTTCC39; R59TCTAGGC-

AAGAATTGCTC39];

Snail [F59AAGCACAATGGACTCCTT39; R59CCAATAGT-

GATACACACC39][22];

Sox9 [F59GAGAATGGTAGGCAGCCACCTCGC39;

R59CTGTTGCTGTTGGTCACTGTAATG39](this study);

RelA [F59GCGGATCCGAAGGGCGCTCTGCTGGAAGC39;

R59GCGAATTCAATTTCATCTCCTCCCAAGCA39][86];

Rel2 [F59GCAGTTCCATCACAGCTAAAC39; R59GGTG-

TCTGGTAGCCTTTGGTC39];

Rel3 [F59ATCATGGAAAGTTTGAGGGCA39; R59GGGTG-

GTAACTAAATGGTGTA39];

RelB [F59CCTCAGTACTGTAACTGTCGC39; R59GCAG-

TCTTTACCTACAAGGCC39];

Xp100 [F59CTGATAAACATGCCAGATTAC39; R59GCAC-

ATCAGAGTCACTCTCAG39](this study.

Plasmids, morpholinos, and reporters
pCS2mycGFP-Slug and pCS2mt-GFP have been described pre-

viously [22]. Plasmids encoding dexamethasone-regulated versions

of Slug, RelA and Bcl-xL were generated by subcloning into the

pCS2GR-Sox7-GFP plasmid [127]. A plasmid encoding an

epitope-tagged form of Xenopus Bcl-xL (Xr11)[88] was supplied

by James Maller (UCHSC, Denver, CO); the pCS2-LacZ plasmid

was supplied by Jing Yang (Columbus Children’s Research

Institute); a plasmid encoding human Bcl-2 was supplied by Jean

Gautier (Columbia University); plasmids encoding Xenopus

RelA(Rel1), myc-tagged Rel3, Xp52 (the active form of Xp100),

and a dominant-negative form of RelA, RelADSP, were supplied

by Hugh Woodland (U. Warwick)[83]Beck et al 1998), Ken Kao

(U. Newfoundland)[85,128,129], and Jun-ichiro Inoue (U. To-

kyo)[86,87]. The Xp52 sequence was subcloned into pCS2 to form

pCS2-Xp52. The p3XkB-Luc plasmid, which contains three kB

binding sites driving expression of firefly luciferase [130] and

a plasmid encoding a form of human IkBa (IkBsa) in which serines

32 and 36 have been mutated to alanines [78] were supplied by

Lorrie Kirshenbaum (U. Manitoba). IkBsa is resistant to IkB

kinase phosphorylation and subsequent proteolytic degradation,

and so acts as a dominant-negative regulator of NF-kB activity

[75,78]. The coding sequence for X. laevis IkBa (GENBANK

Accession AAH77876) was isolated by RT-PCR and subcloned

into a pCS2-V5 plasmid to form pCS2-XIkBa-V5. Acetyl-11-

keto-b-boswellic acid (AKBA), a pentacyclic triterpene, inhibits

IkBa phosphorylation and degradation in mammalian systems

[79–81]; it has also been reported to inhibit topoisomerases

[131,132] and 5-lipoxygenase [133]. The effects of AKBA on

IkBa-V5 stability in Xenopus were analyzed using SDS-PAGE/

immunoblot with an monoclonal anti-V5 epitope antibody

(Invitrogen) and the antiSOX3c antibody [123]. Reporter assays

were carried out using the dual luciferase system [123]. Capped

RNAs were generated using Ambion mMessage mMachine kits.

Both fluorescein-conjugated and unconjugated forms of a morpho-

lino directed against the 59 UTR and coding sequence of the SlugA

and SlugB genes (FIG. 1A) [59CGTGGCATTTTCACTGCG-

GGCGGGA39] were used with identical results; these and

a control morpholino were purchased from Gene Tools, Inc.

TUNEL, anti-caspase staining and caspase cleavage

assays
Fixed and sectioned embryos [134] were stained by TdT-mediated

dUTP-biotin nick end-labeling (TUNEL) using a peroxidase-based

kit purchased from Molecular Probes, following the manufacturer’s

instructions. Whole-mount TUNEL [135] was carried out using the

protocol on the Harland Lab website1. The rabbit anti-activated

caspase 3 antibody CM1 (BD Bioscience Pharmingen) was used in

whole-mount immunocytochemistry at a dilution of 1:1000

following standard immunocytochemical techniques [136,137].

For caspase cleavage assays, embryo lysates were prepared and

reactions were carried out in duplicate using one embryo equivalent

of lysate (20 mL) and 80 mL lysis buffer. Reactions were incubated at

37uC for 1 hour with 5 mM of the caspase-3 fluorogenic substrate

Ac-DEVD-AMC (BioMol), after which 990 mL of water was added

and fluorescence was measured using a Hitachi F2000 Fluorescence

Spectrophotometer. Results were analyzed for statistical signifi-

cance using Student’s t-test of the means.

In situ hybridization and Alcian Blue Staining
Plasmids containing the Sox9 coding sequence, isolated by RT-PCR

from neural stage embryos (Fawcett & Klymkowsky, unpublished).

Digoxigenin-labeled antisense probes were generated against Sox9,

Slug [70], Sox2 [138], Sox3 [139], epidermal keratin [140], Xbra

[141], Antipodean (Apod) [142], and Xmenf [143] RNAs and in situ

hybridization was performed following standard protocols [22,72].

Alcian Blue staining was carried out as described previously [134].

Digital images were captured using a Nikon CoolPix 995 Camera

on an Inverted Leica M400 Photomicroskop. Images were

manipulated with Fireworks 8 software (Macromedia now Adobe)

using the ‘‘auto levels’’ and ‘‘curves’’ functions only.
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