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In Brief
To date, technical limitations
have precluded the robust quan-
titative proteomic analysis of
rare cell types. We describe a
highly sensitive mass spectrom-
etry-based proteomic workflow
for the analysis of human hema-
topoietic stem cells and three
progenitor cell types. More than
5,000 protein groups could be
consistently quantified from
25,000 sorted hematopoietic
stem and progenitor cells. The
data reproducibly identified
characteristic patterns of differ-
entially expressed proteins in the
tested populations that indicated
biochemical differences not ap-
parent by transcriptomic analy-
ses on equivalent samples.
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Physiological processes in multicellular organisms de-
pend on the function and interactions of specialized cell
types operating in context. Some of these cell types are
rare and thus obtainable only in minute quantities. For
example, tissue-specific stem and progenitor cells are
numerically scarce, but functionally highly relevant, and
fulfill critical roles in development, tissue maintenance,
and disease. Whereas low numbers of cells are routinely
analyzed by genomics and transcriptomics, corre-
sponding proteomic analyses have so far not been pos-
sible due to methodological limitations. Here we de-
scribe a sensitive and robust quantitative technique
based on data-independent acquisition mass spectrom-
etry. We quantified the proteome of sets of 25,000 hu-
man hematopoietic stem/multipotent progenitor cells
(HSC/MPP) and three committed progenitor cell sub-
populations of the myeloid differentiation pathway
(common myeloid progenitors, megakaryocyte-erythro-
cyte progenitors, and granulocyte-macrophage progen-
itors), isolated by fluorescence-activated cell sorting
from five healthy donors. On average, 5,851 protein
groups were identified per sample. A subset of 4,131
stringently filtered protein groups was quantitatively
compared across the 20 samples, defining unique sig-
natures for each subpopulation. A comparison of pro-
teomic and transcriptomic profiles indicated HSC/MPP-
specific divergent regulation of biochemical functions
such as telomerase maintenance and quiescence-in-
ducing enzymes, including isocitrate dehydrogenases.
These are essential for maintaining stemness and were
detected at proteome, but not transcriptome, level. The
method is equally applicable to almost any rare cell type,
including healthy and cancer stem cells or physiologi-
cally and pathologically infiltrating cell populations. It
thus provides essential new information toward the de-
tailed biochemical understanding of cell development

and functionality in health and disease. Molecular &
Cellular Proteomics 18: 1454–1467, 2019. DOI: 10.1074/
mcp.TIR119.001431.

In multicellular organisms, normal physiological functions
and pathophysiological mechanisms are the result of the in-
terplay of multiple cell types at various stages of differentia-
tion. A prototypic example is the mammalian hematopoietic
system where hematopoietic stem/multipotent progenitor
cells (HSCs/MPPs) can differentiate into various functionally
divergent cell lineages, including the downstream formation of
common myeloid progenitors (CMPs)1, megakaryocyte-eryth-
rocyte progenitors (MEPs), or granulocyte-macrophage pro-
genitors (GMPs) (1, 2). When this process is altered, e.g. upon
genetic or epigenetic changes in HSCs, abnormal, (pre)leuke-
mic stem cell subpopulations may form, eventually resulting in
clonal hematopoiesis and the onset of acute myeloid leukemia
(3–5). To gain insight into the biochemical changes underlying
cellular differentiation and to unravel factors involved in the
early development of malignant hematopoietic diseases,
highly refined analysis of the different cell subpopulations of
the hematopoietic cell system is crucially needed (6).

Hematopoietic stem cells are critically rare compared with
other hematopoietic cell types (7). Other numerically scarce,
but functionally relevant, cell subpopulations include preleu-
kemic stem cells (3–5, 8), leukemic stem cells (9), cancer stem
cells in solid tumors (10, 11), circulating tumor cells (12, 13),
and infiltrating T cells in solid tumors (14). Although the iso-
lation of such rare cell types is supported by specific surface
expression of cluster of differentiation (CD) markers such as
CD34, CD38, CD123, CD45RA, and CD10 (15–17), normally
no more than a few thousand cells per subpopulation can be
isolated by fluorescence-activated cell sorting (FACS) from a
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single person. For example, the preparation of 25,000 sorted
human HSCs requires up to 4 l of steady-state blood or a
leukapheresis procedure following hematopoietic stem and
progenitor cell (HSPC) mobilization, making further upscaling
difficult. Whereas a few thousand cells can be routinely ana-
lyzed by modern imaging and genomic profiling technologies
(1, 2, 16–19), proteome-level measurements, particularly the
reproducible quantification of thousands of proteins across
sample cohorts, has remained technically challenging for mi-
nute samples. Indeed, highly enriched human HSPC sub-
populations have, to our knowledge, not been analyzed by
unbiased large-scale proteomic analysis, even though global
protein expression determines cellular functionality and pro-
vides critical information on the cellular differentiation proc-
ess. Proteomic analysis of FACS-isolated cells has in general
been reported only in studies focused on optimizing specific
technical parts of the workflow, such as the cell sorting step
itself (20), sample preparation (21, 22), or sample fractionation
(23). Others used 400,000 cells as starting material, which
restricted the scope of the analyses to large pools of murine
samples (24) or in vitro model systems. Furthermore, no sys-
tematic assessment of the reproducibility or consistency of
the proteomic results of small numbers of sorted cells has
been performed, other than comparing protein identification
numbers. It is therefore evident that the robust, reproducible,
and quantitative proteomic analysis of minute samples, such
as for example highly enriched HSPC, represents a significant
technical and scientific advance.

Here, we present and apply an integrated workflow for the
high-coverage, quantitative proteome profiling of minute
amounts of sorted cells. It is based on data-independent
acquisition (DIA)-MS on the Orbitrap Lumos platform and
peptide centric signal extraction and analysis. DIA-MS is a
massively parallel-in-time acquisition method of fragment ion
mass spectra of all detectable precursors in a sample. It
provides a complete, yet convoluted, quantitative fragment
ion map record of a sample (25). Peptide-centric analysis (26,
27) of DIA datasets results in quantitative peptide matrices
(25) of sufficient consistency and reproducibility to support
label-free comparisons of large sample cohorts. To date, DIA
studies on hybrid quadrupole-time-of-flight (QqTOF) (26, 28,
29) or Orbitrap (30, 31) platforms typically used microgram
amounts of total peptide mass for analysis (and even larger
amounts of actually processed starting material), a quantity
that is one to two orders of magnitude above the quantity
achievable by FACS isolation of rare hematopoietic cell types.

To overcome limitations of working with small amounts of
proteins, we established a method to reproducibly identify
and quantify nearly 6,000 protein groups with a median coef-
ficient of variance (CV) of 9% for 125 ng of HEK293 tryptic
peptides (see “Results”). This unprecedented performance
was then used to profile minute amounts of highly enriched
human HSCs/MPPs, CMPs, MEPs, and GMPs. The result-
ing protein versus sample data matrix revealed factors and
biochemical pathways involved in quiescence, stemness
maintenance, and cell differentiation. Comparison with
RNAseq analyses demonstrated proteome-specific regula-
tion of “stemness maintaining networks” in HSCs/MPPs.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—Sample numbers:
For method development, samples derived from cultured cells
(HEK293 cell line) and human CD34� hematopoietic stem/progenitor
cells (isolated by FACS) were used in varying amounts as described.
For final analysis of donor samples, material from five individuals (four
cell types per donor) was analyzed, resulting in a total of 20 samples.

Replicates: HEK293 samples were analyzed in triplicates as tech-
nical replicates; CD34� samples were processed in parallel as tripli-
cates (process replicates). Due to the limited amount of sample
material, donor samples were analyzed in single replicates, and dif-
ferent individuals were considered biological replicates. The number
of samples/donors was limited by the material available from the
hospital for this study.

Controls: Because this study did not involve a case/control design,
no control samples were necessary.

Randomization: For LC-MS/MS analysis, the run order of donor
samples (different individuals, different cell types) was randomized.

Statistical tests: Statistical procedures built into the software map-
DIA (32) were used.

HEK293 Cell Culture—HEK293 cells (ATCC) were grown in Dulbec-
co’s Modified Eagle’s Medium (10% fetal bovine serum, 50 �g/�l
penicillin, 50 �g/�l streptomycin) until confluence. Harvested cells
were washed twice with 1x phosphate buffered saline and counted
using an Invitrogen Countess automated cell counter (ThermoFisher
Scientific, Waltham, MA). For the HEK293 peptide dilution series, 5 �
106 cells were lyophilized and processed in bulk according to the
protocol described below.

Human Hematopoietic Stem/Progenitor Cell Samples—Fresh hu-
man HSPCs were obtained from healthy stem cell donors (Clinical
Hematology, University Hospital Zurich, Zurich, Switzerland) with in-
formed consent and approval of the local ethics committee (KEK-ZH-
Nr: 2015–0564). After mobilization with granulocyte-colony stimulat-
ing factor, stem cell-enriched mononuclear leukocytes were obtained
via leukapheresis from peripheral blood for clinical stem cell trans-
plantation. Any leftover material after clinical transplantation was
collected for further cell preparation.

Cell Preparation, Flow-cytometric Analysis, and Cell Sorting—Hu-
man CD34� hematopoietic stem/progenitor cells were enriched from
mononuclear cells using immunomagnetic beads according to the
manufacturer’s instructions (CD34 MicroBead Kit; Miltenyi Biotec,
Bergisch Gladbach, Germany). Following enrichment, CD34� cells
were frozen in liquid nitrogen. For analysis and sorting of hematopoi-
etic stem cell-enriched cells and myeloid progenitors, CD34� cells
were thawed and stained with Tricolor/phycoerythrin (PE)-Cy5-con-
jugated antibodies specific for lineage markers: CD2, S5.5; CD3, 7D6;
CD4, S3.5; CD7, CD7–6B7; CD8, 3B5; CD14, TuK4; CD19, SJ25-C1;
CD56, MEM-188 (ThermoFisher Scientific-Invitrogen); CD10, HI10a;
CD11b, ICRF44; CD20, 2H7 (BioLegend, San Diego, CA); CD235a,

1 The abbreviations used are: CMP, common myeloid progenitors;
CV, coefficient of variation; DDA, data-dependent acquisition; DIA,
data-independent acquisition; FDR, false discovery rate; GMP, gran-
ulocyte-macrophage progenitors; GO, gene ontology; HSC, hemato-
poietic stem cells; HSPC, hematopoietic stem and progenitor cells;
MEP, megakaryocyte-erythrocyte progenitors; MPP, multipotent pro-
genitor cells.
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GA-R2 (BD Biosciences, Allschwil, Switzerland); and PE-Cy7-conju-
gated anti-CD34, 8G12 (BD Biosciences); fluorescein isothiocyanate-
conjugated anti-CD38, HIT2 (BD Biosciences); allophycocyanin
(APC)-conjugated anti-CD123, 6H6 (ThermoFisher Scientific-Invitro-
gen); and APC780-conjugated anti-CD45RA, HI100 (ThermoFisher
Scientific-Invitrogen). Apoptotic cells were excluded in the analysis by
Hoechst staining. Because less than 1% of all cells were apoptotic
(see supplemental Fig. S1) and because of concerns regarding inter-
ference of the Hoechst stain with the mass spectrometric analysis,
this step was omitted for further cell sorting. For compensation of the
fluorochromes, cells and/or beads (anti-mouse Ig, kappa/negative
control compensation particles; BD Biosciences) were singly stained
with the antibodies. Compensation was performed automatically us-
ing the DIVA software (BD Biosciences) and checked manually.

For FACS analysis of intracellular isocitrate dehydrogenase 1 (IDH1)
expression, the IntraPrep Leukocytic Permeabilization Reagent Kit
(Beckman Coulter, Brea, CA) was used together with phycoerythrin
(PE)-conjugated anti-IDH1, D2H1 (Cell Signaling Technology, Danvers,
MA) and PE-conjugated isotype control, DA1E (Cell Signaling
Technology).

All analyses were performed on a four laser-equipped LSR
Fortessa machine (BD Biosciences), all sorting was performed on a
five laser-equipped FACS Aria IIIu machine (BD Biosciences).

Gates were set using fluorescence minus one and unstained con-
trols according to (17). The degree of purification of cell populations
was determined by back-gating and double sorting (see supplemen-
tal Fig. S2) and determined to be �95% in all cases. FACS data were
analyzed with FlowJo software (FlowJo LLC, Ashland, OR).

Highly enriched human HSCs/MPPs, CMPs, GMPs, and MEPs
were isolated from five healthy HSPC donors (supplemental Table S1)
using fluorescence-activated cell sorting and the cell surface markers
CD34, CD38, CD123, and CD45RA. Lymphoid progenitors were ex-
cluded by adding the marker CD10 to the lineage mixture. For CD34�
cell dilution, purification control, fluorescence-minus-one, and valida-
tion experiments, CD34� cells from an additional six healthy HSPC
donors were used (ID 273, ID 227, ID 223, ID 183, ID 151, ID 340).

For MS analysis, 25,000 cells each were collected in 300 �l phos-
phate buffered saline solution in protein low-binding micro-centrifuge
tubes (Eppendorf, Hamburg, Germany). All remaining material was
sorted into separate micro-centrifuge tubes for the purpose of library
generation. This resulted, depending on the donor sample and the cell
type, in 13 additional samples (4x CMP, 4x HSC, 2x GMP, 3x MEP)
with 40,000 to 270,000 cells. Samples were pelleted by centrifugation
at standard force for viable HSPCs of 400 g for 15 min. We found that
a critical step for reproducibility of material recovery was to very
carefully remove the supernatant above the cells, leaving 50 �l on top
of the pellet to avoid losing the nonadherent pelleted cells. The tubes
were then snap frozen in liquid nitrogen, and the remaining FACS
buffer was lyophilized.

Sample Preparation for Mass Spectrometry—The lyophilized cell
pellets were resuspended in 10 �l (200 �l for bulk HEK293 prepara-
tion for the peptide dilution series) of 8 M urea in 100 mM ammonium
hydrogen carbonate and lysed aided by sonication with a VialTweeter
(Hielscher, Teltow, Germany) at an amplitude of 60%, a cycle of 60%
and a duration of 20 s for three times with intermediate cooling on ice.
One aliquot containing 128,000 HEK293 cells and one sample with
100,000 CD34� hematopoietic stem/progenitor cells were submitted
to a BCA protein assay following the manufacturer’s guidelines (Ther-
moFisher Scientific-Pierce) to determine the protein content and the
required amount of protease to be added.

Samples were diluted to 4 M urea with 100 mM ammonium hydro-
gen carbonate and treated with 1.25 U Benzonase Nuclease (Sigma-
Aldrich, Darmstadt, Germany) per 25,000 cells for 30 min at 37 °C.
Reduction of disulfide bonds was carried out by the addition of

tris-(2-carboxyethyl)-phosphine (Sigma-Aldrich) to 5 mM and incuba-
tion at 37 °C for 30 min with shaking in a Thermomixer (Eppendorf),
followed by alkylation of free thiol groups by the addition of iodoac-
etamide (Sigma-Aldrich) to 10 mM in the dark for 30 min at room
temperature. Samples were diluted to 1 M urea, and sequencing
grade trypsin (Promega, Madison, WI) was added at an enzyme-to-
substrate ratio of 1:50 (extrapolated from the BCA assay results) for
overnight digestion at 37 °C. After adjusting to 2% formic acid, sam-
ples were desalted with Empore Disks C18 (3 M, Saint Paul, MN)
self-packed into StageTips format (33). Samples were dried using a
vacuum centrifuge and resuspended in 11 �l of 2% acetonitrile and
0.1% formic acid with the addition of indexed Retention Time (iRT)
peptides (34) (Biognosys, Schlieren, Switzerland) for the following MS
analysis. An aliquot corresponding to 1,500,000 cells (285 �g protein)
of the HEK293 sample was desalted with a 50-mg Sep-Pak tC18
cartridge (Waters, Milford, MA). After drying by vacuum centrifuga-
tion, the HEK293 sample was dissolved at 1 �g/�l in 2% acetonitrile
and 0.1% formic acid with added iRT peptides. The peptide concen-
tration was determined using the quantitative fluorimetric peptide
assay (ThermoFisher Scientific-Pierce) following the manufacturer’s
instructions. The leftover material of the CD34� samples after MS-
injection was also submitted to peptide concentration determination.

For the generation of the HEK293 spectral library, an aliquot cor-
responding to 80 �g peptides was subjected to high pH reversed-
phase peptide fractionation using a dedicated spin column kit
(ThermoFisher Scientific-Pierce). Fractionation was carried out accord-
ing to the manufacturer’s recommendation. Briefly, eight fractions were
collected by eluting with 300 �l each of increasing acetonitrile content
(from 5% to 50% in 0.1% trimethylamine). The fractions were dried by
vacuum centrifugation and redissolved in 25 �l of 2% acetonitrile, 0.1%
formic acid with iRT peptides, of which 2 �l were injected per meas-
urement. Additionally, unfractionated whole lysate of HEK293 was
measured by LC-MS for the purpose of library generation.

Mass Spectrometry Analysis—Nanoflow LC-MS/MS measurements
were carried out on an EASY-nLC 1200 system (ThermoFisher Scien-
tific) coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer
(ThermoFisher Scientific) equipped with a Nanospray Flex ion source.

Peptides were separated on an Acclaim PepMap 100 C18 column
(ThermoFisher Scientific) with an inner diameter of 75 �m, a length of
25 cm, and a particle size of 2 �m. The column was operated at room
temperature and at a flow rate of 300 nl/min. LC solvent A consisted
of 98% water, 2% acetonitrile, and 0.1% formic acid, LC solvent B
was composed of 80% acetonitrile, 20% water and 0.1% formic acid.
Peptides were separated by a linear gradient from 5 to 37% B over
120 min, except for the purpose of library generation (240 min for
unfractionated samples and 180 min for high pH reversed-phase
fractions of HEK293, respectively).

The instrument was operated either in the DDA or DIA mode. In
both cases, fragmentation was accomplished by higher energy colli-
sion dissociation at a normalized collision energy setting of 27%. The
resolution of the Orbitrap analyzer was set to 120,000 and 30,000 for
MS1 and MS2, with a maximum injection time of 100 ms and 50 ms,
respectively. The mass range monitored in MS1 was 350–1,500 m/z
and in MS2 200–1,800 m/z for DIA and the auto m/z normal scan
range mode for DDA. The automatic gain control (AGC) target was set
to 2e5 in MS1 and 5e5 or 8e4 in MS2 for DIA or DDA, respectively.

DDA measurements utilized the top speed setting, where one MS1
survey scan was followed by the acquisition of MS/MS spectra for a
cycle time of up to a maximum of 3 s. In DIA mode, one MS1 scan was
followed by 40 MS2 windows of equal width (15 m/z) with an overlap
of 1 m/z, covering precursors in the range of 399.5–1,000.5 m/z. This
resulted in a cycle time of 3.4 s. Data were acquired with Xcalibur
4.0.27.10 and Tune Plus version 2.1.
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Data Analysis—DDA data were searched accordingly by Mascot
(35) (Matrix Science, version 2.5.1) as well as Comet (36) version
2016.01 rev. 2 against the Swissprot reviewed subset of the human
UniProt database (downloaded on 2016.07.06) containing 20,199
protein entries plus one additional protein entry for the concatenated
iRT peptide sequences, plus as many appended decoy sequences
generated by sequence reversal (keeping C-terminal K and R resi-
dues). The settings were as following: enzyme � trypsin, missed
cleavages � �2, peptide tolerance � �10 ppm, MS/MS tolerance �
0.02 Da, fixed modification � carbamidomethylation on cysteine,
variable modification � oxidation on methionine.

Spectral libraries from DDA runs were generated as previously
described (37). Briefly, the peptide-level false discovery rates (FDR)
for the search results was independently adjusted to 1% for Mascot
and Comet results using PeptideProphet (38) (TPP v4.7 rev 0 (39)).
Mascot and Comet results were then combined by iProphet (40) and
filtered to 1% protein FDR by Mayu (41) (v 1.08). Compilation of a
consensus library used for the query of the DIA measurements was
carried out by SpectraST (42, 43) (v 5.0) with the following filter criteria
applied: include peptides at 1% peptide FDR for proteins at 1%
protein FDR, six fragments per peptide, and fragment m/z range of
350–1,800 m/z. The HEK293 library included entries of 112,227 pep-
tide precursors from 9,127 protein groups, the combined library for
HEK293 cells and HSPC library samples 146,610 peptide precursors
from 10,057 protein groups.

DIA data were evaluated by Spectronaut 11 (31) (Biognosys) que-
rying the above-mentioned library created from DDA runs with the
following settings: data extraction with a tolerance of 10 ppm and 25
ppm for MS1 and MS2 level, with a dynamic retention time extraction
window and automatic nonlinear iRT retention time calibration, iden-
tification at a precursor Q-value cutoff of 0.01 and protein Q-value of
0.01, quantification based on MS2 level area, and without cross-run
normalization. The Spectronaut report (information on precursor, not
fragment level) was exported for further processing in R. Protein
groups were counted as defined by Spectronaut. For benchmarking
datasets (HEK peptide dilution series and different collections of
FACS-isolated CD34� cell numbers), reports were used as such
(without additional filtering, normalization or imputation) to generate
the results for Fig. 1 and Fig. 2. CV calculations were computed in R
on the per-triplicate dilution set level by dividing the standard devia-
tion of the raw precursor intensities as reported by Spectronaut by the
mean of the raw precursor intensities.

DDA data for the HEK293 dilution series were processed identical
to the files for the library generation up to the step of adjusting the
peptide FDR to 1% with PeptideProphet and compared with the
corresponding DIA data at this level.

Proteomic Data Processing for HSPC Samples—The entries in the
Spectronaut report were filtered to a protein Q-value cutoff of 0.01.
We then filtered the data to keep only peptide precursors that were
either (i) present in all donors for at least one cell type or (ii) in all cell
types for at least one donor. Protein groups covered by only a single
peptide were excluded from the differential analysis. The precursor
quantitation matrix contained 785,280 entries, thereof 50,382 missing
values (6.4%), for an average of 1.28 missing value per precursor
across the 20 samples. Missing quantity values were imputed with
random values in the range of 0.7 to 0.9 of the minimum value
observed for the corresponding precursor. Normalization was per-
formed based on the total ion current (normalization factor is calcu-
lated as mean of the sum of the precursor quantities across all
measurements divided by sum of precursor quantities of the corre-
sponding measurement).

The filtered, imputed, and normalized precursor data matrix was
submitted to mapDIA v3.0.2 (32) for differential analysis. mapDIA cal-
culates protein fold changes in a condition-based pairwise fashion by

using the most stable peptides to perform the fold-change calculation.
The replicate design set up was used, with standard deviation factor 2
and minimum correlation (median intraprotein correlation cutoff) 0.2.

For GO enrichment and search tool for recurring instances of
neighboring genes (STRING) analysis, only unambiguous, single-pro-
tein entries from the results were considered and protein groups with
multiple members ignored. This reduced the number of candidate
proteins for these analysis steps to 3,364.

RNA Isolation, Quality Determination, and Sequencing—10,000
cells from each population were sorted into RNeasy lysis buffer
containing beta-mercaptoethanol. Total RNA was purified according
to manufacturer instructions using the RNeasy Plus Micro Kit (Qiagen,
Hilden, Germany). RNA quality was determined using the Agilent 2100
Bioanalyzer System (Agilent Technologies, Santa Clara, CA). The
samples demonstrated RNA integrity numbers � 8.0 and were of high
enough quality for a poly-A tail-based approach for RNA sequencing.
RNA sequencing was performed as described in (44) using the Illu-
mina HiSeq 4000 sequencing platform.

RNA Data Normalization and Processing—RNA sequencing data
reads were quality-checked with FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Reads were trimmed with Trimmo-
matic version 0.33 (4 and 3 bases were hard-trimmed from the start
and end respectively; adapter trimming was done at the end).
Trimmed reads were aligned to the Ensembl GRCh38 human refer-
ence genome and transcriptome with STAR version 2.5.1b (45). The
average number of high-quality reads, reads aligned, and reads
uniquely aligned per sample were 43.2 million, 42.6 million, and 35.9
million, respectively. Gene expression was quantified using the R/Bio-
conductor package Rsubread version 1.26.0 (46). Differentially ex-
pressed genes between cell types were identified using the R/Bio-
conductor package DESeq2 version 1.16.1 (47).

Gene Ontology Enrichment Analysis—For gene set enrichment
analysis (GSEA), gene sets were retrieved from the Gene Ontology
Consortium database (www.geneontology.org) on 2017–05-25 and
2017–05-27 (see supplemental Table S5). Ranked lists were created
from the normalized and filtered proteome and transcriptome data
using log2(fold change) or log2(fold change)x(-log10(adjusted p
value)) as ranking criterion. GSEA was performed on the preranked
lists using the GSEA software (v3.0, http://www.broadinstitute.org/
gsea) with the minimum gene set size set to five and the remaining
settings as defaults (19). Enrichments were deemed significant when
FDR � 0.25 as suggested by (48). The number of genes used to
calculate the enrichment scores depicted in Fig. 4B are shown in
supplemental Table S6.

Network Analysis—Proteins significantly and differentially regu-
lated compared with the corresponding mRNA were analyzed with
STRING (http://www.string-db.org, v10.5) for their network connec-
tions. Significance was defined as FDR � 0.01 for both protein and
mRNA data. Protein-protein interactions were computed based on
the experimental and database evidence channels (49). The network
was then loaded into Cytoscape using the STRING interaction score
as distance and width for the edges. When available, the GO terms
found enriched in Fig. 4B were mapped in color to the corresponding
protein nodes.

Quantitative Polymerase Chain Reaction (qPCR)—Isolated mRNA
(see above) was reverse transcribed according to manufacturer’s
instructions using the SuperScript IV VILO Master Mix with ezDNase
enzyme (SuperScript IV Vilo Master Mix with ezDNase Enzyme, Ther-
moFisher Scientific). Quantitative analysis of cDNA was performed
using Taqman probes and master mix (TaqMan Gene Expression
Master Mix, ThermoFisher Scientific). Individual probes included
Hs00271858_m1 (IDH1), Hs00255867_m1 (GAR1), Hs00950764_g1
(NHP2), and Hs99999903_m1 (ACTB) (ThermoFisher Scientific).
ACTB was used as housekeeping control gene. Expression values
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were calculated using a Delta CT approach. Results were based on
technical duplicates and biological triplicates.

RESULTS

Optimization of DIA-MS for Small Sample Loads—Most
DIA-MS applications reported so far minimally used 0.5–2 �g
of total peptide mass per injection (26, 28–31). To make the
method compatible with the protein amounts extractable from
FACS-isolated rare cells, we first optimized the acquisition
scheme on an Orbitrap Fusion Lumos mass spectrometer to
extend the application of DIA-MS to lower sample quantities,
while minimizing attrition of quantified proteins and quantita-
tive accuracy.

We developed and benchmarked the procedure with a pep-
tide dilution series of HEK293 cells. Specifically, we refined
sample handling as well as DIA-MS-specific measures (Fig. 1;
see also supplemental text and Figs. S3-S9). In brief, the
sample handling procedure minimized sample losses e.g.
through surface adsorption, which are unavoidable when mi-
nute sample amounts are processed (supplemental Fig. S3).
The mass spectrometric method maximized the use of ions
injected into the mass spectrometer. Initially we monitored the
ion density distribution in dependence of mass to charge (m/z)
and retention time as a function of sample load (supplemental
Figs. S4A–4C). We then optimized the DIA acquisition win-
dows by adjusting the fill times. The benchmarking results
obtained via the optimized MS method are summarized in Fig.
1. Fig. 1A shows a comparison of the number of protein
groups identified by standard DDA and the optimized DIA
method as a function of sample load. The results indicate that
for sample loads above 30 ng the DIA mode consistently
identified a higher number of peptide precursors and protein

groups than DDA. Fig. 1B shows an assessment of the quan-
titative reproducibility and accuracy of data generated in DIA
mode. The measurements achieved an average peptide
quantification CV of less than 10% for triplicate injections
across the whole dilution series. Further, the peptide quanti-
fication values obtained for the consecutive dilution steps
retained linearity throughout the entire dilution range (Fig. 1C).
We also show that, at 30 ng sample loads, longer fill time
increases further the number of identifications (supplemental
Figs. S4D–S4F), demonstrating that DIA performance is opti-
mal at very low sample loads by leveraging the fill time capa-
bilities of ion-trap instruments. In summary, the results indi-
cate that an optimized economy of the available precursor
ions on the Orbitrap Lumos significantly extends the perform-
ance of DIA proteomics toward sample amounts in the low
nanogram range with minimum attrition in terms of identified
proteins and quantitative accuracy.

To assess the reproducibility and accuracy of the peptide/
protein identification and quantification for the whole proce-
dure, we collected from the FACS instrument triplicate sam-
ples of 200,000; 100,000; 50,000; 25,000; 12,500; and 6,250
human CD34� hematopoietic stem/progenitor cells and pro-
cessed them with our sample preparation procedure in par-
allel. We determined that ca. 3.2 �g of total peptide mass
could be recovered from 200,000 sorted cells after the entire
process, of which �73% (8/11 �l) could be injected by the
autosampler for DIA measurements. By extrapolation, we
therefore estimated that we injected �2,327; 1,164; 582; 291;
145; and 73 ng of peptides, respectively, from the lower
numbers of sorted cells. In comparison, 26.8 �g of peptide
mass was obtained from 200,000 HEK293 cells when pro-

FIG. 1. HEK293 tryptic digests dilu-
tion series. (A) Number of protein
groups identified in DDA (blue) and DIA
(red) mode, respectively, for decreasing
loads of HEK293 tryptic peptides. The
bars in the negative and positive direc-
tions represent the number of protein
groups identified in common (intersec-
tion) or in total (union) for the technical
triplicate injections at the indicated pep-
tide loads, respectively. (B) Distribution
of the CV for the peptide precursor in-
tensities for the technical (process) trip-
licate injections for each sample load. (C)
Distribution of the fold change (log2
scale) of the average precursor intensi-
ties between a given sample load and
that at 2,000 ng sample load.
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cessed in bulk. This difference in the amount of peptides
obtained from the same number of HEK293 and hematopoi-
etic stem/progenitor cells is roughly in agreement with the 4–5
times smaller cell volume expected for the human CD34�

hematopoietic cells compared with HEK293 cells (50, 51) and
the expected increase in loss from processing low sample
amounts.

Along the dilution series of FACS-isolated cells the average
number of identified protein groups decreased from 6,955 for
200,000 to 4,833 for 12,500 sorted human CD34� hemato-
poietic cells (Fig. 2A). A median CV below 14% (Fig. 2B,
supplemental Table S2) and a good linearity of quantification
was maintained for these measurements (Fig. 2C). At 6,250
cells, the number of identified protein groups decreased to
2,248 and the CV of quantification increased to above 17%.
However, the overall peptide quantification remained well cor-
related throughout the entire CD34� series (supplemental Fig.
S9), indicating that protein quantification remained quite accu-
rate even for samples containing as few as 6,250 cells. The
2,709 protein groups identified in these samples were almost
entirely subsumed in the set of proteins identified from higher
cell numbers (supplemental Fig. S10), indicating that after nor-
malization of signal intensities, meaningful comparisons across
sample cohorts are feasible, even in cases in which one or
several samples are only available in minute quantities.

Relating the results from sorted human CD34� hematopoi-
etic cells to those of the HEK293 peptide dilution series, we
noted an attrition in the number of identified proteins and their
quantification accuracy for cell numbers below 25,000, corre-
sponding to �300 ng of peptide mass on column. Overall, the
optimized DIA and sample preparation method provided repro-

ducible identification and quantification results (in all three rep-
licates) for more than 5,100 protein groups from as little as
25,000 FACS-isolated human CD34� hematopoietic cells.

Proteomic Analysis Underscores Ontogenetic Distance Be-
tween Individual Human Hematopoietic Cell Types—We ap-
plied the newly developed method to profile the proteome of
human CD34� hematopoietic cell subpopulations isolated
from the peripheral blood of five HSPC donors (age 28–57
y, see supplemental Table S1). Four highly enriched sub-
populations, including rare HSCs/MPPs, CMPs, MEPs, and
GMPs, respectively, were isolated by FACS (Figs. 3A and
3B), processed and analyzed by DIA-MS. Guided by the cell
dilution experiment described above, 25,000 cells were col-
lected for each subpopulation. To support peptide-centric
analysis of the DIA data, we generated a spectral library
specific for the cell types of this study (see “Experimental
Procedures”). We identified on average 5,851 protein
groups for the different human HSPC populations (supple-
mental Fig. S11, supplemental Table S3). To increase the
robustness of the following differential comparison, we ap-
plied additional stringent filtering criteria that resulted in a
final list of 4,131 protein groups (from 39,264 peptide pre-
cursors) that were quantified consistently with at least two
peptides across the samples.

Because the cell samples were derived from nonrelated
donors of different age and the analyzed cell populations are
relatively close in the cell differentiation tree, we first tested
whether the quantitative protein measurements were suffi-
ciently accurate and reproducible (see supplemental Figs.
S12 and S13) to confidently detect cell subtype-specific dif-
ferences despite the expected interperson variability. The

FIG. 2. Dilution series of human
CD34� hematopoietic cells isolated
by FACS. (A) Number of protein groups
cumulatively identified across the tech-
nical replicates for decreasing numbers
of FACS-isolated human CD34� hema-
topoietic cells. The color scale repre-
sents the consistency of protein group
identifications across the runs. (B) Distri-
bution of the CV for the peptide precur-
sor intensities for the technical (process)
triplicate injections of processed FACS-
isolated cells. (C) Distribution of the fold
change (in log2 scale) of the average
precursor intensities between a given
sample load and that at 200,000 FACS-
isolated human CD34� hematopoietic
cells.
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summary heatmap of these comparisons (Fig. 3C) indicates
that the proteome profiles clustered according to cell subtype
rather than donor. HSCs/MPPs clustered the furthest away
from the other cell subpopulations, while CMPs were found to
be more similar to GMPs and MEPs for some donors, in
agreement with the ontogenetic distances expected between
the different cell lineages (Fig. 3A).

Differentially expressed proteins were detected in the vari-
ous cell subpopulations with roughly similar numbers of pro-
teins being significantly up- or down-regulated, whereby signif-
icance was defined by the cutoffs of FDR �0.01 and log2(fold
change) �0.5 (Fig. 3D and supplemental Fig. S14). Cutoffs were
chosen based on the protein fold-changes observed in the
volcano plots (supplemental Fig. S14A). Using these cutoffs and

comparing HSCs/MPPs to the average of all three remaining
subpopulations (CMPs, GMPs, MEPs) (52), 1,008 proteins were
determined to be differentially abundant in HSCs/MPPs. In ac-
cordance with the close ontogenetic distance of CMPs to
GMPs and MEPs, the number of proteins with significantly
changed expression between these cell types was somewhat
lower: for GMPs 489, for MEPs 370, and for CMPs 64.

The availability of DIA data for each cell type from five
donors allowed us to confidently identify proteins that were
consistently detectable in some cell types but expressed be-
low the detection limit of the measurement in other cell types
and thus provided particularly important biological informa-
tion (see supplemental Fig. S15). For example, the enzyme
myeloperoxidase was consistently detectable at a low level in

FIG. 3. Proteome profiles of human hematopoietic stem and progenitor cell subpopulations. (A) Human hematopoietic cell hierarchy
with respective cell surface markers depicted in blue (15–17). (B) FACS strategy, depicted on magnetic-activated cell sorting-preselected
CD34� hematopoietic cells isolated from healthy HSPC donors. Shown are the analysis gates. Highly enriched HSCs/MPPs (referred
to as HSCs) are CD34�CD38-CD45RA-, highly enriched CMPs are CD34�CD38�CD123�CD45RA-, highly enriched GMPs are
CD34�CD38�CD123�CD45RA�, and highly enriched MEPs are CD34�CD38�CD123-CD45RA-. (C) Nonsupervised hierarchical cluster-
ing (Euclidean distance) heatmap (78) of intensities for the peptides identified in HSCs, CMPs, GMPs, and MEPs (shades of red) isolated from
five different donors (shades of blue). The peptide intensities are centered and scaled and depicted in color shades from red to blue. The
missing peptide intensity values are shown in white. (D) Volcano plot of differential analysis of proteins. Comparison of HSCs to the average
of the three other cell types. Abbreviations: HSPC, hematopoietic stem and progenitor cell; HSC, hematopoietic stem/multipotent progenitor
cell; CMP, common myeloid progenitor; CLP/MLP, common/multipotent lymphoid progenitor; GMP, granulocyte-macrophage progenitor;
MEP, megakaryocyte-erythrocyte progenitor; SSC, side scatter; FSC, forward scatter.
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CMPs and at a much higher level in GMPs but was below the
limit of detection in MEPs and HSCs/MPPs. The proliferation
marker protein Ki-67 was not detected in HSCs/MPPs but
was consistently detected in CMPs, GMPs, and MEPs. Sim-
ilarly, all five members of the condensin-1 complex (SMC2,
SMC4, NCAPD2, NCAPG, and NCAPH), a complex respon-
sible for chromatin condensation, were present below the
detection limit in HSCs/MPPs but could be clearly detected in
the other cell types studied.

Overall, these results show the consistent detection of
quantitative protein patterns that are characteristic for onto-
genetically close cell types.

Gene Ontology Enrichment Analyses for Proteomics and
Transcriptomics Data—From the same sorting experiments, a
further 10,000 cells were isolated for RNAseq. Similar to the
proteomic results, the transcriptomic data also revealed clus-
tering mostly by cell type, rather than by donor (Fig. 4A). As for
proteins, the HSCs/MPPs transcript profiles clustered furthest

FIG. 4. Proteome-transcriptome correlation in human hematopoietic stem and progenitor cell subpopulations. (A) Nonsupervised
hierarchical clustering (Euclidean distance) heatmap (78) of the intensity for the transcripts identified in HSCs/MPPs (referred to as HSCs), CMPs,
GMPs, and MEPs (shades of red) isolated from five different HSPC donors (shades of blue). The transcript intensities are centered and scaled and
depicted in color shades from red to blue. The transcripts with missing transcript intensity values in all samples were removed because they could
not be handled by the clustering algorithm. Remaining missing transcript intensity values are shown in white. Clustering was observed mostly
according to cell type, not according to donor. (B) GO enrichment analysis showed good alignment of protein and mRNA data. GSEA was
performed for ranked mRNA and protein lists using GO processes from the Gene Ontology Consortium database as gene sets. Shown are
normalized enrichment scores for the individual gene sets. Significantly up-regulated gene sets are marked in blue color; significantly downregu-
lated gene sets are marked in red color. Significance was defined as FDR � 0.25, specific cell subpopulations were compared with the average
of the remaining three cell types, and log2(fold change) was used as ranking criterion. Empty fields mean that no enrichment could be calculated.
Abbreviations: MEGA, megakaryocyte; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide-3-kinase; PLC, phospholipase C. (C)
Correlation between proteomics and transcriptomics data for HSCs/MPPs (referred to as HSCs), CMPs, GMPs, and MEPs. Dots are depicted in
red when the FDR was below 0.01 both for protein and RNA data, orange when FDR � 0.01 for protein data, purple when FDR � 0.01 for RNA
data, and gray when FDR � 0.01 for both protein and RNA data. (D) Network analysis of significantly up-regulated proteins with concomitant
significantly downregulated mRNA in HSCs/MPPs. Two clusters were especially prominent, including the snoRNPs and telomerase complex
proteins GAR1, DKC1, NOP10, NHP2, and the quiescence-inducing NAD(P)H-producing proteins IDH1, IDH3A, and IDH3B. HSCs/MPPs were
compared with the average of the other three subpopulations; cutoffs were set at FDR � 0.01 for protein and RNA data. Colors depict GO terms
found enriched in Fig 4B.
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apart from the other cell subpopulations, whereas CMPs were
more similar to GMPs and MEPs.

To further assess the proteomic and transcriptomic results,
we performed gene set enrichment analyses for specific GO
processes involved in hematopoietic stem cell differentiation
according to previous studies and functional annotations
(1, 2, 18, 19, 24, 48, 52, 53). The proteomic and transcriptomic
data closely recapitulated most of the expected changes in
GO processes (Fig. 4B, supplemental Figs. S16 and S17). Cell
cycle/DNA replication/DNA damage response was found
downregulated for HSCs/MPPs, which are more quiescent
than progenitor cells, both at the protein and mRNA level.

Erythrocyte differentiation/megakaryocyte development/heme
biosynthesis were observed to be up-regulated in MEPs at the
protein and mRNA level. (Innate) immune responses were
found up-regulated in GMPs at the protein and mRNA level.
The canonical WNT pathway was observed to be up-regu-
lated in MEPs at the mRNA level. Mitogen-activated protein
kinase, phosphoinositide-3-kinase and phospholipase C
pathways were all shown to be up-regulated in HSCs at the
mRNA level (1, 2, 18, 19, 52, 53). Transcription factors Gata1
and Gata2 were also manually validated to be present in the
CMP and MEP cell types only (supplemental Fig. S15), as
expected.

FIG. 4—continued
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Of note, the proteomic and transcriptomic results showed
highest agreement of the GO enrichments for the GMPs and
MEPs, both in terms of directionality (up or down) and signif-
icance of the pathway enrichments. For the CMPs, only a few
significantly enriched pathways were observed, probably due
to the position of CMPs between GMPs and MEPs in the
developmental system. Interestingly, the HSCs/MPPs
showed fewer significantly up- or downregulated GO pro-
cesses for the proteomics data compared with the transcrip-
tomics results (e.g. HSC proliferation, mitogen-activated
protein kinase (MAPK) activity and regulation, phosphoinosi-
tide-3-kinase (PI3K) signaling, phospholipase C (PLC) activity
(Fig. 4B)). This was in part due to the higher number of
transcripts observed (17,355) compared with the number of
detected protein groups (4,131).

Overall, the GO pathway analysis was in agreement with the
expected properties of the respective cell types, thereby val-
idating our protein and mRNA results against former studies.

Discrepant Protein and mRNA Regulation in Highly En-
riched HSCs/MPPs—To investigate the complementary value
of the protein quantitative information, we decided to examine
proteins that were found differentially regulated compared with
their mRNAs (Fig. 4C and supplemental Figs. S14B–14E).

The protein versus mRNA fold-change plots (Fig. 4C)
showed good correlation for MEPs (R2 of 0.50) and GMPs (R2

of 0.41) but somewhat lower values for the HSCs/MPPs (R2 of
0.32) and CMPs (R2 of 0.06), in line with the results from GO
enrichment analysis (Fig. 4B).

STRING analysis of proteins differentially regulated at the
protein and transcript level revealed two major protein-protein
association networks in HSCs/MPPs, the first including the
small nucleolar ribonucleoproteins (snoRNPs) and telomerase
maintenance proteins GAR1, DKC1, NOP10, and NHP2 and
the second, the quiescence-inducing NAD(P)H-producing
isocitrate dehydrogenase proteins IDH1, IDH3A, and IDH3B
(Fig. 4D, Experimental Procedures). Both association net-
works were up-regulated on protein (see also supplemental
Figs. S15 and S18B) and downregulated on mRNA level in
HSCs/MPPs (see supplemental Fig. S18A).

DISCUSSION

HSCs are mostly quiescent cells, i.e. a major fraction of
cells is expected to be in G0 of the cell cycle. These cells have
been shown to contain very low levels of mRNA, while still
maintaining a relatively constant protein mass overall. Pro-
teins may therefore provide a better readout of the cellular
state of quiescent cells than the mRNAs. The same may be
postulated for relatively quiescent (pre)leukemic and cancer
stem cells. Until now, extensive global proteome data could
not be obtained in critically rare cell types such as human
HSPC subpopulations or (pre)leukemic and cancer stem cells.
To achieve the most comprehensive and accurate protein
quantification presently possible for minute, clinically relevant
samples, we developed and applied an integrated sample

preparation/DIA-MS method, using an Orbitrap instrument.
We report several critical observations for sample preparation
to avoid loss of cell pellets and of hydrophobic peptides
(supplemental Fig. S3) and regarding optimization of ion trap
fill times in DIA (supplemental Fig. S4).

We applied our newly developed DIA acquisition scheme to
the analysis of 25,000 FACS-isolated human HSPC subpopu-
lations and could quantify more than 5,800 protein groups per
cell subtype. Of these, we used a stringently filtered subset
(4,131 protein groups) for further analysis. Importantly, our
results also demonstrate that even though the number of
protein identifications decreased when lowering the number
of cells further to 12,500 or even 6,250 cells, quantification
retained a very high level of accuracy (Figs. 1C and 2C,
supplemental Figs. S7 and S9). In practice, this means that,
even if fewer than 25,000 cells are available from FACS,
protein quantification results can still be confidently com-
pared with those from higher cell counts, if the proteins are
detectable in both samples.

Analysis of key marker proteins with strong differences in
expression between individual HSPC subpopulations demon-
strated the expected results for the proteome data. In line with
its role in neutrophil immune reactions and its localization in
the alfa granules of granulocytes (54), the enzyme myeloper-
oxidase was not detected in HSCs or MEPs, seen at low
protein levels in CMPs and at high levels in GMPs. Myeloper-
oxidase is a marker for granulocytes, and its presence can be
used to distinguish between myeloid and lymphatic origins of
acute leukemias (54). The presence of myeloperoxidase
mainly in GMPs is thus in agreement with the differentiation
potential of GMPs to granulocytes (55). Furthermore, in line
with the quiescent state of HSCs/MPPs, proliferation and
mitotic markers such as Ki-67 and condensin-1 complex
members were not detected in this cell type (56, 57). These
results provided validation of the proteome data in HSPC
samples with critically low cell numbers, thereby allowing for
comparisons of proteome and respective transcriptome data.

Proteome and corresponding transcriptome data showed
the same clustering pattern. Moreover, cell subpopulations
were more decisive for the clustering than genomic variability,
indicating that the data quality achieved allowed us to detect
biologically relevant protein patterns in a noisy background.
Furthermore, enrichment analyses for GO terms in the differ-
ent HSPC subpopulations reinforced the good alignment of
protein and transcript data, thereby further validating the
quality and information content of the proteomic results.
Whereas GMPs and MEPs had very similar GO enrichment
results for proteins and transcripts, HSCs/MPPs—though
overall well aligned for proteomics and transcriptomics—
showed fewer significantly up- or downregulated GO pro-
cesses for the proteomics data, compared with the transcrip-
tomics results (e.g. HSC proliferation, MAPK activity and
regulation, PI3K signaling, PLC activity). This is in part due to
the lower coverage achieved for proteins compared with tran-
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scripts. In addition, this could also indicate the presence of
alternative processes regulating the abundance of tran-
scripts and proteins (58). Given the similar data quality
(number of protein groups identified and quantified, CV) for
the various analyzed cell types, the different behavior of
HSCs/MPPs is likely to be biologically significant and may
at least in part reflect the noncycling state of HSCs/MPPs as
opposed to the cycling state of hematopoietic progenitor
cells.

In line with these findings, proteins that showed discrepant
regulation between their proteomic and transcriptomic data
(59) were observed almost exclusively in HSCs/MPPs. Buff-
ering of mRNA alterations at the level of protein concentra-
tions is a well-known phenomenon, illustrating that transcript
levels by themselves are not sufficient to predict protein levels
in many scenarios (60). In HSCs/MPPs two clusters were
identified, which are up-regulated on the protein level while
downregulated on the mRNA level in HSCs/MPPs. The first is
a strongly interconnected protein module that includes sev-
eral snoRNPs and telomerase maintenance proteins and is
deemed essential for long-lived stem cells (61–63). Telomer-
ase activity in hematopoietic cells is associated with self-
renewal potential and has been shown to decrease upon
myeloid differentiation (62). Mutations in these telomerase
maintenance proteins result in dyskeratosis congenita, a syn-
drome characterized by bone marrow failure and an increased
risk for acute myeloid leukemia and myelodysplastic syn-
dromes (64). Differential protein and mRNA regulation has
been reported for these proteins and was attributed to post-
translational mechanisms (63, 65). The second cluster con-
sisted of the IDH proteins IDH1, IDH3A, and IDH3B that have
previously been shown to maintain quiescence in hair follicle
stem cells (66). IDHs are also thought to play a key role in
hematopoietic stem cell homeostasis and were reported to be
mutated in �20% of acute myeloid leukemias (67, 68). IDH
proteins catalyze the oxidative decarboxylation of isocitrate to
alpha-ketoglutarate and are involved in adaptation to hypoxia,
histone demethylation, and DNA modification (69). IDH1 is a
cytosolic/peroxisomal homodimer whereas IDH3 is a mito-
chondrial heterotetramer composed of two alpha, one beta,
and one gamma subunits (70–72). Mutant IDH enzymes have
neomorphic activity, leading to the formation of the (R) enan-
tiomer of 2-hydroxyglutarate and causing DNA and histone
hypermethylation, altered gene expression, and blocked dif-
ferentiation of hematopoietic progenitor cells (69). Acute my-
eloid leukemia treatments targeted at mutant IDH proteins
have entered clinical routine, such as the IDH2 inhibitor
enasidenib that received FDA approval for the treatment of
relapsed or refractory acute myeloid leukemia on August 1,
2017 (www.fda.gov). Other IDH inhibitors are currently being
evaluated in clinical trials (69).

qPCR validation experiments supported down-regulation of
these targets in HSCs relative to the other HSPC subpopula-
tions, whereas flow cytometry validation experiments con-

firmed high IDH1 protein expression in HSCs (supplemental
Figs. S18A, S18B, and S19). In contrast to the proteomics
data, equally high IDH1 flow cytometry intensity was seen in
HSCs relative to CMPs, which could be due to differences in
subcellular distribution of IDH1 in for example peroxisomes
(71, 72).

These examples illustrate the relevance of generating high-
quality proteomic data for well-defined cell subpopulations for
the identification of biological processes that cannot be de-
tected by genomic or transcriptomic analysis. Though this
seems particularly evident for quiescent cells, we expect that
proteomic data will bring an invaluable layer of biological
information complementary to that of the transcriptomic data
for many other cell subtypes. The presented application of
DIA to acquire robust protein quantification data on low sam-
ple loads can thus be expected to increase our understanding
of the dynamics of cell type-specific networks and to com-
plete our knowledge on differentiation processes at play in
healthy and pathological numerically scarce cells (19, 52).

In future research, it will be important to further refine the
different cell subpopulations. CD34�CD38-CD45RA- HSCs/
MPPs, CD34�CD38�CD123�CD45RA- CMPs, CD34�CD38�

CD123�CD45RA� GMPs, and CD34�CD38�CD123-CD45RA-
MEPs could indeed be further divided into biologically even
more refined subpopulations (2, 16). Also, proteomic data
from cell types isolated directly from bone marrow or from
cord blood rather than from mobilized HSPCs obtained from
donors after artificial stimulation will need to be obtained.
Those new samples will enable to increase the number of
peptide assays in the spectral library, potentially allowing to
identify additional proteins in the present and future DIA da-
tasets. Further fine tuning of the sample handling steps may
be necessary to cope with possibly even lower sample
amounts than those analyzed in this study. The dilution series
in HEK cells demonstrated a faster than linear signal drop-off
for hydrophobic peptides suggesting adsorptive losses to
surfaces. Possible avenues to explore would be to miniaturize
cell lysis and digestion with the help of novel microfluidic
devices (73) and to use LC columns with further reduced inner
diameters (74). Thus, by combining improvements in sample
processing and instrument design, it can be expected that the
method will allow to robustly quantify proteins from even
lower sample loads. Furthermore, transcription factors are of
low abundance and are therefore difficult to detect, espe-
cially by large-scale proteomic analysis without fraction-
ation. Specifically concerning the Hox and Gata genes, we
checked our spectral library and confirmed that it contained
peptide assays for 12 HOX proteins and 4 GATA proteins,
almost all exclusively originating from the human HEK frac-
tionation library. Future developments in DIA-MS analysis
are required for reliable detection of such key low abun-
dance proteins.

In summary, we describe a sensitive mass spectrometric
method that allows generating highly accurate and reproduc-
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ible protein quantification data from minute amounts of highly
homogeneous cell subpopulations enriched by FACS. This
technology allows dissecting the biochemical processes in
play in specific cell subpopulations of interest with unprece-
dented sensitivity, depth of coverage, and reproducibility.
Thereby, it paves the way for global proteomic analyses in
clinically highly relevant but numerically scarce cell popula-
tions such as (pre)leukemic stem cells in hematopoietic ma-
lignancies as well as cancer stem cells from solid tumors.
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R., and Aebersold, R. (2012) Targeted data extraction of the MS/MS
spectra generated by data-independent acquisition: A new concept for
consistent and accurate proteome analysis. Mol. Cell. Proteomics 11,
O111.016717

27. Ting, Y. S., Egertson, J. D., Payne, S. H., Kim, S., MacLean, B., Kall, L.,
Aebersold, R., Smith, R. D., Noble, W. S., and MacCoss, M. J. (2015)
Peptide-centric proteome analysis: An alternative strategy for the anal-
ysis of tandem mass spectrometry data. Mol. Cell. Proteomics 14,
2301–2307

28. Collins, B. C., Gillet, L. C., Rosenberger, G., Röst, H. L., Vichalkovski, A.,
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