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Background: Recent EEG-SSVEP signal based BCI studies have used high frequency

square pulse visual stimuli to reduce subjective fatigue. However, the effect of total

harmonic distortion (THD) has not been considered. Compared to CRT and LCD

monitors, LED screen displays high-frequency wave with better refresh rate. In this study,

we present high frequency sine wave simple and rhythmic patterns with low THD rate by

LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects.

Materials and Methods: We used patterns of 3-sequence high-frequency sine waves

(25, 30, and 35Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition

of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies

in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low

THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal

subjects (aged 23–30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used

for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA,

and LASSO methods were employed to analyze SSVEP responses. The data including

SSVEP features and fatigue rate for different visual stimuli patterns were statistically

evaluated.

Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained

accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs

> 1 s). High frequency rhythmic patterns group with low THD rate showed higher

accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure

ANOVA showed significant difference between rhythmic pattern features (P < 0.0005).

Overall, there was no significant difference between the VAS of rhythmic [3.85 ±

2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63). Rhythmic

group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max

= P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35).
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Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher

and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue

rate than simple patterns. We conclude that both rhythmic and simple visual high

frequency sine wave stimuli require further research for human subject SSVEP-BCI

studies.

Keywords: brain computer interface, SSVEP, EEG, high frequency, rhythmic patterns, sine waves, fatigue rate

INTRODUCTION

A brain computer interface (BCI) interprets human brain
activities as a control signal to make direct communication
between the brain and external devices (Alonso et al., 2012).
Its application includes improving the quality of life in
severely disabled individuals. The BCI-based systems utilize
cortical signals for communication (Alonso et al., 2012; Diez
et al., 2013). BCIs also work with several modalities, such
as electroencephalography (EEG) (Hochberg, 2006; Schalk and
Leuthardt, 2011), electrocorticogram (ECoG) (Hochberg, 2006),
functional magnetic resonance imaging (fMRI) (Sitaram et al.,
2008), and functional near-infrared spectroscopy (fNIR or
fNIRS) (Naseer and Hong, 2015). Nowadays, non-invasive
modalities such as EEG measurement provide a common
solution in BCI studies and applications. P300 (Middendorf et al.,
2000; Chang et al., 2016), visual evoked potential (VEP) (Wang
et al., 2008; Bin et al., 2009a, 2011; Guger et al., 2012; Nezamfar
et al., 2016; Zhao et al., 2017), slow cortical potentials (SCP)
(Birbaumer et al., 1999) and sensorimotor rhythms (Pfurtscheller
et al., 2000) are the common signals used for EEG-based BCIs.

EEG-steady state visual evoked potential (SSVEP) signal is one
of the most promising modalities that has several comparative
advantages including high signal to noise ratio (SNR) (Ahn
et al., 2016), high information transfer rate (ITR) and minimal
requirement for training of subject (Middendorf et al., 2000;
Wu et al., 2008; Guger et al., 2012). SSVEP signal is a natural
response of brain to periodic visual stimulation in range of
1–90Hz (Herrmann, 2001). It usually includes a sinusoidal
waveformwith the same fundamental frequency as of the external
visual stimulus, harmonics and occasionally subharmonics, and
is mostly observed in occipital and parietal lobes (Zhang et al.,
2012a).

In the SSVEP-based BCI, an extensive variety of frequencies
have been utilized for visual stimulus generation and it is
observed that SSVEP has the strongest amplitude when the
flickering frequency is about 15Hz (Pastor et al., 2003). Stimulus
frequencies in the medium (12–25Hz) and low frequency (up
to 12Hz) ranges give better SNR in SSVEP. However, these are
associated with subjective fatigue and discomfort and higher risk
of photosensitive epileptic seizures (Pastor et al., 2003; Duszyk
et al., 2014). On the other hand, high-frequency (25–50Hz)
stimulus range yield lower amplitude in SSVEP (Diez et al.,
2011; Ajami et al., 2018); however, they give stable subjective
performance with the passage of time making them suitable for
SSVEP-based BCI (Won et al., 2015). Several studies have utilized
low to medium range frequencies as these have higher SNR than

high frequency range and are easy to detect (Friman et al., 2007;
Muller et al., 2008; Ortner et al., 2011). Recent studies have
detected SSVEP by using visual stimuli at the range of 30–50Hz
(Zhu et al., 2010; F. Zhang et al., 2015). For example, controlling
robotic wheelchair and computer mouse at 37–40Hz frequencies
(Diez et al., 2011, 2013) and using 30–39Hz frequencies for an
optimized simple 7-letter speller (Chabuda et al., 2018).

Several studies have developed methods for the detection
of SSVEP at high frequencies. For example, spatial filtering
approach has been used for the SSVEP detection at 30, 35, 40,
and 45Hz (Molina and Mihajlovic, 2010). In addition, empirical
mode decomposition (EMD) method has also been used for the
SSVEP recognition at 25, 30, 35Hz (Liu et al., 2014; Zhang et al.,
2015).

The information transfer rate of a BCI system is proportional
to the number of commands that are simultaneously available
for the user (Yuan et al., 2013). In SSVEP paradigm, a narrow
band of frequencies is available so as to have low eye fatigue
and acceptable SNR. On the other hand, the refreshing rate
of monitors is an important limiting factor for the number
of available visual stimuli. Therefore, the number of available
targeted frequencies for the modulation is an important problem
that remains to be solved for benchmark BCI application such
as spellers (Zhang et al., 2012b). Some studies have attempted
to overcome this problem by using phase information to code
more targets (Lee et al., 2010; Jia et al., 2011) or by embedding
more LEDs with a low precise frequency resolution interval
between the targeted frequencies (Hwang et al., 2012). Others
have proposed the sum of two or more frequencies applied
simultaneously to a visual stimulus, mostly with square waveform
(Srihari Mukesh et al., 2005; Shyu et al., 2010; Hwang et al.,
2013). However, as reported in several studies, the use of square
waveform results in appearance of odd harmonics in the SSVEP
response that can negatively affect the detection accuracy and
increases the ambiguity in choosing the best stimulus frequencies
for the target recognition (Srihari Mukesh et al., 2005; Shyu et al.,
2010; Zhang et al., 2012b, 2015; Zhao et al., 2017).

In addition, the above mentioned limitations have been
addressed by considering specific aspects of challenges.
For example, use of high frequency for the reduction of
fatigue (Sakurada et al., 2015); however, it decreases the BCI
performance (Volosyak et al., 2011). As it is important to reduce
fatigue rate and also have high accuracy rate for a real BCI
application, several studies have used high frequency for fatigue
reduction and low frequencies for improving the accuracy rate
by introducing amplitude and frequency modulated visual
stimulation methods (Chang et al., 2014; Dreyer and Herrmann,
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2015; Dreyer et al., 2017). In these studies, a high frequency
carrier was modulated by another frequency and the SSVEP was
evoked at the difference of these two frequencies that covered low
frequency range for improving the accuracy rate. This method
reduced subjective perceptibility as well as fatigue rate; however,
the accuracy rate in these studies was lower than the simple
stimulus used in recent studies (Dreyer and Herrmann, 2015;
Dreyer et al., 2017).

In this study, we used sequence of 3 different frequencies
as high frequency rhythmic patterns for the reduction of
subjective fatigue rate. We hypothesized that the accuracy of
rhythmic patterns would be comparable with the recently used
simple visual stimuli. Thus, we designed high frequency simple
and rhythmic sine wave patterns emitted by LED with high
precision and low total harmonic distortion (THD) rate. We
also investigated the accuracy by using three different frequency
detection algorithms. Finally, the discrimination of patterns was
evaluated by the analysis of SSVEP responses and the subjective
fatigue for the simple and rhythmic visual stimuli by using VAS.

MATERIALS AND METHODS

Study Participants
Twenty-two healthy right handed (11 males and 11 females
students; 23–30 years old, average age 25 ± 2.1 years) subjects
with normal or corrected to normal vision and without any
history of neurologic and psychiatric disorders and head trauma
were enrolled in this study. They were recruited by the word of
mouth or announcement via social media. All of them signed
informed consent form based on the Declaration of Helsinki.
The ethical approval for the study was given by the Medical
Research Ethics Committee of the Tehran University of Medical
Sciences.

Experimental Setup
Stimuli Design Paradigm
In the human visual system, three parallel pathways including
Magnocellular (MC), Parvocellular (PC) and Koniocellular (KC),
process and transfer visual information to visual cortex (Kaplan,
2014). Each pathway processes different physical parameters of
visual stimuli characterized by their specific temporal and spatial
resolutions (Purpura et al., 1990; Duszyk et al., 2014; Labecki
et al., 2016). Magnocellular pathway is sensitive to difference
in contrast and motion and depth information. Receptive fields
of MC pathway neurons are larger than other pathways and
are sensitive to quick transients in retinal stimulation. In
other words, it is sensitive to high-frequency visual stimuli
(Cheong et al., 2013; Duszyk et al., 2014). Information about
red and green colors is carried by the PC pathway and it is
also sensitive to the shape of stimulus and exhibits sustained
response to retinal stimulation. Koniocellular pathway carries
blue and yellow color information and responds to the spectrum
of stimuli (Kaplan, 2014). Based on the above characteristics
of human visual system, we expected high SSVEP generation
by MC pathway because of its larger receptive fields, its
relevant processing of visual stimuli and motion perception.
The most common colors used for BCI applications are green,

blue, and red and white (Zhu et al., 2010). For choosing
the best color to have strong SSVEP response, we selected
red color based on PC pathway sensitivity and for obtaining
sustained SSVEP response (Zhu et al., 2010; Duszyk et al.,
2014).

Knowledge about the shape and size of stimuli presenting
device is also crucial for designing a BCI-paradigm. Firstly, we
selected LED because of the limitation of the refresh rate of
LCD (Zhao et al., 2017). The size of square shaped LED was
4 × 4 cm2. Rectangular, square or checkerboard are the most
common shapes used in BCI studies and choosing any one of
them, have no significant effects on response (Duszyk et al.,
2014). Additionally, as increasing the size of LED evokes stronger
SSVEP response, we kept 4 × 4 cm2 size which was acceptable
for use in SSVEP-BCIs (Duszyk et al., 2014). According to our
paradigm, each high-frequency visual pattern was coded by the
permutation of frequencies that are available in the [25–50Hz]
range. By choosing N frequencies from the frequency set, we
could get NN different patterns. These patterns contained N
same frequencies, (NN-N-N!) partly different and N! completely
different frequencies. General block diagram for designing visual
stimulus is shown in Figure 1.

For applying the above visual stimuli in our SSVEP study,
three high frequencies 25, 30, and 35Hz were selected to
generate various patterns. We generated 9 patterns, (each
having 3 frequencies) from 27 possible ones. Three patterns
comprising of repetitions of same frequencies (P25-25-25, P30-
30-30, and P35-35-35) served as the simple ones (Garcia,
2008). The other six patterns that served as rhythmic patterns,
comprised of all of 3 frequencies in different sequences (P25-
30-35, P25-35-30, P30-35-25, P30-25-35, P35-30-25, and P35-
25-30). Use of the 3 frequencies in the 6 above sequences gave
maximum frequency changes and unpredictability in rhythmic
patterns. These 6 rhythmic patterns also have ascending (e.g.,
P25-30-35) descending (e.g., P35-30-25) and zigzag (e.g., P30-
25-35) trends in frequencies. The order of presentation of
simple and rhythmic visual stimuli pattern was random with
3 simple patterns interspersed between 6 rhythmic patterns
and same for all the subjects as shown in Supplementary
Table S1. Thus, we were able to investigate the effect of
maximum frequency changes on subjective fatigue rate between
simple and rhythmic group patterns. Break time of 2 s was
placed between the trials for better adaptability. The time
series diagram of visual stimuli presentation session for each
simple and rhythmic patterns is shown in Figures 2, 3

respectively.

Stimulator Design
All patterns were first designed and entered in MATLAB
software (Release 2016b, The MathWorks, Inc, Massachusetts,
United States) with the sampling rate of 44100 sps and saved
as .wav format to be sent to a custom-made DAC board and
LED driver (Figures 4, 5). A precise DC bias was added to
the sine waveform pattern with appropriate amplitude to lay in
the linear region of operation of the LED. For the LED that
was utilized in our setup, the linear region range was 0 to 60
milliamperes with 5.5 Volt DC bias. The stimulator hardware

Frontiers in Human Neuroscience | www.frontiersin.org 3 May 2018 | Volume 12 | Article 201

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Keihani et al. High Frequency Rhythmic Sine Wave

FIGURE 1 | Block diagram of designated high-frequency visual stimuli patterns used in the study. Colors in each segment indicate different frequencies. i,j,k indices

relate to individual high frequencies that were used within a segment. Ti, Tj, and Tj show duration of representation of each fi, fj, and fk frequency respectively, in a

segment and Trest expresses the rest time before presentaion of each single session. N is the total number of segments in the designed visual stimuli presentation

session for a single pattern and shows the repetition number of a single segment. Tbreak denotes the break time between two consecutive segments. A trial contains

the sequence of three frequencies fi,fj, and fk presentation. The duration of a visual stimuli presentation session for a single pattern was calculated by following

equation: Tsession = Trest + (TTrial + Tbreak ) × N.

FIGURE 2 | Six rhythmic visual stimuli presentation session. In each session, after a 10 s rest time, the selected pattern was presented as a trial for 6 s. Between the

two consecutive trials, a 2 s break time was given. Therefore, each session that contained 10 trials took 90 s. At the end of each session, fatigue rate was reported by

the subjects. The session finished after 2min rest period.

was designed by the authors (MF., AM., BM., and AJ.) so that
all the parameters were precisely adjusted, and finally the THD
rate of ≤0.1% was achieved (see Supplementary Figures S1,
S2). The National Instruments DAQ was used for recording
optic sensor signal and the stimuli that were represented
concurrently. A linear optical sensor (Texas Instruments) was

used for recording the represented stimuli signal from LED
(Figures 4, 5).

As shown in the Supplementary Figures S1, S2, the linearity of
luminance was analyzed by placing the optical sensor connected
to the stimulator hardware (specifications not mentioned due to
the pending patent) in front of the LED. We produced a single
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FIGURE 3 | Three simple visual stimuli presentation session. The details of the session are same as of the Figure 2.

FIGURE 4 | Equipment and flow chart for data acquisition.

pure 20Hz sinusoidal signal with the designed hardware. This
signal was applied to the LED with a precision driver. The LED
output (e.g., luminosity) was measured with the linear optical
sensor. The sensor output was analyzed to calculate the THD of
the stimuli.

EEG Data Acquisition and Subjective Fatigue

Evaluation
Before starting the experiment, the data acquisition paradigm
was explained to each subject. The experiment was carried out
in a dimly lit room without electromagnetic shield, and the
subjects sat on the comfortable chair at a distance of about
75 cm from the LED screen as shown in the Figures 4, 5.
The order of visual stimuli presentation was same for all the
subjects (see Supplementary Table S1). They were given 2minrest
after each session. Subjective fatigue rate was evaluated during
the rest time by using a 10 point (0 = no fatigue and 10 =

maximum fatigue) Visual Analogue Scale (VAS) (Shahid et al.,
2011). The EEG signals were recorded continuously by a g.USB
amplifier (g.tec, Graz, Austria) system using g.LADYbird active
electrodes at Oz, O1, and O2 connected to 3 channels (Ch1,
Ch2 and Ch3) for the reported strong SSVEP response. Right ear
lobe and Fpz electrodes were selected as reference and ground

FIGURE 5 | The SSVEP recording experimental setup. (Note: The room light

was turned on to capture this image. The SSVEP data were recorded with

room light turned off).

respectively, by following the EEG international 10–20 standard
system and all the 3 channels were sampled at 1200Hz sampling
rate (Figures 4, 5).
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Analytical Methods
Pre-processing
Based on the specifications of the optic sensor and synchronizer
gtec.’s pulse signals, the initial time point of EEG recording
was marked by gtec.’s synchronized pulse and the onset time of
the stimuli presentation was determined by the recorded optic
sensor signal. Finally, the beginning time point of EEG signal
with respect to the visual stimuli representation was calculated
by the subtraction of optic sensor initial point from gtec.’s pulse
onset. Therefore, each segment of EEG-SSVEP was separated.
We checked the signals visually and removed trend of data with
detrend command in the MATLAB software. Single trials and
mean of 10 trials were calculated for each pattern in order to
utilize them for further respective single and mean trials data
analysis.

PSD Based Analysis
SSVEP signals were filtered by offline 6-order Butterworth band-
pass filter with cut-off frequencies of 10–40Hz, (Diez et al., 2011).
The power spectral density was calculated at each 2 s rectangular
window, then normalized at each visual stimulus frequencies (25,
30, 35, and Hz) as:

P
(

fi
)

=

M
∑

ch=1

PSDssvep
(

fi ± 0.25 Hz
)

PSDrest
(

fi ± 0.25 Hz
) /M (1)

Where ch is the number of channels, M is the total number
of channels, fi is the visual stimuli frequencies, PSDssvep is the
power spectral density of EEG-SSVEP signal and PSDrest is the
power spectral density of resting state EEG signal. Finally,max P
(fi) utilized for recognition of target stimuli as:

ftarget =maxfi ( P1. P2.. . .. Pi) (2)

Canonical Correlation Analysis (CCA)
CCA basically works on two random sets of data that may have
underlying correlation. The validity, and effectiveness of CCA
has been shown in Bin et al. (2009b) study. In our study, first
set of data was EEG-SSVEP signal and the second data set was
visual stimulus signals. The assumption for utilizing CCA feature
extraction method for SSVEP detection is that the source of
SSVEP signal (x) is the output of a linear system with visual
stimulus (Y) as the input signal. Y can be decomposed in Fourier
series of its harmonics as:

y =

















sin
(

2πft
)

cos
(

2πft
)

sin
(

4πft
)

cos
(

4πft
)

sin
(

6πft
)

cos
(
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1
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2

S
. . . . .
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S
(3)

Where f is the fundamental frequency of visual stimulus, S is
the sampling rate and T is the number of sample points. CCA
algorithm finds a pair linear combination for x and y as, X = ax

and Y = by to maximize the correlation between two canonical
variables {X, Y}, based on the following optimization problem:

maxρ (X.Y) = Corr(X. Y) (4)

maxρ (X.Y) =
E

[

XTY
]

√

E
[

XT X
]

E
[

YT Y
]

(5)

The ρi coefficients utilized as the canonical correlation
coefficients for detection of targeted visual stimulus frequency as:

ftarget = maxfi (ρ1. ρ2. . . . . ρi) (6)

For more details about the CCA we referred to Lin et al. (2007).

Least Absolute Shrinkage and Selection Operator

Analysis (LASSO)
LASSO as a method for recognition of SSVEP was proposed
by Zhang et al. (2012a). This analysis has the capability of
model selection and shrinkage estimation methodology. Due to
its sparse approximation constraints, this method provides low
variance and high interpretable solution for linear regression. By
considering a standard linear regression model that y represents
in the SSVEP response observations as:

y = Xβ + ε (7)

Where the size of y is n×1 vector, X is a n×p matrix that
demonstrates stimuli frequencies and their harmonics and ε

denote noise vector with zero mean and constant variance. The
LASSO solves the below optimization problem for estimating
sparse β̃ vector as:

β̃ = arg min(||y− Xβ||22 + λ||β||1) (8)

Where || .||1 and || .||2 represent l1 norm and l2 norm and λ is
a penalty parameter that helps to achieve sparse solution for β̃ .
The contribution degree (CD) of each stimulus frequency and its
harmonics in EEG response was calculated as:

CDi =

∑M
ch=1

∑2K
h=1 |β̃

K
ch.h

|

M
(9)

Where M is the total number of EEG channels and K is the
number of considered harmonics and β̃ch

ch. h
is the β̃ = [β̃1

1.1,

β̃1
1.2, β̃1

1.3, β̃1
1.4, β̃1

1.5, β̃1
1.6,. . . , β̃3

3.5, β̃3
3.6] respect to each channel

and harmonics. Finally, the maximum CDi is selected as targeted
stimuli as:

ftarget = maxfi (CD1. CD2. . . . . CDi) (10)

Evaluation Methods
Classification accuracy was utilized for evaluating the
discriminability of the patterns proposed in this study for
SSVEP-BCI applications. For the mean of 10 trials classification,
mean of 10 trials of SSVEP response of each pattern was
calculated for each subject. Therefore, the total number of trials
(for all nine patterns) was equal to 198 (= 9 patterns × 22
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subjects). For single trial classification, the total number of trials
was equal to 1980 (=10 trials for each pattern × 9 patterns × 22
subjects).

Classification accuracy was formulated as:

Acc =
Number of valid trials

Total number of trials
× 100 (11)

Where valid trials are the trials that were correctly classified.
Classification steps carried out according to the block diagram

shown in Figures 6 (see also Supplementary Figure S3) are given
below:

Step 1: Target frequency in window 1. The EEG data in
window 1 was input of the PSD, CCA or LASSO algorithm to
determine the dominated frequency (fi) in the current window.

Step 2: Target frequency in window 2. The EEG data in
window 2 was input of the frequency recognition algorithm to
determine the dominated frequency (fj) in the current window.

Step 3: Target frequency window3. Similar to that of Step 1 and
2, the dominated frequency (fk) was estimated based on the EEG
in window 3.

Step 4: Target pattern recognition. After getting fi, fj and fk, we
had the ordered sequence fi-fj –fk. We then compared it with the
respective pattern. If it matched with the predefined pattern, the
output was taken as 1 or else it was taken as 0.

Statistical Analysis
Statistical analysis was performed with SPSS (Version 16.0.
Chicago, SPSS Inc. IBM Corp, released 2011) to evaluate the
fatigue rate of 9 patterns used in this study. Appropriate non-
parametric statistical tests were employed when fatigue rate data
set failed to provide criteria for normal distribution. Therefore,
first the Friedman test with a significance level α = 0.05 was
employed as non-parametric test to overall demonstrate any
significant fatigue rate changes in all visual stimuli patterns as
multiple conditions, then the post hoc analysis was done to
compare and specifically show each pair of patterns fatigue rate
changes. Wilcoxon signed-rank test was applied for pairwise
comparisons. Bonferroni correction was used because several

pairwise comparisons were conducted in the experiment to
get the critical value, so that the test had P < 0.0014 to be
significant. Paired t-test was used for comparison of the simple
and rhythmic pattern groups fatigue rate (α = 0.05). ANOVA
with repeated measures was used to compare the amplitude
of CCA and LASSO coefficients of SSVEP responses (α =

0.05) for single trial analysis. Unless mentioned otherwise, the
results are expressed as mean ± standard deviation (S.D.). We
compared three targeted frequencies coefficient’s amplitude and
then examined the patterns amplitude changes for simple and
rhythmic groups. Post hoc analysis has done by using Bonferroni
correction (set α < 0.017) in order to check the specific significant
differences between each pairs. The CCA and LASSO accuracy
results for individual window lengths were analyzed byWilcoxon
signed-rank test with α = 0.05. We statistically compared simple
and rhythmic group accuracy results of mean of 10 trials with
Wilcoxon signed-rank test (α = 0.05) and single trial accuracy
results were compared with paired t-test (α = 0.05).

RESULTS

Results for Mean of 10 Trials Analysis
First, the PSD-based analysis was performed at an average of 10
trials in 2 s rectangular window and the recognition accuracies for
22 subjects were calculated as shown in Figure 7. For the Grand
Average of SSVEP responses and PSD for all nine patterns, see
Supplementary Figure S4. Then, the CCA and LASSO analysis
were done for 0.5 s window lengths. By increasing the length of
window by 0.25 s, the analysis (CCA, LASSO) was repeated for
mean of 10 trials at 0.75, 1, 1.25, 1.5, 1.75, and 2 s window lengths
as shown in Tables 1, 2 and Figure 8. There was no statistically
significant difference between the mean accuracy results of CCA
and LASSO.

Single Trial Analysis Results
All the three methods were also used for single trial analysis. The
PSD results for single trial WL of 2 s are presented in Table 3.

FIGURE 6 | Block diagram of the targeted pattern recognition for SSVEP responses. Ch1 = Oz, Ch2 = O1, Ch3 = O2 are EEG data channels and WL denotes the

window length. Dotted line under WL indicates variable window lengths between 0.5 and 2 s.
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FIGURE 7 | Recognition accuracy expressed as percentage of 22 subjects in PSD-based analysis for 2 s rectangular window length. For single subjects the results

are presented as mean. Results of all the subjects (blue bar) is presented as mean ± S.D.

TABLE 1 | CCA accuracy results for different window length (for mean of 10 trials).

Subjects ID WL = 0.5 s WL = 0.75 WL = 1 WL = 1.25 WL = 1.5 WL = 1.75 WL = 2

S1 66.67 66.67 77.78 88.89 100 100 100

S2 77.78 88.89 66.67 66.67 88.89 88.89 88.89

S3 100 100 100 100 100 100 100

S4 88.89 100 88.89 100 100 100 100

S5 88.89 100 100 100 100 100 100

S6 88.89 100 100 100 100 100 100

S7 88.89 100 100 100 100 100 100

S8 88.89 100 100 100 100 100 100

S9 100 100 100 100 100 100 100

S10 88.89 100 100 100 100 100 100

S11 66.67 100 100 100 100 100 100

S12 55.56 55.56 77.78 77.78 88.89 100 100

S13 88.89 100 100 100 100 100 100

S14 100 100 100 100 100 100 100

S15 77.78 66.67 88.89 100 100 100 100

S16 77.78 88.89 100 100 100 100 100

S17 88.89 100 88.89 100 100 100 100

S18 66.67 88.89 88.89 100 100 100 100

S19 88.89 77.78 100 100 100 100 100

S20 88.89 77.78 100 100 100 100 100

S21 77.78 88.89 88.89 88.89 100 100 100

S22 77.78 100 100 100 100 100 100

Mean(SD) 83.33(11.75) 90.91(13.55) 93.94(9.53) 96.46(8.66) 98.90(3.26) 99.49(2.36) 99.49(2.36)

CCA and LASSO analysis results are shown in the Tables 4, 5 for
single trial in different WL durations (0.5 to 2 s).

Comparison of the simple and the rhythmic groups visual
stimuli was done for single trial and the mean of 10 trials in
CCA and LASSO analysis and the respective results are shown
in the Table 6. For single trials results, higher accuracy rate was
seen for the rhythmic patterns (Table 6 and Supplementary Table
S5). Paired t-test showed that the single trial accuracy analysis

between the simple and the rhythmic groups had statistically
significant differences for 2 s WL in both CCA [t(21) = −5.689,
P < 0.001] and LASSO [t(21) = −5.086, P < 0.001] as shown in
Table 6 and Supplementary Table S5.

Repeated measures ANOVA with a Greenhouse-Geisser
correction showed that the amplitude of coefficients differed
statistically significant between the frequency targets in rhythmic
group (CCA method: [Target = 25Hz, F(1.210, 1595.981) =
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TABLE 2 | LASSO accuracy results for different window length (for mean of 10 trials).

Subjects ID WL = 0.5 s WL = 0.75 WL = 1 WL = 1.25 WL = 1.5 WL = 1.75 WL = 2

S1 77.78 66.67 77.78 100 100 100 100

S2 88.89 88.89 88.89 88.89 88.89 88.89 88.89

S3 100 100 100 100 100 100 100

S4 88.89 88.89 88.89 88.89 100 100 100

S5 88.89 100 100 100 100 100 100

S6 88.89 100 100 100 100 100 100

S7 77.78 100 100 100 100 100 100

S8 100 88.89 100 100 100 100 100

S9 100 100 100 100 100 100 100

S10 100 100 100 100 100 100 100

S11 77.78 100 100 100 100 100 100

S12 55.56 66.67 66.67 66.67 77.78 88.89 88.89

S13 100 100 100 100 100 100 100

S14 100 100 100 100 100 100 100

S15 77.78 66.67 88.89 100 100 100 100

S16 77.78 88.89 100 100 100 100 100

S17 100 100 100 100 100 100 100

S18 77.78 88.89 100 100 100 100 100

S19 55.56 88.89 88.89 100 100 100 100

S20 88.89 100 100 100 100 100 100

S21 66.67 100 100 100 100 100 100

S22 66.67 88.89 100 100 100 100 100

Mean(SD) 84.34(14.40) 91.92(11.46) 95.45(8.84) 97.47(7.61) 98.48(5.19) 98.99(3.26) 98.99(3.26)

FIGURE 8 | Comparison of CCA and LASSO accuracy results for mean of 10 trials. The results expressed as percentage are presented as mean ± S.D. Comparison

of the simple and rhythmic patterns accuracy results of mean of 10 trials showed no statistically significant differences.

1721.225, P < 0.0005], [Target = 30Hz, F(1.425, 1879.602) =

953.149, P < 0.0005], [Target= 35Hz, F(1.648, 2173.479) = 340.966,
P < 0.0005]). (LASSO method: [Target = 25Hz, F(1.444, 1032.744)
= 1032.744, P < 0.0005], [Target = 30Hz, F(1.549, 2043.336) =

1142.862, P < 0.01], [Target = 35Hz, F(1.863, 2456.753) = 425.449,
P < 0.0005]). Post hoc tests using the Bonferroni correction
revealed that the targeted 25Hz frequency was significantly

different from 30 to 35Hz frequencies coefficients ([mean ±

SD = 0.186 ± 0.083], P < 0.001). Multiple comparison results
gave repeated similar outputs with the targeted 30Hz ([mean ±

SD = 0.150 ± 0.071], P < 0.001) and 35Hz ([mean ± SD =

0.121 ± 0.055], P < 0.001) frequencies. These significant results
showed that the SSVEP responses to each stimulus frequency
were evoked (also see Supplementary Figure S4 that showed the
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TABLE 3 | Single trial analysis accuracy results for PSD method at window length

= 2 s.

Subjects ID Accuracy (%)

WL = 2 s

S1 36.66

S2 38.14

S3 34.81

S4 40

S5 35.92

S6 35.55

S7 34.07

S8 36.29

S9 35.55

S10 37.40

S11 37.45

S12 32.59

S13 40.37

S14 34.07

S15 36.29

S16 35.92

S17 39.62

S18 33.70

S19 33.70

S20 37.03

S21 32.22

S22 37.03

Mean(SD) 36.06(2.23)

SSVEP responses). We have shown the matrix of mean values
of coefficients amplitude (Supplementary Tables S2, S3) that also
illustrate differences in the ascending, descending and zigzag
trends in rhythmic and the simple patterns. Example of single
subject recognized patterns according to CCA coefficients is
shown in Supplementary Figure S3.

Fatigue Rate Statistical Results
Friedman test showed that there was statistically significant
difference between fatigue rate of 9 visual stimuli patterns χ

2
(8)

=

49.275, P = 0.001. Post hoc analysis with Wilcoxon signed-rank
tests was conducted with application of Bonferroni correction
resulting in significance level of P < 0.0014. Descriptive statistics
is shown in Table 7 and post hoc analysis results are shown in
Table 8. Overall, there was no significant difference between the
fatigue rate of rhythmic patterns group [3.85 ± 2.13] compared
to the simple patterns group [3.96 ± 2.21], (P = 0.63). However,
within the simple patterns group, there was significant variation
(min= P35-35-35 [2.95± 2.45], max= P25-25-25[4.95± 2.57])
of fatigue rate. In addition, within group significant variation of
fatigue rate in rhythmic group was observed (min = P25-30-35
[2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) (see Tables 7, 8
and Supplementary Figure S6). For the individual patterns, the
maximum fatigue rate (4.95± 2.57) and minimum (2.90± 2.27)
fatigue rate corresponded to P25-25-25 and P25-30-35 patterns

respectively. Fatigue rate between the first (P25-30-35) and last
(P30-25-35) pattern was not statistically significant (Table 8 and
Supplementary Figure S6). However, there was a statistically
insignificant trend toward higher fatigue rates at the later time
points (Supplementary Figures S6 and S7).

DISCUSSION

In this study, we have used high-frequency low THD sine
wave with simple and rhythmic patterns and presented them as
visual stimuli. Additionally, we analyzed SSVEP responses with
three well known methods (PSD, CCA and LASSO) in order to
discriminate patterns. We also evaluated the effects of simple and
rhythmic patterns on subjective fatigue rate in normal subjects.
We found that the rhythmic patterns had significantly higher
accuracy rates in single trial and overall insignificant higher rates
in the mean of 10 trials, and resulted in comparatively lesser
though insignificant subjective fatigue.

In comparison to the two apparently similar studies that didn’t
examine subjective fatigue rate and have utilized square pulse
shape stimuli type without reporting THD rate (Zhang et al.,
2012b, 2015), we used sine shaped high frequency range stimuli
and also examined the simple and rhythmic group accuracies as
well as their subjective fatigue rate (see Supplementary Table S4
for detailed comparison).

Most SSVEP studies have utilized low-frequency visual
stimuli range that yields high SNR results and resultant high
accuracy achievement, mostly higher than 80% (Zhang et al.,
2012b; Sakurada et al., 2013). However, at lower frequency
ranges (∼8Hz), the risk of photosensitive epileptic seizures
and high fatigue rate have to be considered. These two main
challenges encouraged researchers to carry out SSVEP studies
at high frequency range. At high frequency range, because
of comparatively lower SNR, accuracy obtained is also lower
(between 70 and 85%) than that of low-frequency studies (Garcia,
2008). We have attempted to improve the accuracy of high
frequency stimuli by examining the rhythmic patterns and
compared them with simple ones.

Validation of the Rhythmic Visual Stimuli
Patterns
In our study, six permutations were designed with selection
of three different high frequencies (25, 30, and 35Hz) in 3-
sequence including ascending, descending and zigzag rhythms
(Figures 2, 3, and Supplementary Tables S2, S3). Three simple
patterns had same frequency in the sequence.

Comparison of simple and rhythmic patterns showed higher
accuracy rate for rhythmic patterns group (Table 6 and see
Supplementary Table S5). Recently a high-frequency SSVEP
study has reported accuracy rates of 90–100% employing
improved design paradigm and use of synchronized averaging
of EEG trials (Zhang et al., 2015). We designed visual stimulus
patterns at high-frequency range and obtained similar results
(>90%) (Tables 1, 2). Our results for single trials analysis are
in the range of 73–74% (Tables 4, 5) and are comparable
with (Dreyer et al., 2017) that reported 33–87%. Our single
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TABLE 4 | CCA accuracy results for different window length (single trial).

Subjects ID WL = 0.5 s WL = 0.75 WL = 1 WL = 1.25 WL = 1.5 WL = 1.75 WL = 2

S1 37.41 41.11 40.00 38.52 36.30 37.78 38.89

S2 46.67 52.96 58.52 65.19 65.93 65.56 67.41

S3 58.52 74.44 82.96 86.67 91.11 93.33 95.56

S4 67.04 77.41 81.85 85.93 90.74 92.59 95.19

S5 40.74 44.81 52.22 56.30 59.26 62.59 65.19

S6 53.70 64.44 70.00 76.67 82.22 85.93 86.67

S7 48.52 65.93 67.41 70.37 74.44 78.89 79.63

S8 36.67 41.11 47.41 55.56 62.22 67.78 70.74

S9 45.93 68.89 77.41 83.70 87.04 90.74 92.59

S10 42.96 65.56 74.07 81.11 82.59 85.56 85.93

S11 49.63 66.67 77.41 83.70 86.30 87.41 88.52

S12 34.44 39.26 42.59 41.85 47.04 47.41 48.89

S13 68.52 78.52 86.30 88.52 92.59 94.07 94.44

S14 53.70 64.81 71.48 74.81 76.30 76.30 80.74

S15 42.22 41.85 46.67 46.67 46.67 47.41 51.11

S16 44.07 50.37 58.52 58.89 58.52 62.59 63.70

S17 48.89 61.11 64.44 72.22 76.67 78.15 81.48

S18 40.74 45.93 53.70 54.07 57.04 57.04 61.11

S19 39.63 43.70 49.26 51.48 52.22 54.44 55.56

S20 45.19 56.67 65.19 74.44 78.89 78.52 85.19

S21 42.96 51.48 57.41 60.37 65.19 67.78 68.52

S22 52.22 61.85 68.52 77.04 77.78 82.96 84.44

Mean(SD) 47.29(8.95) 57.22(12.56) 63.33(13.67) 67.46(15.32) 70.32(16.22) 72.49(16.56) 74.61(16.49)

trial accuracy rate was also comparable with a recent low
frequency study (Zhang et al., 2012b). Additionally, our mean
of 10 trials accuracy rates for rhythmic and simple groups
are better than another high frequency SSVEP study (Zhang
et al., 2015; see Supplementary Table S4). Use of appropriate
sequence coding increases the unpredictability of visual patterns
and leads to discriminative SSVEP response. Statistical analysis
confirmed the discrimination of patterns by examination of
the amplitude of SSVEP features. As shown in Supplementary
Tables S2, S3, simple, ascending, descending and zigzag patterns
coefficient vectors had significant differences with each other (see
Supplementary Figure S5). This is also seen in different patterns
illustrated by CCA coefficients matrix (see Supplementary
Figures S3, S5).

PSD, CCA, and LASSO Results
Comparison
Most SSVEP studies have used PSD based method for SSVEP
recognition and so we first tried to analyze data with this method.
For 2 s rectangular window mean accuracy rate was obtained to
be equal to 88.35%. However, at high-frequency range, obviously,
this method was not what we expected because of low amplitude
in frequency spectrum of SSVEP response compared to the low-
frequency range (Garcia, 2008). CCA and LASSO methods could
improve SSVEP-BCI speed compared to PSD. By utilizing these
two methods, more robust discriminative features in shorter TW
of EEG data can be extracted (Zhang et al., 2012a). For sequence

coding to design the visual stimulus patterns, it was important
to analyze the data in shorter TWs. As shown in the CCA and
LASSO results (Figure 8), for TW = 0.75 s, we were able to
obtain acceptable accuracy rate of higher than 90%. Our results
of comparison between CCA and LASSO at different TWs were

not significant. However, at low TWs length (≤1.25 s), LASSO
did show better performance compared to CCA while at TW >

1.25 s, CCA showed better results than LASSO. These results are

consistent with a previous study that reported better performance
for LASSO at low TWs duration [0.5–2.5 s], while for TW >

2.5 s, CCA had same and even better results (Zhang et al., 2012a).
However, compared to our study, they used low frequency,

square shaped visual patterns stimuli and had 9 participants (our
study had 22 participants).

Our CCA and LASSO results point to the importance of shape

of visual stimulus. Based on the knowledge of authors, studies

carried out so far that have compared LASSO and CCA analysis

of SSVEP, have not considered stimulus harmonic distortion

(Zhang et al., 2012a,b). These and other studies have used
square pulse shape stimulus and therefore the odd harmonics of

fundamental frequency existed in their visual stimulus frequency
spectrum. Thus, the SSVEP response that was recognized in these

studies did not correspond only to the fundamental frequency.
In our study, by designing the sine shape visual patterns with

low THD it was possible to have SSVEP response elicited by
fundamental frequency almost devoid of distortion. Thus, our
CCA and LASSO analysis of the SSVEP responses were largely
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TABLE 5 | LASSO accuracy results for different window length (single trial).

Subjects ID WL = 0.5 s WL = 0.75 WL = 1 WL = 1.25 WL = 1.5 WL = 1.75 WL = 2

S1 41.41 48.07 50.41 48.89 50.74 52.96 85.56

S2 49.19 56.22 63.63 61.11 64.44 64.81 88.52

S3 58.07 73.63 80.00 80.00 86.67 92.22 45.56

S4 69.44 80.41 88.81 89.63 92.59 94.81 95.56

S5 40.67 50.67 53.11 54.07 58.15 59.26 78.89

S6 58.81 68.44 76.22 77.04 81.85 85.56 51.48

S7 49.56 64.37 68.81 71.11 73.33 75.56 64.44

S8 34.85 41.41 50.67 53.33 61.11 65.19 81.85

S9 50.30 65.85 75.26 80.00 84.44 87.78 58.89

S10 48.81 66.59 76.59 78.15 82.22 84.07 52.22

S11 56.59 62.96 79.19 80.74 84.81 86.67 55.19

S12 39.19 44.74 40.15 40.00 44.07 41.85 81.11

S13 71.41 83.26 87.67 88.89 91.85 92.22 63.70

S14 56.59 66.22 70.15 71.11 74.07 75.56 75.19

S15 45.64 50.67 46.70 49.63 50.37 50.00 66.67

S16 44.74 48.81 55.81 54.81 61.11 60.74 94.07

S17 52.52 62.15 66.96 70.37 77.04 81.48 96.67

S18 44.37 49.56 55.85 52.96 55.56 54.07 63.70

S19 43.26 47.33 48.56 46.30 52.96 53.70 86.30

S20 46.22 55.11 65.48 68.15 72.96 75.56 77.04

S21 44.74 55.48 58.19 58.89 63.33 62.59 67.78

S22 52.63 59.44 61.41 63.33 67.04 70.74 88.89

Mean(SD) 49.95(9.1) 59.15(11.33) 64.52(13.67) 65.39(14.36) 69.58(14.43) 71.25(15.63) 73.60(15.44)

TABLE 6 | Rhythmic and Simple group results comparison for CCA and LASSO.

Method CCA LASSO

WL (s) 2 s 2 s

Simple group accuracy (%) Single trial Mean of 10 trials Single trial Mean of 10 trials

71.34(17.09) 98.48(7.10) 70.01(16.37) 98.48(7.10)

Rhythmic group accuracy (%) 76.24(16.34) 100(0) 75.40(15.23) 99.24(3.55)

Statistical analysis for

comparing the rhythmic and

simple group accuracies

Paired t-test (α = 0.05) Wilcoxon Signed

Ranks Test

(α = 0.05)

Paired t-test (α = 0.05) Wilcoxon Signed

Ranks Test

(α = 0.05)

t(21) = −5.689, P < 0.001 Z = −1.00,

P = 0.317

t(21) = −5.086, P < 0.001 Z = −0.447,

P = 0.655

not affected by the odd harmonics of fundamental frequency of
the input stimuli.

Fatigue Rate Evaluation
Using high frequency range stimuli can reduce the subjective
fatigue rate compared to the low frequency (Diez et al., 2011).
Studies that have examined the fatigue rate included simple
high frequency (Diez et al., 2011, 2013) while others have
used the advantages of high frequency range as carrier signal
(Chang et al., 2014; Dreyer and Herrmann, 2015; Dreyer et al.,
2017). This was done to decrease visual perceptibility and
consequently decrease the fatigue rate. In our study fatigue

rate was evaluated for the high frequency rhythmic and simple
patterns.

We used VAS as psychometric response scale for fatigue
rate evaluation. Our results show that there was overall no
significant difference between subjective fatigue rates of simple
and rhythmic stimuli pattern groups, though the VAS was
lower for the rhythmic patterns group. While significant fatigue
rate change was obtained within both simple and rhythmic
visual stimuli groups, however, within group fatigue rate
variations in the rhythmic group patterns were lower than
the simple group. In addition, rhythmic group pattern P25-
30-35 had the least VAS score of our study among all the
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individual patterns. Maximum and minimum fatigue rates were
observed for P25-25-25 and P35-35-35 patterns respectively,
in the simple group, indicating that higher frequencies cause
reduced subjective fatigue. Maximum and minimum fatigue
scores in the rhythmic group was for P35-25-30 and P25-
30-35 patterns respectively, indicating the importance of the
order of frequencies presented in a sequence (see Supplementary
Figure S6).

In this study, we observed higher but insignificant trend in
VAS values over time indicating higher subjective fatigue from
beginning to the end of experiment (Supplementary Figures

TABLE 7 | Descriptive statistics of two groups visual stimuli patterns fatigue rate.

Groups Visual

stimuli

patterns

N Mean Std.

deviation

Minimum Maximum

Simple

patterns

P25-25-25 22 4.95 2.578 2 10

P30-30-30 22 4.29 2.591 1 10

P35-35-35 22 2.95 2.459 1 10

Rhythmic

patterns

P25-30-35 22 2.90 2.278 0 7

P30-25-35 22 4.57 2.712 1 10

P25-35-30 22 3.48 2.600 0 9

P30-35-25 22 3.76 2.548 0 9

P35-25-30 22 4.81 2.657 1 10

P35-30-25 22 4.29 2.101 1 9

N, Number of subjects; Mean, Average fatigue rate for all subjects in each pattern;

Std. Deviation, Fatigue rate standard deviation in 22 subjects respect to each pattern;

Minimum, min fatigue rate for each pattern; Maximum, maximum fatigue rate for each

pattern.

S6, S7). As subjective fatigue was expected to increase over
time in our experiment, compared to few other recent SSVEP
studies (Diez et al., 2011, 2013; Dreyer and Herrmann, 2015;
Dreyer et al., 2017) we kept acceptable rest time (2min)
to minimize it. However, the aim of our study was not to
evaluate fatigue at various time points for each pattern, rather
we were more interested in knowing the fatigue rate between
simple and rhythmic groups as well as its variation within
these two groups. Thus, three simple group patterns were
randomly interspersed within six rhythmic group patterns.
This order was kept same for all the subjects so as to get
authentic data. As a result, the patterns of rhythmic group
were distributed in the first, middle and in the last time
points of each experiment with simple group in between
them. Overall, this minimized the influence of time in VAS
analysis for simple and rhythmic groups. The duration of our
experiment (32min) might be seen as longer, as seen by higher
VAS scores with time, however, evaluation of fatigue between
consecutive patterns was not aimed in our study. We suggest
future experiments to evaluate the fatigue rate with individual
patterns.

Limitations of the Study and Suggestions
for the Future Works
For designing visual stimulus patterns, several limitations have
to be considered. Perhaps the most important point is the
number of frequencies that are selected. Although, there is a
trade-off between accuracy and speed of BCI applications which
is related to the length of each trial, as when the number of
frequencies in each sequence increases, the speed of the BCI
decreases. However, still, a high accuracy rate can be obtained.
In this study, we allocated equal time for each frequency in

TABLE 8 | Post hoc analysis results: Results of fatigue rate comparison between each pair of visual stimuli patterns.

Other Patterns Pattern P30-30-30 P35-35-35 P25-30-35 P25-35-30 P30-25-35 P30-35-25 P35-25-30 P35-30-25

P25-25-25 Z = 0.955,

P = 0.339

Z = −3.541,

P < 0.001*

Z= −3.202,

P < 0.001**

Z = −3.443,

P < 0.001**

Z = −1.504,

P = 0.132

Z = −2.704,

P = 0.007

Z = −0.792,

P = 0.428

Z = −1.807,

P = 0.071

P30-30-30 Z = −3.220,

P < 0.001*

Z = −3.050,

P = 0.002

Z = −1.802,

P = 0.072

Z = −0.066,

P = 0.947

Z = −1.551,

P = 0.121

Z = −0.754,

P = 0.455

Z = −0.209,

P = 0.835

P35-35-35 Z = −0.124,

P = 0.902

Z = −1.506,

P = 0.132

Z = −2.967,

P = 0.003

Z = −1.283,

P = 0.199

Z = −3.404,

P < 0.001**

Z = −2.441,

P = 0.015

P25-30-35 Z = −1.592,

P = 0.111

Z = −2.917,

P = 0.004

Z = −2.419,

P = 0.016

Z = −3.095,

P = 0.002

Z = −2.393,

P = 0.017

P25-35-30 Z = −3.206,

P < 0.001***

Z = −0.296,

P = 0.768

Z = −3.447,

P < 0.001***

Z = −1.947,

P = 0.052

P30-25-35 Z = −2.107,

P = 0.035

Z = −1.209,

P = 0.227

Z = −0.532,

P = 0.595

P30-35-25 Z = −2.378,

P = 0.017

Z = −1.909,

P = 0.056

P35-25-30 Z = −1.119,

P = 0.263

*Significant fatigue rate changes in pair of simple group patterns comparison.

**Significant fatigue rate changes when one pattern in simple group compared with one pattern in rhythmic group.

***Significant fatigue rate changes in pair of rhythmic group patterns comparison.

Bold values are statistically significant.
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one trial. However, for future works, it is suggested that time
of each frequency can be optimized and set differently for
improving the speed. Additionally, for increasing the speed, it
could be better to detect the lowest number of each frequency
repetition for SSVEP generation and then setting the least time
required for placing each frequency in the specific pattern. For
example, higher frequencies may need lesser time compared to
the lower frequencies, because in Ti duration time, the number of
periods that higher frequencies are repeated is more than lower
frequencies. Thus, SSVEP response to higher frequencies may be
generated faster than low frequencies.

For N individual pattern analysis, we suggest that the
order of patterns should be randomized and selected from
existing N! permutations. However, this approach will obviously
require more time and experiments for evaluation of the all
permutations. In addition, it will increase the subjective fatigue
rate over time and may lead to significant effect on the responses.
Finally, within/between subject effects and responses should also
be examined.

For the analysis of SSVEP, various methods of analysis are
reported recently (Liu et al., 2014; Cao et al., 2015; Zhang et al.,
2015). We only used three conventional methods (CCA, LASSO
and PSD) for analysis of SSVEP signals. In future works, these as
well as other recent methods can be used.

In a real BCI application, various patterns are applied
simultaneously. Therefore, for designing an online synchronous
or even asynchronous real BCI based on employed rhythmic
patterns, appropriate modifications in hardware set up must
be considered together with the selection of accurate frequency
value.

VAS measurement tool was used for subjective fatigue rate
evaluation in our study. It’s important to quantify fatigue rate
more accurately and not only based on spectral analysis (Cao
et al., 2014). For future studies, using an objective method
for fatigue evaluation will be more valuable for consistency
between SSVEP-BCI applications. For fatigue rate reduction, our
suggestion is to use different colors along with rhythmic patterns
as this leads to significant effect on SSVEP responses (Duszyk
et al., 2014).

CONCLUSION

High frequency sine shaped rhythmic and simple patterns had
low THD, and higher and similar accuracy rates. Rhythmic
stimuli patterns showed insignificantly lower fatigue rate than
simple patterns. We conclude that both rhythmic and simple
visual high frequency sine wave stimuli can provide a base for
further human subject SSVEP based BCI studies.
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