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Abstract

Background: The fecal bacterial microbiota of normal foals and foals with enterocoli-

tis has been characterized using next-generation sequencing technology; however,

there are no reports investigating the gut microbiota in foals hospitalized for other

perinatal diseases.

Objective: To describe and compare the fecal bacterial microbiota in healthy and sick

foals using next-generation sequencing techniques.

Animals: Hospitalized (17) and healthy foals (21).

Methods: Case-control study. Fecal samples were collected from healthy and sick

foals on admission. Sick foals were further divided into sick nonseptic (SNS, n = 9)

and septic (n = 8) foals. After extraction of DNA, the V4 region of the 16 S rRNA

gene was amplified using a PCR assay, and the final product was sequenced with an

Illumina MiSeq.

Results: Diversity was significantly lower in healthy than sick foals (P < .05). The bac-

terial membership (Jaccard index) and structure (Yue & Clayton index) of the fecal

microbiota of healthy, septic, and SNS foals were similar (AMOVA, P > .05). Bacterial

membership (AMOVA, P = .06) and structure (AMOVA, P = .33) were not different

between healthy and sick foals. Enterobacteriaceae, Enterococcus, and Streptococcus

were among the 5 more abundant taxa identified in both groups.

Conclusion and Clinical Importance: Higher fecal microbiota diversity in sick than

healthy foals might suggest a high exposure to environmental microorganisms or an

unstable colonic microbiota. The presence of microorganisms causing bacteremia in

foals in a high relative abundance in the feces of foals suggests the intestine might

play an essential role in the causation of bacteremia in foals.
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1 | INTRODUCTION

Sepsis is the most common cause of morbidity and death in newborn

foals. The sources and mechanisms of neonatal infection in foals are

not well characterized but can be acquired horizontally from the envi-

ronment or via vertical transmission. Microorganisms causing neonatal

sepsis are acquired before, during, and after parturition, with different

trends in causative microorganisms reported at various geographic

areas.1-5 Factors associated with the development of sepsis in equine

neonates include maternal disorders, abnormal gestation length, fail-

ure of transfer of passive immunity (FTPI), poor environmental

hygiene, and inadequate umbilical care.6 Maternal disorders including

dystocia, placentitis, gastrointestinal or respiratory diseases have an

essential role in the development of bacteremia in foals7-9; however,

the importance of other routes of infection such as umbilical struc-

tures, or the gastrointestinal tract (GIT) and respiratory system are not

completely understood.

The bacterial colonization of the GIT of newborn foals appears to

follow the classic pattern of colonization of neonatal calves10 and

infants,11,12 with rapid changes occurring between day 1 and 3 and,

day 3 and day 10 after parturition.13,14,15 Initially, there is rapid coloni-

zation by facultative anaerobes followed by strictly anaerobic bacte-

ria.15-18 Associated with the changes in bacterial communities, there is

an increase in richness (number of taxa present in a sample), evenness

(proportional abundances of the taxa present in a sample) and diversity

(mathematical calculation that accounts for the richness and evenness

of a sample).11,12,14,16 This bacterial shift is likely associated with

exhaustion of oxygen supplies in the GIT, creating an anaerobic

milieu.12 During the first days of the neonatal infant and foal's life, the

GIT comprises of a myriad of bacterial communities that include poten-

tial pathogens. Although the association between the GIT microbiota

and neonatal foal sepsis is still not well-understood, in humans, some

studies suggest that gastrointestinal dysbiosis can predispose children

to neonatal sepsis.19-22 Little is known about the alterations in the bac-

terial communities present in the GIT of septic foals and their associa-

tion with disease. However, most bacterial isolates from blood cultures

of septic foals are microorganisms likely present in the GIT (ie, Escheri-

chia coli, Enterococcus spp., Enterobacter spp., Streptococcus spp., Staph-

ylococcus spp., Actinobacillus spp., Pasteurella spp., Pseudomonas spp.,

and Salmonella spp). This suggests that the GIT microbiota might be an

important factor in the pathogenesis of neonatal foal sepsis. The objec-

tive of this study was to describe the fecal bacterial microbiota of

healthy newborn foals and compare it with sick nonseptic (SNS) and

septic foals admitted to a neonatal intensive care unit.

2 | MATERIALS AND METHODS

2.1 | Ethical considerations

This study was approved by the Institutional Animal Care and Use

Committee of Iowa State University and adheres to the principles for

the humane treatment of animals in veterinary clinical investigations

as stated by the American College of Veterinary Internal Medicine

and National Institutes of Health guidelines. Owner consent was

obtained before inclusion in the study.

2.2 | Animals

Healthy foals from the Iowa State University teaching herd were used

as study controls. Healthy foals were <7 days of age with no evidence

of disease based on clinical exam, complete blood count (CBC; Advia

212Qi Hematology Analyzer, Siemens Healthineers, Malvern, Penn-

sylvania), chemistry profile (Vitros 4600 Chemistry System, Ortho

Clinical Diagnostics), fibrinogen (Vitros 4600 Chemistry System, Ortho

Clinical Diagnostics), and serum IgG (DVM Rapid Test II- Multi-Test

Analyzer, MAI Animal Health, Elmwood, Wisconsin) concentrations

(>800 mg/dL). Foals of any breeds and sex were included. Hospital-

ized foals <7 days of age, admitted during the 2018 and 2019 foaling

season were included as cases. Foals were classified as septic if they

had a positive blood bacterial culture or a sepsis score >11.23 Foals

with negative blood culture presented for other diseases such as neo-

natal maladjustment syndrome, meconium impaction, and trauma

were classified as sick nonseptic (SNS). In addition, hospitalized foals

were classified as survivors (foals that survived until discharge from

the hospital) and nonsurvivors (foals that died or were euthanized

because of grave prognosis). Foals euthanized because of financial

limitations were excluded from our study. Foals treated with antimi-

crobials, blood products or IV fluids, glucocorticoids or other medica-

tions before admission were excluded.

2.3 | Sample size calculation

A minimum sample size of 6 foals per group was considered to detect

a 25% difference in operational taxonomic unit (OTU) counts with a

power of 0.8 and a confidence level of 0.95, assuming a normal distri-

bution with a mean ± SD OTU count of 2000 ± 300 per sample.24

2.4 | Sample collection and processing

Fecal samples were obtained from the rectum using a cotton swab on

admission before administration of any treatment. The samples were

snap frozen in liquid nitrogen and stored at �80�C until processing.

Samples were thawed and bacterial DNA was extracted from feces

using the Thermo Scientific KingFisher (KingFisher Flex Purification

System, ThermoFisher Scientific) instrument with magnetic bead tech-

nology following the manufacturer's recommendations.25 After DNA

extraction, samples were transported overnight to the Environmental

Sample Preparation and Sequencing Facility at Argonne National Lab-

oratory for sequencing. Amplification of the V4 region of the 16 S

rRNA gene was complete following a previously published PCR proto-

col.26 The library pool was sequenced with an Illumina MiSeq for

250 cycles from each end.
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2.5 | Data analysis

Mothur software (https://mothur.org) was used for bioinformatic

analysis following a standard operating protocol.27,28 Sequences were

binned (genus level) into phylotypes after cleaning and filtering and

being identified using the Ribosomal Database Project classifier. Nor-

malization of the sequence count was completed using a random sub-

sampling and assessment of the sample coverage was performed

using the Good's coverage index.29 Relative abundances of the main

taxa (relative abundance >0.5%) were calculated and compared using

a Wilcoxon rank test and P-values were adjusted for multiple compari-

sons.30 Taxa enriched in fecal samples of each group was identified

using the Linear discriminant analysis effect size (LEfSe) based on

P < .05 and a linear discriminant analysis (LDA) score >2.31 Differ-

ences in fecal microbiota were evaluated using the health condition

(eg, healthy, septic and SNS foals) as the main outcome of interest.

Diversity (Inverse Simpson's index), evenness (Shannon's evenness

index) and richness (Chao-1 index) were used to assess alpha-diversity

(differences within the groups) and a Wilcoxon rank test or the Steel-

Dwass test for multiple comparisons was used for comparison

between groups. Beta-diversity (differences between samples) indices

Jaccard32 and Yue and Clayton33 were calculated to identify differ-

ences in community membership (a measured that only asses for the

number of shared genera, but not their abundance) and structure

(a measured that asses for the number of shared genera and their rela-

tive abundances), respectively. The differences between groups were

assessed using an analysis of molecular variance test (AMOVA) and

Principal coordinate analysis (PCoA) plots were constructed to investi-

gate for the presence of clustering of the samples (JMP 16.1.0, SAS

Institute). The number of different meta-communities or enterotypes

into which the data could be clustered was determined using Dirichlet

multinomial mixture model (DMM) using the Laplace approximation

for selecting the best number of metacommunities.34

3 | RESULTS

3.1 | Animals

The study sample was comprised of 21 healthy, 8 septic and 9 SNS

foals. In the healthy group 10 foals were Thoroughbred (TB), 9 were

Quarter Horse (QH), 1 Connemara pony and 1 Belgian. The septic

group included 4 TB and 3 QH, while the SNS group was comprised

of 5 TB, 2 QH, 1 Percheron and 1 Pony of the Americas. All sick

foals were admitted with their dam and none of the foals was

reported to have received either colostrum or milk replacer before

admission. The age of the foals at the time of sampling was similar

between groups (P > .2, for all comparisons). Five of the 8 septic

foals had a positive blood culture and 3 had a negative blood cul-

ture but the sepsis score was >11. Organisms cultured form the

blood samples included Alpha-hemolytic Streptococcus, Enterococcus

mundtii, Streptococcus dysgalactiae ss equisimilis, Coagulase-negative

Staphylococcus, Escherichia coli, Psychrobacter sp., Enterococcus

faecalis, Aerococcus viridans. The SNS foals were admitted to the

hospital for the following complaints: failure to nurse after birth

(n = 3), neonatal maladjustment (n = 2), tendon contracture (n = 2),

weak foal post-dystocia (n = 1), and omphalitis and diarrhea (1).

Septic foals were admitted with complaints of enterocolitis (n = 2),

neonatal maladjustment (n = 2), prematurity (n = 2), pneumonia

(n = 1) and 1 foal was presented for sepsis. The serum immuno-

globulin G concentration for healthy foals (1719 mg/dL ± 690) was

higher than for SNS (1034 mg/dL ± 549) and septic (418 mg/dL

± 313) foals. All 9 SNS survived to hospital discharge, but 3 septic

foals did not survive hospitalization.

3.2 | Sequence analysis

A total of 4 541 730 good quality sequences were used for the final

analysis (mean sequences per sample: 119 519 per sample; SD:

172 080; median: 101 347; range: 13 862-1 111 548). The sequences

were rarified to a uniform count number of 13 000 sequences per

sample. Adequate subsampling was determined by the Good's cover-

age obtained for all samples (median: 99.9%; range: 99.8%-99.9%).

3.3 | Alpha and beta-diversity measurements

The richness (Chao-1 index) was similar among healthy, septic, and

SNS foals (P > .1, for all comparisons). The evenness (Shannon even-

ness index) was significantly higher in septic than in healthy foals

(P < .02). The diversity (Inverse Simpson's index) was also significantly

higher in septic (P < .005) and SNS (P < .02) than in healthy foals

(Figure 1). Alpha-diversity indices were similar between SNS and

F IGURE 1 Diversity of the fecal microbiota of healthy, sick
nonseptic (SNS) and septic foals admitted to a neonatal intensive care
unit of a teaching hospital. The whiskers mark the 95th and 5th
percentiles. The P-values were obtained using the nonparametric
Steel-Dwass test for multiple comparisons
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septic foals (P > .8, for all comparisons). When SNS and septic foals

were grouped as sick foals, the richness (P = .09), evenness (P < .01),

and diversity (P < .01) were higher in sick compared to healthy foals.

The bacterial membership (Jaccard index) and structure (Yue &

Clayton index) of the fecal microbiota of healthy, septic, and SNS

foal was similar (AMOVA, P = .16 and P = .35, respectively;

Figure 2A,B). However, when SNS and septic foals were grouped as

sick foals, the bacterial membership (Jaccard index; AMOVA,

P = .06) but not in the structure (Yue & Clayton index; AMOVA,

P = .33), was different between groups. Visualization of Jaccard

PCoA plot showed a separate clustering of samples from sick and

healthy foals (Figure 2C).

F IGURE 2 Principal coordinate analysis (PCoA) of bacterial
community (A) membership (Classic Jaccard analysis) and (B) structure
(Yue and Clayton analysis) of healthy (red dots, n = 21) sick nonseptic
[SNS] (blue dots, n = 9) and septic foals (green dots, n = 8). The
community membership and structure of healthy, SNS and septic
foals was similar (AMOVA, P = .16 and P = .35, respectively). Panel C
displayed a Principal coordinate analysis (PCoA) of bacterial
community membership (Classic Jaccard analysis) of healthy (green
dots, n = 21) and sick foals (purple dots, n = 17). Comparison of
healthy and sick foals revealed no differences in community
membership (AMOVA P = .06) and structure (AMOVA P = .33)

F IGURE 3 Median relative abundance of predominant bacteria at
the phylum (A) and genus (B) level identified in feces of healthy
(n = 21), sick nonseptic (SNS, n = 9) and septic foals (n = 8). The
6 most abundant phyla and 19 most abundant genera are displayed.
(C) Relative abundance of the taxa Enterobacteriaceae identified in
feces of healthy, sick nonseptic and septic foals
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3.4 | Relative abundance and LEfSe analysis

Thirty different phyla were detected, with Firmicutes (51.3%), Proteo-

bacteria (35.7%), Bacteroidetes (5.4%), Fusobacteria (3.5%) and Acti-

nobacteria (2.3%) accounting for more than 98% of total sequences.

Seventy-three different classes, 126 orders, and 270 families were

identified with 4 classes, 7 orders, and 15 families comprising for

>84% of sequences at each taxonomic level. A total of 737 genera

were identified with 70 of those present at relative abundance

of >0.1%.

The relative abundances of the most abundant phyla, families and

genera detected in healthy, septic and SNS foals are presented in

Figure 3. At the phylum level, Verrucomicrobia relative abundance

was higher in septic and SNS foals compared to the healthy ones

(P < .02, for both comparisons). At the genus level, an unclassified

genus from the Enterobacteriaceae family had the highest relative

abundance in all groups but no differences among groups were identi-

fied (Figure 3C). The relative abundance of Enterococcus was higher

in healthy than SNS foals (P < .02), but similar to the septic foal group.

The relative abundance of an unclassified genus of the family Pasteur-

ellaceae was higher in septic foals than healthy and SNS foals (P < .03,

for both comparisons), while Lactobacillus abundance was higher in

SNS and septic foals than the healthy counterparts (P < .03). Overall,

the fecal relative abundance of the genera detected in blood culture

of individual septic foals was not different than that identified in

healthy foals. However, the relative abundance of Aerococcus in the

feces of a bacteremic foal positive for this bacterium was higher com-

pared to the healthy foals (Figure 4).

The LEfSe analysis (LDA > 2, P < .05) detected an enrichment in

Enterococcus (Firmicutes) and Pasteurellaceae (Proteobacteria) in

healthy foals. Lactobacillus (Firmicutes), Facklamia (Firmicutes) and

unclassified genus of the family Sphingobactarieaceae (Bacteroidetes)

were enriched in septic foals. In SNS foals Akkermansia

(Verrucomicrobia), Phascolarctobacterium (Firmicutes), Porphyromonas

(Bacteroidetes) and unclassified genus of the family Porphyromonada-

ceae (Bacteroidetes) were enriched (Figure 5). LEfSe analysis after

grouping septic and SNS foals as sick foals identified an unclassified

genus of the family Lachnospiraceae (Firmicutes) to be enriched in

healthy foals while Akermancia, Lactobacillus, Phascolarcbacterium,

Atopostipes (Firmicutes), and unclassified genera of the phylum Verru-

comicrobia and Bacteroidetes to be enriched in sick foals.

3.5 | Metacommunities

The DMM model grouped all samples into 1 meta-community or

enterotype (minimum Laplace value is for a K value of 1).

4 | DISCUSSION

In our study, both Gram-positive (ie, Streptococcus, Enterococcus,

Staphylococcus) and Gram-negative (Escherichia coli, Psychrobacter

spp., Aerococcus spp.) bacteria were isolated from blood cultures

from septic foals. These findings agree with several studies docu-

menting that Enterobacteriaceae (eg, Escherichia coli, Klebsiella

F IGURE 4 Relative abundance of the genera detected in blood
culture of 5 septic (S) foals compared with healthy counterparts
(H, n = 21)
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spp., Salmonella spp., Enterobacter spp.), Pasteurellaceae (eg, Acti-

nobacillus spp.) and Pseudomonas spp., and, are the most frequent

Gram-negative bacteria isolated from bacteremic foals, while

Streptococcus spp., Enterococcus spp., and Staphylococcus spp. are

the most common Gram-positive bacteria.2,3,5,35,36 Although umbil-

ical infections have historically been considered a common source of

sepsis in foals,6 the hypothesis that the GIT microbiota could repre-

sent a source of sepsis in foals has been discussed by clinicians for

many years. This hypothesis has been supported by reports indicating

that Gram-negative enteric bacteria are the most frequent bacteria

isolated from bacteremic foals.2,3,5,35,36 In our study Enterobacteria-

ceae, Enterococcus, and Streptococcus were among the 5 more abun-

dant taxa identified in both healthy and septic foals. In addition,

Pseudomonas spp., Enterobacter spp., and Actinobacillus were among

the 30 highly abundant taxa identified in feces of our foals. This is in

agreement with a previous study showing that in healthy foal of

24 hour of age Escherichia/Shigella, Streptococcus, Enterococcus and

Klebsiella are the most abundant genera in feces.13 The presence of

microorganisms causing bacteremia in foals in a high relative abun-

dance in the GIT provides indirect evidence to suggest that transloca-

tion of bacteria from the intestine might play an essential role in the

causation of sepsis in newborn foal. After birth, the foal's gastrointes-

tinal intercellular permeability is high, allowing absorption of nutrients,

proteins (eg, immunoglobulins), and leukocytes.37-40 This permeability

reduces substantially during the first 24 hours.41 This can explain, at

least in part, the increased risk of foals with failure of transfer of pas-

sive immunity to develop bacteremia and sepsis because of improper

colostrum intake. Translocation of bacteria from the GIT into the sys-

temic circulation can also be increased in newborn and premature

foals with an immature enteric cell network42,43 or foals exposed to

hypoxic events during parturition44 as the permeability of the gut in

these foals appears to remain high for longer period of time. Foals

with gastrointestinal inflammation are also at high risk of bacterial

translocation from the GIT.5,45,46

In the present study, significant differences in alpha, but not beta-

diversity were identified in the fecal bacterial microbiota of septic

foals compared with their healthy counterparts. Specifically, a greater

richness, evenness, and diversity was present in septic foals compared

to healthy ones. These results differed from the current knowledge

that a high diversity is associated with healthy GIT in different spe-

cies26,47-50 while a lower diversity is associated with late-onset sepsis

in human neonates.19-22 An explanation for high diversity in sick foals

could be that healthy foals had a more stable colonic microbiota than

septic and SNS foals. This could lead to a higher detection of bacteria

from the upper GIT in the feces of septic and SNS foals which are usu-

ally obscured by colonic bacteria.51 This hypothesis can be supported

by the differences in bacterial membership (Jaccard index) between

healthy and sick foals (ie, SNS and septic foals) because those differ-

ences result from the presence/absence of low abundant or rare taxa

in each group.32 The unstable colonic microbiota of sick foals might

be related to the lack or reduced consumption of colostrum as dem-

onstrated by a lower serum IgG concentration compared to healthy

foals. Colostrum and its immune components play an important role in

the development and establishment of the gastrointestinal microbiota

in calves.52-54 Therefore, it is possible that the lack of colostrum con-

sumption in septic and SNS foals could have delayed the establish-

ment and colonization of the colonic microbiota allowing the

detection of upper GIT microbiota or transient bacteria in the fecal

samples. This ultimately led to increased richness and diversity, and

differences in bacterial membership. Another explanation for the

higher diversity in SNS and septic foals is that they were exposed to a

higher load of environmental organisms, which might increase the

richness, and therefore the diversity of the fecal microbiota. The

mare's skin and the respiratory, reproductive, and gastrointestinal sys-

tems along with those present in the soil, bedding, feed and feces are

sources for bacteria transiting and colonizing the gastrointestinal sys-

tem of the newborn foal.6 Thus, it is possible that an exposure to a

high microbial load by foals with inadequate colostrum intake result in

a higher diversity and predispose foals to sepsis. In fact, poor sanitary

conditions and highly contaminated environments are considered a

risk factor for the development of neonatal sepsis in foals as the gas-

trointestinal tract is the major port of entrance for bacteria causing

sepsis.6,55

Limitations to the study exist because of the nature of working

with client-owned animals in a clinical setting. First, The small number

of foals and inclusion of animals with different diseases in the SNS

and sepsis group with known interindividual variability of the gastroin-

testinal microbiota could increase the type II error and decreased the

changes of identifying differences between groups.56,57 The paired

septic, SNS and heathy foals were housed in dissimilar environmental

conditions, and they were not matched based upon signalment or age.

These factors have the potential to shape the fecal microbiota beyond

expected interindividual variation. Additionally, foals were enrolled in

the study with fecal samples collected in varying states of disease (eg,

sepsis, multiple organ dysfunction) and with different diseases. This

may represent a confounding variable, as the fecal microbiota could

potentially vary based upon disease state. Finally, microbiota studies

and in essence hypothesis generating rather than hypothesis driven

studies and therefore our results are descriptive and need to be inter-

pret taking it into consideration.58 Despite of this limitation, our study

F IGURE 5 Plot from linear discriminant analysis effect size
(LEfSe) indicating enriched bacterial genera in fecal samples of healthy
(n = 21), sick nonseptic (SNS, n = 9) and septic (n = 8) foals. Cut-off
of the linear discriminant analysis (LDA) > 2
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indicates that the fecal microbiota of healthy and sick foals differs sig-

nificantly likely associated with effects of colostrum intake and sepsis

itself on the gastrointestinal microbiota.
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