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The evolution of spliceosomal introns remains poorly understood. Although many approaches have been used to infer
intron evolution from the patterns of intron position conservation, the results to date have been contradictory. In this
paper, we address the problem using a novel maximum likelihood method, which allows estimation of the frequency of
intron insertion target sites, together with the rates of intron gain and loss. We analyzed the pattern of 10,044 introns
(7,221 intron positions) in the conserved regions of 684 sets of orthologs from seven eukaryotes. We determined that
there is an average of one target site per 11.86 base pairs (bp) (95% confidence interval, 9.27 to 14.39 bp). In addition,
our results showed that: (i) overall intron gains are ;25% greater than intron losses, although specific patterns vary
with time and lineage; (ii) parallel gains account for ;18.5% of shared intron positions; and (iii) reacquisition following
loss accounts for ;0.5% of all intron positions. Our results should assist in resolving the long-standing problem of
inferring the evolution of spliceosomal introns.
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Introduction

Twenty-eight years have passed since the discovery of
spliceosomal introns [1], but their evolution remains poorly
understood. In the ongoing debate on intron evolution, the
central issues include: introns-early versus introns-late, the
mini-gene hypothesis, the proto-splice site hypothesis, rates
of intron gain and loss, and ratio of parallel gain. Recon-
struction of intron evolution from observed data is an
important step toward resolution of these issues.

Although introns have high mutation rates, making it
difficult to trace lineages through sequence homology, their
positions are well conserved [2,3]. Therefore, it is possible to
reconstruct intron evolution by comparing intron positions
among sets of orthologous genes from different species.
There are five basic steps involved in this reconstruction: step
1, sequence genomes and annotate the genes; step 2, select
sets of orthologous genes among species; step 3, align
orthologous genes to produce an intron presence/absence
matrix; step 4, reconstruct a phylogenetic tree of the species
studied; and step 5, make inferences of intron evolution
based on the intron matrix and the phylogenetic tree. Among
these, step 5 is perhaps the most critical, since erroneous
inferences will lead to misunderstandings of intron evolution.
However, to date this step remains the least investigated.

Two main approaches, maximum parsimony (MP) and
maximum likelihood (ML), have been applied to determine
intron evolution from the pattern of intron position
conservation. The MP approach, based on the assumption
that intron gain and loss events occur rarely in evolution,
infers the most parsimonious scenario (measured as a
function of gains and losses). Conversely, the ML approach
infers a scenario with the highest probability of producing
the observed data, for a given model of intron evolution.

In a large-scale study of intron evolution, Rogozin et al. [4]
applied an MP method to infer intron gains and losses along
each branch of a phylogenetic tree of eight eukaryotes using
684 gene orthologs. Their results demonstrated that intron
density at the crown (plant–animal) ancestor is relatively high

(nearly one-third of the density found in humans). Gains
outweighed losses in some lineages; in others, the opposite
trend was observed. However, overall there were two gains
per loss, suggesting a more important role for intron gain
than loss during the course of eukaryotic evolution. In
another large-scale study of 2,073 sets of orthologs from four
fungal species, Nielsen et al. [5] used an MP method to infer
intron gains and losses, then used a probabilistic model to
correct the numbers. They found that intron gains are on a
par with intron losses in the four species investigated.
Roy and Gilbert [6,7] applied an ML method to the above

mentioned dataset of eight eukaryotes (excluding one
species). Their results were somewhat surprising: the genes
of the crown ancestor were rich in introns (about two-thirds
the density found in humans), and many lineages exhibited a
notable excess of intron losses over gains. The ratio between
gains and losses in this study was 0.7, suggesting a general
trend toward decreased intron density. In another study, Qiu
et al. [8] applied a Bayesian network method, also based on
the ML principle, to infer the evolution of introns in ten gene
families containing a total of 677 sequences. Their results
suggest that many of the intron positions shared across
various species are the result of independent gains, and are
not due to conservation of intron position.
The results of the two ML methods clearly contradict each
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other and also differ significantly from results of the MP
methods. This may be because of the different assumptions
they made about the number of target sites; a target site is
defined here as a possible position for intron insertion in the
multiple-sequence alignment of all species. The number of
target sites thereby includes all observed sites, plus possible
sites that had introns in the past or may have introns in the
future. The method of Roy and Gilbert [6,7] assumes that
parallel gains do not occur at all, which will happen only
when the number of target sites is many orders of magnitude
larger than the number of observed sites. In contrast, the
method of Qui et al. [8] assumes that the number of target
sites is the number of observed sites.

In this paper, we propose a new ML method, the underlying
basis of which is the treatment of target site number as a
parameter requiring optimization. A log-likelihood function
was formulated to allow optimization of the number of target
sites, and an expectation-maximization (EM) algorithm was
developed to optimize the log-likelihood function. Our
results paint a different picture from those provided by
previous ML methods.

Results

Test between the Coelomata and Ecdysozoa Hypotheses
There are two hypotheses to explain the relationships of

three eukaryotic groups: arthropods, nematodes, and deuter-
ostomes (Figure 1) [9]. The coelomata hypothesis joins
arthropods and deuterostomes, placing nematodes as the
outgroup; the ecdysozoa hypothesis joins the arthropods and
nematodes. Since our dataset includes representatives from
all three groups (Drosophila melanogaster and Anopheles gambiae
as arthropods, Caenorhabditis elegans as a nematode, and Homo
sapiens as a deuterostome), we first tested both hypotheses
using the pattern of intron position conservation. In our
method, the maximum log-likelihood values for each tree
configuration are computed, after which a v2 test with one
degree of freedom is performed for the value�2logK, where
K is the likelihood ratio. The maximum log-likelihood value

for the ecdysozoa hypothesis was �255.48 (Figures 2 and 3),
whereas that for the coelomata hypothesis was �276.09
(Figure S1). Thus, �2logK ¼ 41.22. Consequently, the
coelomata hypothesis was rejected in favor of the ecdysozoa
hypothesis (p , 10�9), a result consistent with that of another
proposed method [9]. However, our method is simpler and
appears to have a more sound mathematical basis. Hereafter,
we will adopt the ecdysozoa hypothesis as the phylogenetic
tree of the species studied.

Reconstruction of Intron Evolution
The maximum likelihood estimator (MLE) of h (see

Materials and Methods for the definition of h) was 0.071
(95% confidence interval [CI], 0.055–0.096; Figure 2). As a
result, there was an average of one target site per 11.86 base
pairs (bp) of sequence (95% CI, 9.27–14.39 bp), or 8.43 target
sites per 100 bp (95% CI, 6.95–10.79).
Figure 3 shows the MLEs of the numbers of intron gains

and losses along each branch of the phylogenetic tree. All
branches leading to H. sapiens, and the terminal branch
leading to Arabidopsis thaliana, experienced many more gains
than losses. In contrast, all other branches except that leading
to C. elegans experienced many more losses than gains. Losses
along the terminal branch leading to C. elegans slightly
outnumbered gains. In total, there were 6,382 gains versus
5,099 losses.
Figure 3 also shows the numbers of introns at internal

nodes corresponding to the MLEs of the parameters. The
intron density in the crown (plant–animal) ancestor was
approximately one-third of that in H. sapiens, and increased
until the bilateral ancestor appeared, after which it decreased
in other lineages, while continuing to increase in H. sapiens.
The intron density also increased in the terminal branch
leading to A. thaliana, but decreased in the terminal branch
leading to Schizosaccharomyces pombe. Although our method
cannot infer the intron density at the root node of the
phylogenetic tree, it inferred that 107 intron positions (the
parameter Q11 in Protocol S1) were shared between Plasmo-
dium falciparum and the crown ancestor. This number will
become the lower bound for intron density at the root node if
we apply the MP principle to the two deepest branches.
We also measured the frequencies of parallel intron gain

and reacquisition following loss. Using our model of intron
evolution, and incorporating the rates of intron gain and loss
depicted in Figure 3, double parallel gains accounted for
;18.2% and triple parallel gains accounted for ;0.3% of the

Figure 1. Two Hypotheses for the Relationship among Three Groups:

Arthropods (A), Nematodes (N), and Deuterostomes (D)

The coelomata hypothesis is shown on the left, and the ecdysozoa
hypothesis is shown on the right.
DOI: 10.1371/journal.pcbi.0010079.g001
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Synopsis

When did spliceosomal introns originate, and what is their role?
These questions are the central subject of the introns-early versus
introns-late debate. Inference of intron evolution from the pattern of
intron position conservation is vital for resolving this debate. So far,
different methods of two approaches, maximum parsimony (MP)
and maximum likelihood (ML), have been developed, but the results
are contradictory. The differences between previous ML results are
due predominantly to differing assumptions concerning the
frequency of target sites for intron insertion. This paper describes
a new ML method that treats this frequency as a parameter
requiring optimization. Using the pattern of intron position in
conserved regions of 684 clusters of gene orthologs from seven
eukaryotes, the authors found that, on average, there is one target
site per;12 base pairs. The results of intron evolution inferred using
this optimal frequency are more definitive than previous ML results.
Since the ML method is preferred to the MP one for large datasets,
the current results should be the most reliable ones to date. The
results show that during the course of evolution there have been
slightly more intron gains than losses, and thus they favor introns-
late. These results should shed new light on our understanding of
intron evolution.

New Estimators for Intron Evolution



intron positions shared across two or more species (excluding
P. falciparum). The probability that more than three introns
would be gained in parallel at the same position was close to
zero. Therefore, the total number of parallel intron gains
accounted for ;18.5% of the shared intron positions. This
result is slightly higher than the predicted range of 5% to
10%, but still less than the upper bound of 20% reported in a
study using a different method on the same dataset [10]. The
probability of reacquisition following loss was also small
(;0.5% of the total intron positions).

The observed and expected (using the MLEs of the
parameters) numbers of cases for each external intron pattern
are presented in Table 1. Since many expected numbers are

,5, the v2 test cannot be used directly. Therefore, we grouped
75 intron patterns showing values of ,3 into five new equally
sized categories, and the result of the v2 test was not
statistically significant (v2¼ 36.15 with 56 df, p¼ 0.98).

Verification of the Present Results
Since the log-likelihood function is highly complex and no

closed form is available for calculating the MLEs of the
parameters, three numerical methods were applied. The first
was based on an EM algorithm, the second on a downhill
simplex (DS) method, and the third on a genetic algorithm
(GA). See the Materials and Methods section for details on all
of these methods.
The present results were obtained using the EM algorithm,

the advantage of which is its rapid convergence to a solution
(Figure S2). However, its disadvantage is that its solution may
not be the global maximum, but rather a local maximum, or
even a stationary point. Therefore, the two other methods
were used to verify whether or not the EM algorithm had
found the global maximum. The DS method has the advantage
that it does not require derivatives of the function to be
optimized, and is less likely to be trapped in local maxima
than other iterative methods such as EM. However, it is quite
computationally expensive. The GA method is also unlikely to
be trapped in local maxima, although its solution quality is
not as high, and it is time-consuming. Over ten runs, neither
DS nor GA methods showed an improvement in results;
further, the best of each of these ten runs produced similar
results to the EM algorithm (unpublished data). Therefore, it
is highly likely that the EM algorithm found the global
maximum. The fact that the EM algorithm, using h ¼ 100,
produced almost the same results as a previous ML method [7]
provides further support for this conclusion (Figure 4).

Discussion

Implications of Target Site Frequency
To the best of our knowledge, ours is the first estimate of

frequency of target sites, and can be accounted for by two
hypotheses. The first is the exon theory of genes, which
postulates that present-day exons are remnants of primordial
mini-genes (;45–60 bp long) from the time of the last common
ancestor of prokaryotes and eukaryotes [11]. The second is the
proto-splice–site hypothesis, which predicts that introns are
not inserted randomly, but only into proto-splice sites. It is
proposed that proto-splice sites contain the sequence MAGjR
[12] or MAGjGt [13], where M is A or C, and R is A or G. Based
on our results, if the former hypothesis is true, then the average
length of mini-genes should be ;12 bp. On the other hand, if
the latter hypothesis holds true, there should be ;8.4 proto-
splice sites per 100 bp. The average length of 12 bp, however,
appears to be too short for mini-genes, which are supposed to
be 45–60 bp long. Moreover, it is unlikely that introns mostly
lost during the archaea period were then reacquired by H.
sapiens and A. thaliana. Therefore, we believe that the proto-
splice site hypothesis is the more likely explanation for our
results. However, the estimated frequency of the pattern
MAGjR in the whole genomes of the six species we examined,
excluding A. gambiae, is 2%–3% (unpublished data) and
therefore too small to explain the optimal value of 8.4%.
Consequently, the consensus pattern of proto-splice sites may
need to be re-determined.

Figure 3. MLEs of the Number of Gains and Losses Using the Ecdysozoa

Phylogeny

Numbers of introns present in modern species (known) are in black.
Numbers of introns present in ancestors (estimated) are in green.
Numbers of gains and losses (estimated) are in red and blue, respectively.
Branches that experienced .1.5 gains per loss are shown in red, and
those that experienced .1.5 losses per gain are in blue. D.mel, D.
melanogaster; A.gam, A. gambiae; C.ele, C. elegans; H.sap, H. sapiens;
S.pom, S. pombe; A.tha, A. thaliana; P.fal, P. falciparum.
DOI: 10.1371/journal.pcbi.0010079.g003

Figure 2. Relationship between h and the Maximum Log-Likelihood

Value

The ecdysozoa phylogeny was used. The maximum log-likelihood value
was calculated by treating all parameters other than h as nuisance
parameters and maximizing over them. The arrow shows the MLE of h as
0.071. The horizontal line indicates a 95% CI of 0.055–0.096. The
maximum log-likelihood value at the MLE of h was�255.48.
DOI: 10.1371/journal.pcbi.0010079.g002
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Relative Importance of Intron Gains and Losses

Our results show a slight excess (;25%) of intron gains
over losses (6,382 versus 5,099). However, there was an excess
of intron-lost branches over intron-gained branches (five
versus four). Since these results may change upon addition of
more species, the conclusions about the relative importance
of intron gain and intron loss will depend upon the balance
of future datasets. Assuming that the seven species studied
here represent a balanced dataset, our conclusion is that
intron gain has played a slightly larger role than intron loss
during the course of eukaryotic evolution, but that the
relative importance may vary with time and lineage.

Note that the results shown here were determined using the
intron patterns in conserved alignment regions. We predict
that the relative importance of intron gain and loss would tip
more toward intron gain if complete alignments were used, as

suggested by the results of Rogozin et al. [4].However, we donot
know what the effect of misalignments would be in this case.
Figure 3 shows that rates of intron gain and loss vary

significantly among distantly related species, but only slightly
among more closely related species (e.g., between D.
melanogaster and A. gambiae). Moreover, except for the
ecdysozoa–C. elegans branch in which intron gains and losses
are approximately in balance, the other branches experi-
enced either many more gains than losses, or losses than
gains. There seems to be an inverse relationship between
rates of gain and loss on each branch. One possible
explanation for this pattern is that the rates of intron gain
and loss may be controlled by selective pressure exerted
through genome compaction and expansion. This pressure
should vary significantly among distantly related species, but
only slightly among those more closely related.

Table 1. Observed and Expected Numbers of Cases for Each External Intron Pattern

Intron

Pattern

Observed

Cases

Expected

Cases

Intron

Pattern

Observed

Cases

Expected

Cases

Intron

Pattern

Observed

Cases

Expected

Cases

0000001 147 148.6 0101100 84 84.9 1010111 0 0.0

0000010 137 134.7 0101101 6 13.6 1011000 2 2.9

0000011 87 84.5 0101110 14 11.0 1011001 0 0.2

0000100 798 801.8 0101111 33 22.7 1011010 0 0.2

0000101 13 10.8 0110000 24 23.6 1011011 2 0.4

0000110 10 9.1 0110001 1 0.5 1011100 2 0.7

0000111 13 14.4 0110010 0 0.5 1011101 0 0.1

0001000 1844 1850.9 0110011 2 0.8 1011110 3 0.1

0001001 82 69.8 0110100 0 1.9 1011111 1 0.2

0001010 60 57.2 0110101 0 0.2 1100000 24 24.8

0001011 102 109.9 0110110 1 0.2 1100001 0 0.3

0001100 246 233.2 0110111 1 0.4 1100010 2 0.3

0001101 28 34.1 0111000 49 64.5 1100011 2 0.4

0001110 23 27.7 0111001 6 5.3 1100100 2 1.3

0001111 53 57.1 0111010 3 4.3 1100101 0 0.1

0010000 200 199.1 0111011 14 8.7 1100110 0 0.1

0010001 1 1.2 0111100 11 16.9 1100111 0 0.2

0010010 0 1.0 0111101 2 2.7 1101000 26 32.8

0010011 2 1.0 0111110 1 2.2 1101001 2 2.7

0010100 7 5.6 0111111 9 4.6 1101010 1 2.2

0010101 1 0.2 1000000 307 295.2 1101011 6 4.4

0010110 0 0.2 1000001 2 1.4 1101100 7 8.5

0010111 0 0.3 1000010 1 1.2 1101101 0 1.4

0011000 46 50.9 1000011 0 0.9 1101110 1 1.1

0011001 7 3.7 1000100 3 7.2 1101111 1 2.3

0011010 4 3.0 1000101 0 0.1 1110000 2 1.5

0011011 5 6.1 1000110 0 0.1 1110001 0 0.1

0011100 9 12.0 1000111 0 0.2 1110010 0 0.0

0011101 4 1.9 1001000 14 26.8 1110011 0 0.1

0011110 1 1.6 1001001 2 1.5 1110100 0 0.2

0011111 5 3.2 1001010 3 1.2 1110101 0 0.0

0100000 2001 2009.8 1001011 2 2.4 1110110 0 0.0

0100001 10 10.7 1001100 4 4.9 1110111 0 0.0

0100010 7 9.5 1001101 1 0.8 1111000 8 7.2

0100011 5 8.2 1001110 1 0.6 1111001 1 0.6

0100100 59 53.3 1001111 2 1.3 1111010 2 0.5

0100101 1 1.7 1010000 1 2.2 1111011 5 1.0

0100110 0 1.4 1010001 0 0.0 1111100 2 1.9

0100111 2 2.6 1010010 0 0.0 1111101 2 0.3

0101000 423 378.3 1010011 0 0.0 1111110 0 0.3

0101001 22 26.4 1010100 0 0.1 1111111 1 0.5

0101010 18 21.5 1010101 0 0.0 Sum 7221 7221.0

0101011 27 43.2 1010110 0 0.0

The order of species in intron patterns is P. falciparum, A. thaliana, S. pombe, H. sapiens, C. elegans, A. gambiae, and D. melanogaster. The expected numbers were calculated using the MLEs of the parameters.

DOI: 10.1371/journal.pcbi.0010079.t001
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Implications for the Introns-Early versus Introns-Late Debate
Two theories, introns-early and introns-late, have been

proposed for the origin of spliceosomal introns. The introns-
early theory asserts that introns were required to facilitate
the assembly of early genes and were already present in the
last common ancestor of prokaryotes and eukaryotes. Thus,
this theory suggests that intron loss is the main driving force
for intron evolution [14–17]. In contrast, the introns-late
theory suggests that introns were gained after the emergence
of eukaryotes and that intron gain plays a major role in the
modern distribution of introns [18–20]. Many attempts have
been made to resolve the debate (e.g., [21,22]). Although our
results do not provide a definitive answer, they appear to lend
more support for the introns-late theory. In particular, our
results indicate that eukaryotic evolution has not been
characterized by a general decrease in intron density, as
predicted by the introns-early theory. With regard to the
lineage leading to D. melanogaster, intron gains were dominant
during the period from the crown ancestor to the bilateral
ancestor, and intron losses were dominant after this point.
There are two scenarios for intron evolution during the
period between the last common ancestor of eukaryotes and
the crown ancestor: either an increase or a decrease in intron
density. As there would be only one turning point in the
former, but two in the latter, the parsimony principle favors
the former scenario in which intron density increased during
the earliest stage of eukaryotic evolution.

Comparison with Previous ML Methods
Our results differed greatly from those obtained by Roy

and Gilbert [6,7], whose estimates for the numbers of introns
at internal nodes were larger than ours. They determined an

intron density in the crown (plant–animal) ancestor that was
nearly twice that of our results. Their method also tended to
infer fewer intron gains and more losses for each branch of
the tree. On two branches, one from the crown ancestor to
the opisthokont ancestor, and the other from the bilateral
ancestor of H. sapiens, Roy and Gilbert’s method predicted
that gains and losses were approximately in balance. In
contrast, our method predicted a notable excess of intron
gains over losses. A possible explanation for these differences
is that their model assumes that parallel intron gains do not
occur [6,7]. This would lead to the assumption that the
number of target sites must be extremely large, and would in
turn bias the results. To test this hypothesis, we ran the EM
algorithm with h set to 100 (Figure 4), and the results
generated were almost identical to those of Roy and Gilbert
[6,7], thereby supporting our explanation for the differences.
However, a valid value for h should be in the range (0, 1),
where h¼ 0 indicates that the number of target sites is equal
to the number of observed splice sites, and h¼1 indicates that
the number of target sites is equal to the total length of the
alignments. Therefore, the value h¼ 100 is unrealistic, since it
implies that the number of target sites is approximately 100
times the total length of the alignments. Consequently, their
results appear to underestimate intron gains and to over-
estimate losses.
Our results also contradicted the findings of Qui et al. [8],

who determined that most intron positions shared between
kingdoms were the result of parallel gains. Although different
datasets were used, the contradiction may have occurred
because their approach includes the assumption that the
number of target sites equals the number of observed intron
positions (i.e., equivalent to h ¼ 0 in our method). This
assumption may lead to an overestimation of the rate of
intron gain, which in turn leads to an overestimation of
parallel gains. When we used h ¼ 0, our method produced
results in which the ratio of parallel gain reached ;98.4%,
thus supporting our explanation of the differences between
the two methods. Additionally, since their dataset contains an
average of 68 sequences per gene family, the total number of
intron patterns is 268. This is much larger than 49, which is
the average number of intron positions per gene family. Thus,
it is possible that their sample dataset was insufficiently large
for a valid statistical inference.
Note that assumptions about the target site frequency of

both previous ML methods represented extreme versions of
our method (h¼ 100 and h¼ 0) and were outside the 95% CI
(0.055–0.096). Their log-likelihood values were �282.28 and
�2199.16, respectively. Thus, they were both rejected in favor
of the MLE of h (p , 10�10 by v2 tests, 1 df).

Comparison with MP Methods
Rogozin et al. [4] were the first group to apply MP to the

problem of inferring intron gains and losses in the dataset
that we used. However, they reported results only for the
coelomata phylogeny; another group reported results for the
ecdysozoa phylogeny [6,7]. When compared with our method,
their method appears to underestimate the number of
introns at all of the internal nodes, as well as the number of
intron losses on all branches. Furthermore, the number of
intron gains was underestimated on all internal branches, but
overestimated on several terminal branches (e.g., those
leading to H. sapiens, D. melanogaster, and A. gambiae). These

Figure 4. Comparison of Results between the EM algorithm (h ¼ 100)

and a Previous ML Method [6]

The results of the EM algorithm when using h¼ 100 are shown. Numbers
in parentheses indicate the differences between the two results using
our results as the benchmark. Numbers of introns present in modern
species (known) are in black. Numbers of introns present in ancestors
(estimated) are in green. Numbers of gains and losses (estimated) for
each branch are in red and blue, respectively. Branches that experienced
.1.5 gains per loss are shown in red, and those that experienced .1.5
losses per gain are in blue. D.mel, D. melanogaster; A.gam, A. gambiae;
C.ele, C. elegans; H.sap, H. sapiens; S.pom, S. pombe; A.tha, A. thaliana;
P.fal, P. falciparum.
DOI: 10.1371/journal.pcbi.0010079.g004
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variations are believed to be caused by the differences
between ML and MP. In an MP method, the most parsimo-
nious scenario is always chosen, even though the next-most
parsimonious scenario has a close probability of occurrence.
Let us consider an intron pattern in which the chances of the
most and the next-most parsimonious scenarios occurring
are 51% and 49%, respectively. In the MP method, 100% of
cases will be assigned to the most parsimonious scenario,
while none will be assigned to the next-most parsimonious. In
the ML method, 51% and 49% of cases will be assigned to the
most parsimonious and the next-most parsimonious scenar-
ios, respectively.

Although the results obtained by the method of Nielsen et
al. [5] are not available for the dataset used in this study, we
believe that they should fall somewhere between the results of
Rogozin et al. [4] and ours. Nielsen et al. [5] used a
probabilistic model to correct some intron patterns, for
which the possibility of the next-most parsimonious scenario
was high, thereby reducing the gap between the results using
ML and MP.

Although the debate between ML and MP is vigorous
[23,24], much of it relates to the problem of phylogenetic tree
reconstruction, and may not be relevant to the problem of
intron evolution prediction. Errors in predicting the number
of events can still lead to the correct tree. Therefore, we
believe that ML will be a better predictor of intron evolution
when there is a large amount of sample data, such the dataset
used in this study. MP may be the method of choice when the
sample dataset is insufficiently large for a valid statistical
inference (such as the dataset of Qui et al. [8]). Investigating
the performance of these two approaches in their prediction
of intron evolution will be the subject of future work.

Future Applications
The method presented here may also be applied to at least

two other problems: (i) determination of the phylogenetic
tree of eukaryotic species based on the conservation of intron
positions; and (ii) inference of rates of gene gain and loss on a
genomic scale. For the former, we would consider the
phylogenetic tree T as a parameter needing to be optimized,
and find the MLE of T over all tree configurations; for the
latter, we would need to construct a gene presence/absence
matrix, rather than an intron presence/absence matrix.

Materials and Methods

Dataset. We used the 684 eukaryotic clusters of orthologous genes
(KOGs), which are available at ftp://ftp.ncbi.nlm.nih.gov/pub/koonin/
intron_evolution [4]. Each KOG contains genes from eight eukar-
yotes: D. melanogaster, A. gambiae, C. elegans, H. sapiens, S. pombe,
Saccharomyces cerevisiae, A. thaliana, and P. falciparum. Multiple protein
sequence alignments and intron presence/absence matrices of these
KOGs were downloaded from the above site. Following Roy and
Gilbert [6,7], we only extracted intron patterns in conserved
alignment regions and excluded S. cerevisiae due to its sparse intron
distribution. The total length of conserved alignment regions in the
dataset was 488,157 bp. The number of intron positions in these
conserved regions was 7,221; the number shared across two or more
species was 1,787. When the outgroup P. falciparum was excluded, the
number of intron positions was 7,049 and the number shared was
1,722.

The log-likelihood function. Our model of intron evolution
assumes that introns are inserted independently and uniformly at
all available target sites. Similarly, intron loss occurs with equal
probability at all sites possessing introns, regardless of when they
were inserted. Rates of gain and loss are assumed to be constant along
each branch of the phylogenetic tree, but they can vary between

branches. As suggested by the results of Rogozin et al. [4] and
Stoltzfus et al. [25], our model does not allow ‘‘intron sliding.’’
However, our model does differ from some of the others in that it
allows for both parallel gains and reacquisition following loss.

Given the model of intron evolution described above, our problem
can be defined as follows: Let N be the number of species, G be the
total length of all alignments in bp, and T be the phylogenetic tree of
these species. Since the phylogenetic tree T is binary, it contains N
external nodes, each corresponding to a species, M ¼ N � 1 internal
nodes, with each node corresponding to a divergent event, and B ¼
2M branches (including N external branches). An external intron
pattern is a binary sequence s1s2...sN of length N. When si¼ 0 or 1 (i¼
1, 2, ..., N), this means that an intron is absent or present at the ith
external node. The definition of an internal intron pattern is similar,
but with length M instead of N. There are 2N (indexed from 0 to 2N�
1) possible external intron patterns, and 2M (indexed from 0 to 2M�
1) internal intron patterns. For the ith external/internal intron
pattern, the binary code of i will give the intron states of the external/
internal nodes. For example, for N ¼ 4, the binary code of external
intron pattern i¼ 3 will be ‘‘0011.’’ Thus, an intron will be absent at
the first and second species, yet present at the third and fourth
species in this pattern. We denote ni (i ¼ 0, 1, . . ., 2N � 1) as the
number of cases for the ith external pattern, and gk and lk (k¼ 1, 2, ...,
B) as the number of gains and losses along the kth branch. We then
have to estimate gk and lk for a given set of ni. Note that n0 (i.e., the
number of target sites without introns) cannot be observed, and must
be treated as a parameter requiring optimization.

Denoting S and P as the numbers of observed splice sites (intron
positions) and target sites in the dataset, respectively, we have:

S ¼
X2N�1

i¼1

ni; ð1Þ

P ¼
X2N�1

i¼0

ni ¼ Sþ n0: ð2Þ

It follows from Equation 2 that n0¼P�S. Since Pmust �G (i.e., the
total length of all alignments), n0 must be constrained by: 0 � n0 � G
� S. If we define h such that: h ¼ n0=ðG � SÞ, then from Equation 2 we
get: P ¼ Sþ hðG � SÞ.

We denote ak and bk (k¼1, 2, . . ., B) as the probabilities of changing
state from 0 to 1 (intron gain) and from 1 to 0 (intron loss) along the
kth branch, respectively; bk and ek (k¼ 1, 2, . . ., B) as the node indexes
of the beginning and end nodes of the kth branch, respectively; and sh
(h¼ 1, 2, . . ., NþM) as the intron state of the hth node. The expected
number of cases for the complete intron pattern ij (i¼0, 1, . . ., 2N�1,
j ¼ 0, 1, . . ., 2M � 1), which is the combination of the ith external
pattern and the jth internal pattern, is calculated by:

mij ¼ P
B

k¼1
fk 3

ð1� kÞP; if s1 ¼ 0
kP; if s1 ¼ 1

�
ð3Þ

where:

fk ¼

1� ak;
ak;
bk;

1� bk;

if sbk ¼ 0 & sek ¼ 0
if sbk ¼ 0 & sek ¼ 1
if sbk ¼ 1 & sek ¼ 0
if sbk ¼ 1 & sek ¼ 1

:

8>><
>>:

ð4Þ

Here k is a variable denoting the fraction of target sites having
introns at the root node and s1 is the intron state of the root node.

Then the probability pi (i ¼ 0, 1, . . ., 2N � 1) for the ith external
pattern is:

pi ¼
X2M�1

j¼0

mij=P: ð5Þ

Finally, the likelihood function is:

Lðh; k;ak; bk j dataÞ ¼ P
2N�1

i¼0

pi
ni!

� �
3P! ð6Þ

and the log-likelihood function is:

logLðh;k;ak; bk j dataÞ ¼
X2N�1

i¼0

½nilogpi � logðni!Þ� þ logðP!Þ: ð7Þ

We have to find the MLEs ĥ; k̂; âk; b̂k that maximize the log-
likelihood function. Note that with our definitions, the values of
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h;k;ak; bk are all in the (0, 1) interval. We will denote a1;b1; a2;b2as
the probabilities of intron gain and loss along the two deepest
branches, respectively. Then we have the following two proposi-
tions:

Proposition 1: There are infinite sets of MLEs k̂; â1; b̂1; â2; b̂2.
Proof: See Protocol S1.
Proposition 1 indicates that the number of introns at the root

node, as well as the numbers of gains and losses along the two deepest
branches, cannot be determined without additional information.
Therefore, these values will not be reported in the Results section.

Proposition 2: There are 2N�2 sets of MLEs âk; b̂k(k ¼ 3, 4, . . ., B).
Proof: See Protocol S2.
We define the most biologically meaningful solution in these 2N�2

sets of MLEs âk; b̂k(k¼ 3, 4, . . ., B) as the one having the least sum of
variances for intron gains and losses among all branches, i.e.,
having the smallestr2

gain þ r2
loss.

The EM algorithm. An EM algorithm was proposed for calculating
the MLEs of k; ak;bk, given a fixed value of h. The Brent algorithm was
used for finding the MLE of h based on the profile likelihood method,
i.e., by treating all other parameters as nuisance parameters and
maximizing over them. Implementation of the Brent algorithm is
problem-independent and straightforward: we simply applied the
code in the book Numerical Recipes in C [26]. However, implementation
of the EM algorithm is problem-specific. In general, EM is an iterative
algorithm comprising two steps: the E-step and the M-step [27]. Our
implementation of these two steps is as follows:

E-Step: In our problem, the complete dataset comprises the
number of cases for all complete intron patterns (i.e., including
external and internal nodes). The conditional expected number of
cases for the complete intron pattern ij (i¼0, 1, . . ., 2N�1, j¼0, 1, . . .,
2M � 1) given ni is calculated as follows:

mijjni ¼ nimij=
X2M�1

j¼0

mij ð8Þ

where mij is calculated based on Equation 3 using the current set of
parameters k; ak;bk.

M-Step: In this step we must find a new set of parameters that
maximize the likelihood of the complete data conditioned by the
observed data. First, we calculate the conditional expected numbers
of gains and losses for each branch k of the phylogenetic tree by:

gkjni ¼
X2N�1

i¼0

X2M�1

j¼0

�
mijjni ; if sbk ¼ 0 & sek ¼ 1
0; otherwise

;

lkjni ¼
X2N�1

i¼0

X2M�1

j¼0

�
mijjni ; if sbk ¼ 1 & sek ¼ 0
0; otherwise

:

ð9Þ

Next, the conditional expected number of introns at each node h is
calculated by:

ohjni ¼
X2N�1

i¼0

X2M�1

j¼0

mijjni ; if sh ¼ 1
0; if sh ¼ 0

:

�
ð10Þ

Finally, the new parameters are calculated by the following
formulas:

knew ¼ o1jni=P;

anewk ¼ gkjni=ðP � obk jni Þ; ð11Þ
bnewk ¼ lkjni=obk jni ;

where o1jni is the conditional expected number of introns at the root
node.

First, we set the value of k to S/2P, so that the introns are present in

half of the observed intron positions at the root node; then set the
values of ak to 0.01 and the values of bk to 0.1 (k¼ 1, 2, . . ., B). The two
steps described above are then repeated until the difference d
between the new set and the current set of parameters, which is
calculated based on Equation 12, is smaller than a predefined value
(10�8 in our algorithm).

d ¼ jknew � kj þ
XB
k¼1

ðjanewk � akj þ jbnewk � bkjÞ: ð12Þ

The source code of the EM algorithm was written in C language
and is available on request to the corresponding author.

The DS method. To implement the DS method, we used the C code
in [26] with only two minor modifications: the first limits all
parameters to optimization within the (0, 1) range; and the second
repeats the main procedure 50 times, in order to obtain a higher-
quality solution.

The GA method. Our GA is based on a multi-population steady-
state GA [28] and can be run in parallel on a cluster of PCs to obtain
results more quickly. In this GA, only one offspring solution is
produced, either from two parental solutions by crossover, or from
one parental solution by mutation in each generation. The offspring
is immediately inserted into the population, and if it is fitter it
replaces the worse parent. Linear ranking selection with a bias of 1.25
was used for selecting the parents. The population size was set to 400
individuals, which were divided equally into eight subpopulations.
The mutation rate was set to 0.5.
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Figure S1. MLEs of the Numbers of Gains and Losses Using the
Coelomata Phylogeny

Found at DOI: 10.1371/journal.pcbi.0010079.sg001 (11 KB PDF).

Figure S2. Convergence of the EM Algorithm (h ¼ 0.071)

Found at DOI: 10.1371/journal.pcbi.0010079.sg002 (17 KB PDF).

Figure S3. General Form of an Internal Node

Found at DOI: 10.1371/journal.pcbi.0010079.sg003 (9 KB PDF).

Protocol S1. Proof for Proposition 1

Found at DOI: 10.1371/journal.pcbi.0010079.sd001 (80 KB PDF).

Protocol S2. Proof for Proposition 2

Found at DOI: 10.1371/journal.pcbi.0010079.sd002 (90 KB PDF).
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