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ABSTRACT: We propose a novel machine-learning-based scoring function for drug discovery that incorporates ligand and protein
structural information into a knowledge-based PMF score. Molecular docking, a simulation method for structure-based drug design
(SBDD), is expected to reduce the enormous costs associated with conventional experimental methods in terms of rational drug
discovery. Molecular docking has two main purposes: to predict ligand-binding structures for target proteins and to predict protein−
ligand binding affinity. Currently available programs of molecular docking offer an accurate prediction of ligand binding structures
for many systems. However, the accurate prediction of binding affinity remains challenging. In this study, we developed a new
scoring function that incorporates fingerprints representing ligand and protein structures as descriptors in the PMF score. Here,
regression analysis of the scoring function was performed using the following machine learning techniques: least absolute shrinkage
and selection operator (LASSO) and light gradient boosting machine (LightGBM). The results on a test data set showed that the
binding affinity delivered by the newly developed scoring function has a Pearson correlation coefficient of 0.79 with the experimental
value, which surpasses that of the conventional scoring functions. Further analysis provided a chemical understanding of the
descriptors that contributed significantly to the improvement in prediction accuracy. Our approach and findings are useful for
rational drug discovery.

1. INTRODUCTION

The development of a new drug requires a long period of time
and a large amount of money before approval and marketing.1

To reduce these costs, there is a strong demand for rational
drug discovery.2 In the early stages of drug discovery, drug
candidates are experimentally searched for from a vast array of
compounds in terms of their binding affinity to the target
protein (lead identification), and the compounds are
repeatedly improved to further increase their binding affinity
(lead optimization).3 These processes are based on the idea of
hit or miss and therefore bring about the enormous costs of
drug discovery.
Computer-aided drug discovery (in silico drug discovery)

has been attracting significant attention as a solution to such
problems in conventional drug discovery.4−6 Structure-based
drug design (SBDD),7,8 which uses the three-dimensional
structure of target proteins, plays a central role in computer-
aided drug discovery. If the protein pocket is regarded as a

keyhole, SBDD is a method to design a matching key based on
the shape of the keyhole. Therefore, computer-aided drug
discovery by SBDD is expected to be more rational than the
conventional approach in designing drug candidates with high
activity and selectivity. The anti-influenza drug oseltamivir9

and the chronic myelogenous leukemia drug imatinib10 are
representative examples of successful SBDD.
The background for the realization of SBDD is the

accumulation of a large amount of data on three-dimensional
protein structures due to the development of structural analysis
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infrastructure and the dramatic improvement in computational
power. In addition, the development of a computational
science method called molecular docking constitutes another
major factor. It is a type of computer simulation and has
become an indispensable tool for SBDD.5,7

The purpose of molecular docking is twofold: first, to predict
the binding structure of the ligand in the binding pocket of the
target protein and second, to predict the protein−ligand
binding affinity. These accurate predictions are key to rational
drug discovery. To this end, a number of molecular docking
programs have been developed, ranging from commercial to
academic use.11−20 Simulations using these programs repro-
duce actual ligand-binding structures well in many systems.
Thus, one of the goals of molecular docking, the prediction of
ligand-binding structures, is now possible with considerable
accuracy. In contrast, the other goal of molecular docking, the
prediction of binding affinity (binding energy), has not yet
been achieved to a satisfactory degree, and there is still a large
discrepancy between the predicted and experimental values.
Due to the inability to predict absolute binding affinities, the
relative binding affinities of various ligands to a given target
protein are often evaluated in drug discovery, but the
effectiveness of this approach is highly system-dependent.
For this reason, the accurate prediction of binding affinity is
one of the major challenges in computer-aided drug discovery.
The poor prediction of binding affinities by current

molecular docking is mainly attributed to inaccuracies of the
scoring function. It has been reported that incorporating
solvation and entropy effects into the scoring function
improves the prediction accuracy,21−26 but these incorpo-
rations are usually computationally expensive. On the other
hand, one of the knowledge-based scoring functions, the PMF
score,27−30 can simply take into account these contributions.
The PMF score expresses the interatomic potential in a
protein−ligand complex as a frequency of occurrence of two
atoms at a certain distance in the crystal structure data and
hence gives large negative values at binding distances that often
appear in the crystal structures. Thus, the PMF score has the
advantage of implicitly accounting for many kinds of
contributions to the binding, such as solvation, entropy, and
enthalpy effects, at low computational cost.
This study aims to develop a new scoring function based on

the PMF score that provides an accurate prediction of binding
affinity. In recent years, the application of machine-learning-
based regression algorithms has been proposed for the
development of new scoring functions,31−33 where random
forests and support vector machines have been used
successfully.34−36 Some of the scoring functions developed
have shown significant improvements over conventional
scoring functions,37−41 with Pearson correlation coefficients
between predicted and experimental values exceeding 0.7 to
0.8. Based on these successes, machine learning is employed in
this study to develop scoring functions. It should be noted,
however, that we employ a different strategy from the one
reported previously in the sense that the model function is
constructed by adding fingerprints representing the ligand and
protein structure into the PMF score. Incorporating ligand
fingerprints has already been reported,42 but there are no
reports of scoring functions that take protein fingerprints into
account. Regression analysis is then performed using machine
learning algorithms such as LASSO43 and LightGBM.44 The
scoring function developed in this study exhibits a Pearson
correlation coefficient of 0.79, indicating a higher reproduci-

bility to infer experimental binding affinities than the
conventional methods. Further analysis reveals that ligand
and protein fingerprints compensate for the poor description of
the PMF score. Our approach and findings would be useful for
the further development of computer-aided drug discovery.

2. METHODS
In this section, we briefly explain how to develop a new
machine-learning-based scoring function in which ligand and
protein structural information is incorporated into the
knowledge-based PMF score.27−30 First, descriptors constitut-
ing model functions are introduced, and then the model is
optimized by machine learning.

2.1. PMF Score. The PMF score27−30 Vij(r) represents the
knowledge-based protein−ligand binding energy and is defined
as the sum of the interaction energies Aij(r) of the protein−
ligand atom pairs at distance r.
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Here, the indices i and j are protein and ligand atoms,
respectively, and rij

c is the cutoff distance defined for each pair
of protein and ligand atoms. There are 17 types of protein
atoms and 34 types of ligand atoms.30 The interactions beyond
rij
c are not considered in the PMF score. The interatomic
energy Aij(r) is calculated using the Boltzmann distribution as
follows:
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where kB is Boltzmann’s constant, T is temperature, ρij(r) is the
number density of ligand−protein pair ij at distance r, and ρij0 is
the number density in the reference state where the atomic

interaction of pair ij is zero. Therefore,
ρ

ρ

r( )ij

ij
0 corresponds to the

probability density distribution of pair ij in the structural data
set of the protein−ligand complex. f j(r) is called the ligand
volume correction factor and is used to remove the volume of
ligand atoms from the number density.29 In this study, the
PMF score is used as the basis for developing the scoring
function.

2.2. Ligand Fingerprints. To incorporate the structural
information of the ligand in the PMF score, we employ the
molecular fingerprint method. Molecular fingerprints are the
representation of molecular structures based on certain rules
using binary vectors representing presence or absence as 1 or 0,
or count vectors representing the frequency of occurrence. It is
one of the most common methods to convert a molecular
structure into a computer-readable form and is widely used in
chemoinformatics45−47 and in silico drug discovery.48 Here-
after, molecular fingerprints are called ligand fingerprints to
distinguish them from fingerprints on proteins, which will be
introduced later.
There are two major types of ligand fingerprints. The first

one assigns a substructure in the molecule to each bit of the
array. Here, substructures refer to fragments such as functional
groups or carbon skeletons. This method can appropriately
represent molecular structures composed of the substructures
registered as keys in a bit array. However, if the substructures
are not registered, an accurate representation of the molecular
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structure is not possible. The second fingerprint method
constructs molecular structures using the information on the
relative positions of atoms in the molecule. This method can
generate ligand fingerprints that reflect any chemical structure.
However, it is difficult to extract only the substructure
information from the generated fingerprint. This is a drawback
of this method in the analysis of machine-learning-based
results. In this study, we have employed MACCSKeys49 and
extended connectivity fingerprint (ECFP)50,51 as representa-
tive examples of the first and second fingerprint methods,
respectively.
The MACCSKeys fingerprint is a bit array consisting of 166

keys representing different substructures. The concept of
MACCSKeys is illustrated in Figure 1a. If a substructure in the

molecule is among the types associated with the 166 keys, the
corresponding bit is set to 1; otherwise, it is set to 0. It should
be noted that even if a molecule contains several substructures
of the same type, the number of substructures is not reflected
in MACCSKeys.
The ECFP fingerprint is one of the circular fingerprints,52

which represents molecular structures by considering the
position of atoms within a bond layer l centered on each atom
of the molecule. The concept of ECFP is illustrated in Figure
1b. First, the relative positions of atoms within a given bond
layer are iteratively explored, and then the resulting atom
environments are transformed to a bit array through a hash
function. The size of the bond layer and bit array can be
determined arbitrarily, but typically, the maximum bond layer
of 2 (ECFP4) and 1024 bits are used, respectively. ECFP has
the advantage of not requiring a predefined substructure data
set, in contrast to MACCSKeys. In addition, ECFP can
consider several functional groups of the same type separately,
which makes it a more accurate representation than
MACCSKeys.
2.3. Protein Fingerprints. In addition to the structural

information of the ligand, we have attempted to include the
structural information of the protein in the scoring function
using our original fingerprint method shown below. This
method is named protein fingerprint (PF), and its concept is
shown in Figure 2. We assign three types of moieties to each
amino acid constituting the given protein: N-linked main
chain, O-linked main chain, and side chain. To account for
direct protein−ligand interactions, we only incorporate atoms
constituting amino acids located within 5 Å of the ligand atoms
in the binding pocket. Hydrogen atoms are not considered
here. Our descriptors distinguish 20 types of amino acids

including the three types of the associated moieties except for
glycine, resulting in a total of 59 different descriptors, which
were included in the scoring function. The PF method employs
count vectors to record structural information, whereas
MACCSKeys and ECFP use binary vectors. The following
procedure is used to represent PF. First, all the atoms in the
protein that are within 5 Å of the ligand are searched for, then
the corresponding atoms are classified into the 59 different
amino acid sites, and the number of their occurrences is stored
in the corresponding array of descriptors. It should be noted
that the PF method takes into account the numbers of amino
acids of the same type, which are stored in the count vectors.

2.4. Machine Learning with LASSO and LightGBM. To
develop a new scoring function, the PMF score modified with
ligand and protein fingerprints is trained with the machine
learning method. In this study, we employ two machine
learning techniques: the least absolute shrinkage and selection
operator (LASSO)43 and the light gradient boosting machine
(LightGBM).44 Here, we attempt to construct the following
relation for the objective variable y and m descriptors
(explanatory variables) x1, x2, ...xm:

=y f x x x( , , ... ),m1 2 (3)

where f(x1, x2, ...xm) is the objective function. It should be
noted that we assume the protein−ligand binding energy for
the objective variable and the components of PMF score,
ligand fingerprints, and protein fingerprints for the descriptors.
LASSO is a regression analysis technique that imposes

regularization on the least squares process.43 First, we consider
a linear model with the following form:

= + + + +f x x x c c x c x c x( , , ... ) ... ,m m m1 2 0 1 1 2 2 (4)

where cl (for l = 0 to m) is the partial regression coefficient.
The values of these coefficients are determined by the least

Figure 1. Representation of molecular structures using (a)
MACCSKeys and (b) ECFP. The MACCSKeys bit is set to 1 if
the molecule contains a registered substructure; otherwise, it is set to
0. ECFP searches for the relative position of each atom in the
molecule using a bond layer l and records the structural information
in a bit array.

Figure 2. Protein fingerprints (PF) developed in this study. (a) Each
amino acid is described by three descriptors: N-linked main chain, O-
linked main chain, and side chain. (b) Example to illustrate PF. Here
we consider a situation where only the main chain of alanine is within
5 Å of the ligand. The counter associated with the N-linked main
chain descriptor of alanine (blue box) is incremented by 2 due to the
presence of a nitrogen atom and an alpha carbon atom in the alanine
main chain. Similarly, the counter associated with the O-linked main
chain descriptor of alanine (red box) is incremented by 2 due to the
carbon and oxygen atoms forming the peptide bond. It should be
noted that the number of hydrogen atoms is not considered in PF.
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squares method. To this end, the following loss function L is
considered:

∑= −L y f x x x( ( , , ... )) ,
k

n
k k k

m
k

1 2
2

(5)

where yk and xl
k (for l = 1 to m) denote the objective variable

and descriptors for training data k, respectively, and the
summation runs over all n data. If the absolute values of the
partial regression coefficients become large, the model fits too
well to the training data and poorly to the test data. This
phenomenon is called overfitting (overtraining). To circum-
vent this problem, LASSO adds a regularization (penalty) term
to the loss function, which is the sum of the absolute values of
the partial regression coefficients multiplied by a hyper-
parameter α.

∑ ∑α= − + | |L y f x x x c( ( , , ... ))
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In this form, the loss function L increases due to the
regularization term as the partial regression coefficient
increases. In this way, LASSO prevents an increase in the
absolute value of the partial regression coefficient in the least
squares treatment, making overfitting less likely to occur. The
suppression of overfitting strongly depends on the value of the
hyperparameter α. Therefore, this study adopts the value of α
that gives the highest prediction accuracy for the pretest data
set.
LightGBM is a supervised machine learning method based

on the gradient-boosting decision tree (GBDT) algorithm,44

which has recently been applied in various fields such as life
sciences,53−55 engineering,56,57 and economics.58 An attempt
to apply XGBoost, a type of GBDT, to protein−ligand binding
affinity has also been reported.59 Since LightGBM is a
combination of the decision tree and gradient boosting
methods, each is described here. First, the decision tree60 is
a tree-based data analysis method that can be applied to both
classification and regression problems. In this study, the
regression model of eq 3 is considered. As illustrated in Figure
3a, the properties of the data were evaluated at the root and
internal nodes using conditional expressions on the descriptors,
and finally, the value of the objective variable y is predicted
based on the result at the leaf node. Another feature of
LightGBM is gradient boosting,61,62 which is a technique that
attempts to iteratively improve the prediction accuracy of a
model, f(x1, x2, ...xm), by adding a new estimator, δ(x1, x2,
...xm).

βδ= +μ μ μ−f x x x f x x x x x x( , , ... ) ( , , ... ) ( , , ... ),m m m1 2 1 1 2 1 2

(7)

where μ represents the iteration step and β is a hyperparameter
called the learning rate. In LightGBM, δμ(x1, x2, ...xm)
corresponds to a decision tree that represents the error
between the actual (experimental) value y and the predicted
value by the μ − 1 step decision tree fμ − 1(x1, x2, ...xm). A
schematic illustration of LightGBM is shown in Figure 3b.
Repetition of the operation according to eq 7 can gradually
reduce the error. However, too much iteration leads to
overfitting. To avoid this problem, we employ a method called
early stopping, in which the number of iterations M (the
number of trees) with the highest prediction accuracy is
determined based on the results on the pretest data set
conducted with different iteration counts.

2.5. Computational Details. PDBbind63 v2019 was used
as the data set for developing new scoring functions. PDBbind
is known as a high-quality protein−ligand structure data set
that can be used to develop and validate scoring functions. In
this study, we used 6271 data structures from PDBbind v2019
in which dissociation constant Kd values exist. Of the 6271
protein−ligand complex structures, 4933 were used as the
training data set, 1234 as the pretest data set, and 104 as the
test data set. The training data set was used in machine
learning with LASSO and LightGBM, while the pretest data set
was used to determine the value of the hyperparameter α for
LASSO and the number of iterations M for LightGBM. The
test data set corresponds to the core set in PDBbind (CASF-
201664), which is widely used as the benchmark data for
evaluating the accuracy of scoring functions.65−67 This study
also used it only as an external test data set, not as a training
data set, to evaluate the performance of the scoring function.
All atomic coordinates of the protein and ligand, including
hydrogens, were used without any optimization for the
PDBbind structures.
In this study, we aimed to improve the prediction accuracy

of the PMF score by incorporating the structural information
of ligands and proteins using the fingerprint methods. In
addition, we examined the effect of incorporating van der
Waals (vdW) interactions into the PMF score using the 6−12
Lennard−Jones potentials68 with the amber99 force field.69

The pairwise interatomic potentials, PMF scores and vdW
interactions, were calculated using the atomic coordinates of
the PDBbind structures and included in the scoring function as
descriptors. It should be noted that the PMF score in this study
does not consider the interatomic potentials associated with

Figure 3. (a) Example of a decision tree for a regression problem. The characteristics of the descriptors of the data are diagnosed by the conditional
expressions at the root and internal nodes, and the predicted value of the objective variable is returned at the leaf node. (b) Schematic illustration of
LightGBM. For each iteration, a new decision tree is added and the error decreases accordingly.
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hydrogen, whereas the vdW interaction does. MACCSKeys
and ECFP were applied to the ligand structure, and each bit
comprising the bit array was used for a single descriptor.
Protein fingerprints were applied to protein atoms within 5 Å
of the ligand atoms, which were used as descriptors. Machine
learning using LASSO or LightGBM was performed on the
objective functions consisting of the PMF score, MACCSKeys,
ECFP, PF, and vdW. The hyperparameter α for the LASSO
regression was determined through machine learning on the
pretest data set with α varying from 0.001 to 0.01 in 0.001
increments. The number of iterations M for LightGBM early-
stopping was determined based on the results of machine
learning on the pretest data set with M varying up to 10,000. It
should be noted that the optimal values for the hyperparameter
α and the number of iterations M are different for each model.
The learning rate β of 0.1 was used for LightGBM.
The number of descriptors included in the scoring function

is 448 for PMF scores, 166 for MACCSKeys, 1024 for ECFP,
59 for PF, and 493 for vdW. We validated a combination of
these descriptors to improve the prediction accuracy of the
scoring function.
The RDKit program package70 is used for generating ligand

fingerprints with MACCSKeys and ECFP. For machine
learning of the models, the scikit-learn71 and LightGBM72

libraries were used for LASSO and LightGBM, respectively.
Two methods were employed in this study to assess the

validity of the model. The first is the Pearson correlation
coefficient R, given by

=
∑ − ̅ − ̅

∑ − ̅ ∑ − ̅
R

y y f f

y y f f

( )( )

( ) ( )
,k

n
k k

k
n

k k
n

k
2 2

(8)

where yk and f k are the experimental and predicted binding
affinities for the kth complex, respectively, and y̅ and f ̅ are their
average values. The second evaluation method is the root mean
squared error (RMSE), which is given by

∑= −
n

f yRMSE
1

( ) .
k

n

k k
2

(9)

Both R and RMSE were calculated using the test data set
containing the 104 complexes (n = 104).

The training results vary depending on how the 6271
complex structures are divided into 4933 training and 1234
pretest data sets. To avoid such a dependence, the following
steps were taken. First, we created 10 different combinations of
training and pretest data sets with different seed values
involved in the generation of random numbers and then
performed machine learning on these data sets using
LightGBM. Finally, we employed the data set combination
that produced the correlation coefficient closest to the average
of the resulting 10 correlation coefficients.

3. RESULTS AND DISCUSSION
3.1. Comparison of Binding Affinities Calculated by

New Scoring Functions with Experimental Values. We
applied our scoring functions to a test data set of 104
structures, which is the core data set of PDBbind, and
examined the Pearson correlation coefficients between the
experimental and predicted binding energies. The results of the
scatter plots are shown in Figure 4, and the correlation
coefficient R and RMSE values are summarized in Table 1. For
comparison, the same analysis was also performed using
various conventional scoring functions. The predicted values of

Figure 4. Scatter plots of experimental values versus predicted values by scoring functions trained with (a) LightGBM and (b) LASSO.

Table 1. Pearson Correlation Coefficient (R) and RMSE
between the Experimental Values and the Predicted Values
by the Newly Developed Scoring Functions

model method R RMSE (kcal/mol)

PMF LASSO 0.67 2.04
LightGBM 0.73 1.85

PMF + MACCSKeys LASSO 0.76 1.84
LightGBM 0.69 1.93

PMF + ECFP LASSO 0.77 1.76
LightGBM 0.75 1.76

PMF + PF LASSO 0.69 2.00
LightGBM 0.75 1.77

PMF + vdW LASSO 0.67 2.02
LightGBM 0.74 1.82

PMF + MACCSKeys + PF LASSO 0.75 1.83
LightGBM 0.73 1.83

PMF + ECFP + PF LASSO 0.77 1.77
LightGBM 0.79 1.64
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binding affinity by each scoring function were taken from the
CASF-201664 data set. These results are listed in Table 2. The

results of the Pearson correlation coefficients show that
including ligand and protein fingerprints in the scoring
function improves the prediction accuracy of the binding
energy step by step from the PMF model. The most accurate
result was obtained from the PMF + ECFP + PF model trained
with LightGBM, with a Pearson correlation coefficient of 0.79.
Pearson correlation coefficients calculated with the conven-
tional scoring functions range from 0.24 to 0.74, with the best
result being obtained for deltaVinaRF20.35 These results
indicate that our newly developed scoring function has a higher
prediction accuracy than the conventional ones. The RMSE of
the PMF + ECFP + PF model is 1.64 kcal/mol, which also
shows better prediction accuracy of binding energies than the
results of AutodockVina (2.42 kcal/mol), ASE@MOE (9.63
kcal/mol), and deltaVinaRF20 (10.88 kcal/mol). These results
clearly show that the newly developed scoring functions are
applicable not only to the relative comparison of protein−
ligand binding energies but also to the evaluation of their
absolute values.
Overall, the accuracy in terms of the correlation coefficient

and RMSE was found to be improved by adding ligand
fingerprints as descriptors, although there were some cases
where the prediction accuracy worsened, such as the PMF +
MACCSKeys models trained by LightGBM. In addition, the
inclusion of protein fingerprints in the scoring function further

improved the correlation coefficient and RMSE results. In the
case of LightGBM, the change from the PMF to the PMF +
ECFP + PF models improved the correlation coefficient by
0.06 and rectified the RMSE by 0.21 kcal/mol. These results
clearly show the importance of adding ligand and protein
structural information as descriptors to the scoring function.
The best scoring function in our results was obtained from

training with LightGBM, but in some models, LASSO gave
better results. This indicates that the best machine learning
method depends on the type of descriptor included in the
scoring function. Interestingly, in the present results, the PMF
+ ECFP + PF model provided the best values of the correlation
coefficient and RMSE for LightGBM as well as LASSO. This
strongly suggests that the ECFP and PF fingerprints are
suitable for descriptors to be included in the scoring function.
In the present calculations, the ECFP fingerprints gave

better results than the MACCSKeys fingerprints. MACCSKeys
contains 166 bits, each bit corresponding to a specific
substructure such as carbon skeletons and functional groups.
Therefore, if a test compound consists of substructures
registered in MACCSKeys, the molecular structure informa-
tion will be reflected well in the scoring function; otherwise, it
cannot be accurately represented. On the other hand, the
ECFP fingerprint can represent any molecular structure by
considering the relative positions of atoms within the bond
layer l centered on each atom of the compound. For this
reason, ECFP probably gave better results than MACCSKeys
in the data set used here.
The worst score in the present results was obtained from the

PMF + vdW model trained with LASSO, with a correlation
coefficient of 0.67 and a RMSE of 2.02 kcal/mol. This result is
almost the same as that of the PMF model trained by LASSO,
indicating that the addition of the vdW interaction does not
improve the prediction accuracy. The PMF model implicitly
deals with many types of interactions, such as desolvation
effects and enthalpy, and hence the effect of the vdW
interaction is already included. This means that the high
dependency of the vdW interaction on the PMF model hinders
the improvement of the prediction accuracy of the scoring
function. Such a strong correlation between descriptors is
called multicollinearity.73

3.2. Analysis of Descriptors Affecting the Scoring
Function. To gain a chemical understanding of the improve-
ment in prediction accuracy, we analyzed the contribution of
each descriptor in the scoring function. Here, we focus on the
partial regression coefficients (eq 4) in the PMF +
MACCSKeys model trained with LASSO regression. The

Table 2. Pearson Correlation Coefficient (R) between the
Experimental Values and the Predicted Values by the
Conventional Scoring Functions

model R model R

ASE@MOE 0.54 LigScore1@DS 0.24
Affinity-dG@MOE 0.55 LigScore2@DS 0.41
Alpha-HB@MOE 0.55 London-dG@MOE 0.33
AutodockVina 0.54 PLP1@DS 0.41

ChemScore@SYBYL 0.45 PLP2@DS 0.43
D-Score@SYBYL 0.40 PMF04@DS 0.43
DrugScore2018 0.43 PMF@DS 0.50
DrugScoreCSD 0.49 PMF@SYBYL 0.37
G-Score@SYBYL 0.40 X-Score 0.55

GBVI_WSA-dG@MOE 0.24 X-ScoreHM 0.50
LUDI1@DS 0.41 deltaSAS 0.53
LUDI2@DS 0.45 deltaVinaRF20 0.74
LUDI3@DS 0.41

Table 3. MACCSKeys Descriptors with Large Contribution

descriptor descriptor

key no. key description contribution (kcal/mol) key no. key description contribution (kcal/mol)

23 NC(O)O −0.74 92 OC(N)C 0.44
159 O > 1 −0.60 28 QCH2Q 0.4
27 I −0.56 57 O HETEROCYCLE 0.38
36 S HETEROCYCRE −0.45 47 SAN 0.37
131 QH > 1 −0.40 162 AROMATIC 0.33
71 NO −0.36 125 AROMATIC RING >1 0.31
87 X!A$A −0.36 163 6M RING 0.25
70 QNQ −0.35 49 CHARGE 0.24
127 A$A!O > 1 −0.34 160 CH3 0.23
116 CH3AACH2A −0.32 82 ACH2QH 0.21

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02822
ACS Omega 2022, 7, 19030−19039

19035

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


reason for choosing this model is that MACCSKeys provides a
clear chemical interpretation due to the one-to-one corre-
spondence of its components to specific substructures and that
LASSO allows us to easily estimate the contribution of
descriptors based on the magnitude of the regression
coefficient.
Table 3 summarizes the descriptors with the large

contributions to the binding energies. It should be noted
that the positive and negative values of regression coefficients
correspond to repulsive and attractive interactions, respec-
tively. As for the negative regression coefficients, we can see
that there are many large contributions from heteroatoms such
as key numbers 23, 71, 131, and 159, which are related to
hydrogen bonding. In addition, the large contributions from
halogen atoms such as key numbers 27 and 87 are shown,
suggesting that the consideration of halogen effects, which
could not be incorporated by PMF alone, leads to a higher
prediction accuracy. As for the positive coefficients, the large
contributions came from ring structures and aromatics such as
key numbers 125, 162, and 163 and hydrocarbons such as 28,
82, and 160. These substructures cause destabilization to
protein−ligand binding due to their positive coefficients.
Therefore, it was suggested that these substructures are not
suitable for drug design.
A similar analysis was performed for the PF fingerprints.

Table 4 summarizes the descriptors of PF that have made

significant contributions. Although the PF fingerprints based
on count vectors are not simply comparable to MACCSKeys
with binary vectors, we can see that the overall contribution of
PF to the scoring function was smaller than that of
MACCSKeys. In this study, we have constructed the PF
fingerprints using three descriptors for each amino acid except
glycine: the N-linked and C-linked main chain, and its side
chain. The analysis showed that the contributions of the main
chains were larger than those of the side chains. This was
contrary to our chemical intuition that the side chain
properties would give a larger contribution than the main
chain. The result also showed a significant contribution from
the cysteine side chain other than the main chain. This
descriptor may compensate for interactions involving sulfur
atoms that are not adequately represented by the PMF score.
Another possibility is the incorporation of the disulfide bond
effect. Since disulfide bonds are not considered in the
descriptors other than the PF fingerprints, the contribution
of the cysteine side chain may have been greater.

3.3. Systems with Improved and Unimproved Scores.
The above analysis succeeded in finding descriptors that
contribute significantly to the new scoring function. We then
turned our attention to specific systems in which the
incorporation of ligand fingerprints greatly improved the
computational results. For ease of interpretation, we again
analyzed the PMF + MACCSKeys model trained with LASSO.
Table 5 summarizes the calculated binding energies for the

PMF and PMF + MACCSKeys models, and their chemical
structures are illustrated in Figure 5. The results clearly show

that the addition of MACCSKeys improves the binding energy
by 1.84 and 0.50 kcal/mol for the systems with PDB ID of
4J3L and 3ARP, respectively. We further analyzed the
MACCSKeys descriptors and found significant contributions
of the halogen atom (key number 87: −0.36 kcal/mol) and
functional groups involved in hydrogen bonding (key numbers
159 and 131: −0.60 and −0.40 kcal/mol). This result indicates
that the PMF score alone cannot sufficiently describe these
effects for compound 1. The analysis also showed that
MACCSKeys for compound 2 provides a large destabilization
of the charged functional group (key number 49: 0.24 kcal/
mol) due to its positive regression coefficient. This is a
counterintuitive result because electrostatic interactions
generally contribute significantly to protein−ligand interac-
tions. The reason for this could be that the MACCSKeys
descriptor of the charged functional group ameliorates the
overestimation of the implicit electrostatic effect in the PMF
score.
We also investigated systems with large deviations from the

experimental values. As also shown in Table 5, the PMF +
MACCSKeys model for a system with PDB ID of 3LKA gave a

Table 4. PF Descriptors with Large Contribution

descriptora
contribution (kcal/

mol) descriptora
contribution (kcal/

mol)

Asn-N −0.13 Asn-O 0.16
His-O −0.12 Gln-O 0.12
Cys-S −0.12 Ala-O 0.10
Phe-N −0.11 Lys-O 0.10
Met-N 0.10 Pro-O 0.08
Ile-O −0.09 His-N 0.08
Asp-N −0.09 Trp-N 0.07
Ala-N −0.08 Cys-O 0.06
Gly-N −0.07 Asp-O 0.06
Tyr-O −0.07 Asn-O 0.06

aN-linked and O-linked main chain, and side chain are abbreviated as
N, O, and S, respectively.

Table 5. Binding Energies for the PMF and PMF +
MACCSKeys Models Along with the Experimental Values,
Exemplifying Change in Predicted Value by Adding
MACCSKeys (kcal/mol)

model

PDB ID PMF PMF + MACCSKeys exptl.

4J3L −8.58 −10.42 −10.67
3ARP −10.41 −9.91 −9.82
3LKA −8.88 −7.50 −3.87

Figure 5. Ligand structures included in the test data set. For 1 and 2,
our scoring function showed improved prediction accuracy with the
incorporation of ligand fingerprints. For 3, the improvement over
PMF score was not observed. The corresponding PDB IDs are shown
in parentheses.
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large error (3.63 kcal/mol) from the experimental value. Such
a large error was also observed in the PMF + ECFP model
trained with LightGBM. The error calculated by the PMF
model alone was 5.01 kcal/mol, which means that the
interaction is not correctly described at the stage by the
PMF model. From these results, we can see that the inclusion
of ligand fingerprints in the PMF score did not sufficiently
improve the prediction accuracy for this system. In the PMF
score, the nitrogen atom in compound 3 is classified as the
atom type of ND. However, the environment of the nitrogen
atom in sulfonamides would be different from that of most
nitrogen atoms with the ND type because it is bound to a
sulfonyl group. For this reason, its classification into ND is
considered to be inappropriate for the nitrogen atom in
compound 3, and the error of the PMF model is likely to be
large. As shown above, a model including ligand fingerprints
can greatly improve the prediction accuracy for many systems,
but no such effect was observed for 3LKA. The reason for this
may lie in the training data. In this study, the PDBbind
structures were used as training data without any structural
optimization. In addition, no evaluation of the protonation
state was performed for both the ligands and the proteins. Such
lack of structural refinement may have caused the poor
prediction accuracy for 3LKA. If we can prepare a large
amount of training data with structural optimization and
protonation state evaluation in the future, the prediction
accuracy may be further improved.

4. CONCLUSIONS
In this study, we developed a new scoring function for the
protein−ligand binding energy prediction by introducing the
ligand fingerprints and protein fingerprints into the knowledge-
based PMF function. Here, the machine learning techniques
LASSO and LightGBM were used to train the scoring
functions. The PMF + ECFP + PF model trained with
LightGBM showed the best results, with a Pearson correlation
coefficient of 0.79 and a RMSE of 1.64 kcal/mol, indicating a
higher prediction accuracy for binding energy than the
conventional scoring functions. Further analysis revealed that
the ECFP and PF fingerprints are suitable for combination
with PMF regardless of the two machine learning methods
used in this study. To the best of our knowledge, this is the first
example of introducing protein fingerprints into a scoring
function. Although there are scoring functions that show better
correlation coefficients than our results,37−41 the results of this
study successfully demonstrate the effectiveness of protein
fingerprints as well as ligand fingerprints.
We also analyzed the components of the binding energy

obtained from our newly developed scoring function and
found that the inclusion of the ligand fingerprints into the PMF
score improves prediction accuracy, especially for halogen
atoms and functional groups involved in hydrogen bonding.
On the other hand, we found a specific system in which the use
of ligand fingerprints was not effective. This analysis strongly
suggests the need for improving the quality of the training data
with structural optimization and protonation state evaluation.
Incorporating ligand and protein structural information

using the fingerprint methods into the scoring function is a
promising approach for predicting binding energies. The PF
fingerprints developed in this study are based on a
representation using only three descriptors for each amino
acid. Even such a simple handling of the protein structure
significantly contributed to the improvement in prediction

accuracy. A more appropriate representation of the protein
structure would possibly lead to better results of the binding
energies. The development of advanced protein fingerprints is
a future challenge. The proposed methods and findings in this
study will be useful for the development of computational drug
discovery.
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