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Abstract: Indoleamine 2,3-dioxygenase (IDO) has been implicated in preventing the fetus 

from undergoing maternal T cell-mediated immune responses, yet the mechanism underlying 

these kinds of IDO-mediated immune responses has not been fully elucidated. Since the 

CD4 molecule plays a central role in the onset and regulation of antigen-specific immune 

responses, and T cell is sensitive in the absence of tryptophan, we hypothesize that  

IDO may reduce cell surface CD4 expression. To test this hypothesis, an adenoviral  

vector-based construct IDO-EGFP was generated and the effect of IDO-EGFP on CD4 

expression was determined on recombinant adenoviral infected C8166 and MT-2 cells, by 

flow cytometry and/or Western blot analysis. The results revealed a significant 

downregulation of cell membrane CD4 in pAd-IDOEGFP infected cells when compared to 

that of mock-infected cells or infection with empty vector pAd-EGFP. Further experiments 

disclosed that either an addition of tryptophan or IDO inhibitor could partly restore  

CD4 expression in pAd-IDOEGFP infected C8166 cells. Our findings suggest that 
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downregulation of CD4 by IDO might be one of the mechanisms through which IDO 

regulates T cell-mediated immune responses. 

Keywords: human IDO; CD4; T cell; immune tolerance; immune response 

 

Abbreviations: EGFP: enhanced green fluorescent protein; IDO: indoleamine 2,3-dioxygenase; 

MOI: multiplicity of infection; 1-MT: 1-methyl-DL-tryptophan; pAd-EGFP: adenoviral vector carry 

EGFP, or recombinant adenovirus containing EGFP gene; pAd-IDOEGFP: adenoviral vector carrying 

IDOEGFP, or recombinant adenovirus containing IDOEGFP gene. 

1. Introduction 

Indoleamine 2,3-dioxygenase (IDO) is predominantly expressed in parenchymal tissues such as 

lungs, gut, and the fetal-maternal unit during pregnancy, as well as in the male epididymis and  

thymus [1]. However, only some cell types constitutively express IDO, or the expression can only be 

detected following tissue lesion, infection, and inflammation in these tissues. These kinds of cells 

include trophoblast, fibroblasts, epithelial and tumor cells, tumor-associated cells, macrophages, DCs, 

and microglial cells in the CNS [2,3]. IDO is a cytosolic monomeric hemoprotein that catalyzes the 

first and rate-limiting step in the oxidative degradation of tryptophan, resulting in a number of 

downstream metabolites known as kynurenines [4]. Depletion of both tryptophan and kynurenines can 

affect the functions of T-cell [5,6]. There have been substantial interests in the role of IDO with respect 

to the mechanism of materno-fetal tolerance during pregnancy since Munn [7] showed that by 

exposing pregnant mice to 1-methyl-DL-tryptophan (1-MT), reduced IDO was able to induce a T-cell 

mediated rejection of allogeneic concepti, while syngeneic concepti remained intact. One subsequent 

study revealed that this fetal allograft rejection was accompanied by a specific inflammation 

characterized by T cell-dependent, antibody-independent activation of complement. In contrast, no 

inflammation, complement deposition or T cell infiltration was found when mice carrying syngeneic 

fetuses were exposed to IDO inhibitor [8]. These data demonstrate that IDO activity protects the fetus 

from T cell-driven local inflammatory responses to fetal alloantigens. Understanding how IDO 

abrogates these kinds of T cell-mediated immune responses should provide great insights into the 

mechanism of maternal-fetal tolerance.  

Currently, two theories have been proposed to explain how IDO mediates immune tolerance. One 

theory is that by catabolizing tryptophan, IDO starves T cells of this essential amino acid which is 

indispensable for their proliferation and survival in the local microenvironment [9,10]; the other theory 

postulates that the downstream metabolites of tryptophan catabolism by IDO are also active in 

blocking T cell proliferation and inducing apoptosis [5,6]. Both tryptophan depletion and defective 

tryptophan catabolism are tolerogenic effectors in regulating T cell function, yet the clear mechanisms 

whereby they affect T cell responses remain unknown. 

The CD4 molecule is a type I transmembrane glycoprotein with 58 kDa molecular weight and 

consists of an extracellular region with 370 amino acids, a transmembrane region with 25 amino acids 

and a cytoplasmic tail with 38 amino acids at the C-terminal end [11]. CD4 is expressed on a subset of 
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T lymphocytes and cells of the macro-phage/monocyte lineage. Expression of CD4 on these cells is 

critical to the development and function of the immune system [12]. CD4 participates in forming 

molecular complexes involved in both T cell development and antigen recognition by T cells. CD4 

interacts with nonpolymorphic regions of MHC class II molecules, and these interactions lead to 

increased intercellular adhesion and enhanced stimulation of T cells. A src-like tyrosine kinase, 56lck, 

is associated with the cytoplasmic domain of CD4 and may have a more profound influence on the 

whole signal cascade transduced upon encounter with antigens [13].  

In vitro experiments show that IDO expression has a marked effect on the proliferation of bystander 

CD4+ T cells [14]. It has been reported that IDO mRNA expression is elevated in PBMC from HIV+ 

patients compared to uninfected healthy controls, and that in vitro inhibition of IDO with the 

competitive blocker 1-MT results in increased CD4+ T cells proliferative response in PBMC from 

HIV-infected patients [10]. Although the effects of IDO on the proliferation of CD4+ T cells is 

recognized, the regulation of human IDO on the CD4 molecule of the cell surface is not well 

characterized. Therefore, it is of special interest to know whether immunosuppressive effects of IDO 

are related to the expression of the CD4 molecule. Since the cell surface expression of major 

histocompatibility complex class I (MHC class I) antigen is suppressed in IDO genetically modified 

cells [15], it is possible that IDO may downregulate the expression of some other cell surface markers. 

An induction of IDO expression and a progressive loss of T cell function in human immunodeficiency 

virus type 1(HIV-1)-infected patients [10,16] raises the possibility that IDO may downregulate this cell 

surface molecule. This led us to hypothesize that the expression of IDO might affect the expression of 

CD4 on the cell surface. In view of the immunosuppressive effects of IDO, we constructed a 

replication—incompetent adenovirus vector expressing the human IDO gene to test the effect of IDO 

on CD4 expression. Our studies revealed that IDO downregulated the expression of CD4 in infected 

MT-2 cells or C8166 cells. Further analysis disclosed that the downregulation of CD4 expression by 

IDO was significantly attenuated by the addition of tryptophan or IDO inhibitor in the infected  

C8166 cells.  

2. Results and Discussion 

2.1. Infection of MT-2 Cells with Either pAd-EGFP or pAd-IDOEGFP 

There is no evidence that human T cells can express IDO, however, the immuno-modulatory effects 

of IDO on T cells are related to the pericellular degradation of tryptophan [14]. Several cell types, 

including Ds and macrophages, may express IDO, which can be increased in response to IFN-γ and the 

expression of IDO in DCs can downregulate type 1 diabetes, in which CD4+ T cells are involved. 

Plasmacytoid dendritic cells (pDCs) express IDO and can downmodulate immune reactions through 

IDO-mediated tryptophan depletion [10]. At first, we were unable to infect PBMC with EGFP-marked 

adenovirus (data not shown), so we gave up using IDO-expressing DCs co-cultured with CD4+ 

T cells, which, after culture, could be analyzed for CD4 expression. Following this, two kinds of cell 

lines (MT-2 and C8166 lines) were used for the study, because the infection rate was high and  

(52%–74%) and the experiments were not complicated: instead of the co-culture system, the 

downregulation of CD4 could be checked in cultured T cell lines. 
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MT-2 cells were susceptible to the adenoviral infection. GFP expression could be visualized by 

fluorescent microscopy within 12 h of the addition of recombinant adenovirus (data not shown). The 

efficiency of infection was determined by fluorescent microscopy and flow cytometry (Figure 1A,B). 

As illustrated in Figure 1, more than 80% of MT-2 cells were infected by pAd-EGFP or  

pAd-IDOEGFP after 60 h of infection. To determine the IDOEGFP protein expression, MT-2 cells 

were infected with pAd-IDOEGFP at MOI of 100 for 60 h, then harvested and lysed with RIPA buffer 

and checked for IDOEGFP expression by Western blot using anti-GFP monoclonal antibody. As 

expected, EGFP (26-kDa) and IDOEGFP (68-kDa) protein bands were observed in cells infected with 

pAd-EGFP and pAd-IDOEGFP respectively, but not in non-infected cells (Figure 1C). To further 

confirm the expression of IDOEGFP fusion protein, the MT-2 cells infected with pAd-IDOEGFP were 

lysed and analyzed by Western blot with IDO polyclonal antibody and the results showed that a 

IDOEGFP protein band with a 68-kDa molecular weight was observed in these infected cells, but not 

in pAd-EGFP infected cells or non-infected cells (data not shown). 

Figure 1. The expression of IDOEGFP in MT-2 cells. MT-2 cells were infected with either 

pAd-EGFP or pAd-IDOEGFP at MOI of 100 for 60 h. (A) After 60 h of infection, the 

infection was monitored by EGFP expression under fluorescent microscopy. Original 

magnification 300×; (B) The efficiency of infection was determined by flow cytometry. 

After 60 h of infection, the cells were harvested and the numbers of EGFP positive cells 

were estimated by flow cytometry. Data are shown as mean ± SD, representative of three 

independent experiments; (C) Western blot analysis of IDOEGFP expression. After 60 h of 

infection, the noninfected (control) and infected cells were harvested and cell lysates from 

about 3 × 105 cells were fractionated by SDS-PAGE. IDOEGFP protein was detected  

using purified mouse monoclonal anti-GFP antibody at a concentration of 1:1000.  

EGFP = enhanced green fluorescent protein; IDO = indoleamine 2,3-dioxygenase;  

MOI = multiplicity of infection; pAd-EGFP = recombinant adenovirus containing  

EGFP gene; pAd-IDOEGFP = recombinant adenovirus containing IDOEGFP gene;  

SDS-PAGE = sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 

A

pAd-EGFP pAd-IDOEGFP 
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Figure 1. Cont. 

2.2. IDO Downregulates Expression of CD4  

The effect of IDOEGFP on the cell surface CD4 expression was evaluated in MT-2 cells at 60 h 

post infection. The CD4 expression was monitored by staining CD4 with PE-labeled antibody 

followed by flow cytometry analysis. As illustrated in Figure 2B,C, the expression of IDO in MT-2 

cells resulted in up to 2.2-fold downregulation of cell surface CD4 compared with those of nonviral 

infected and mock adenoviral infected cells (mean fluorescence intensity (MFI) of 166.3 ± 1.4 vs. 

373.9 ± 48.9, p < 0.01 compared with nonviral infected control for nonviral infected cells; and  

166.3 ± 1.4 vs. 383.7 ± 5.3, p < 0.01 compared with mock infected control for mock adenoviral cells). 

To rule out the possibility that adenovirus infection and EGFP might affect CD4 expression, MT-2 

cells were infected with mock recombinant adenovirus (pAd-EGFP) and the CD4 expression was 

analyzed. There is no significant difference in the cell surface CD4 expression between pAd-EGFP 

infected and non-infected MT-2 cells (MFI of 373.9 ± 48.9 vs. 383.7 ± 5.3, Figure 2B,C). These results 

suggested that the IDOEGFP expression itself specifically reduced the cell surface CD4 antigen in 

infected MT-2 cells. To further demonstrate that IDO downregulates the expression of CD4 on the cell 

surface, both the plasmatic membrane proteins and the cell lysate (lysed in RIPA buffer) extracted 

from infected or non-infected 6 × 105 MT-2 cells were loaded onto SDS-PAGE gel, followed by 

Western blot with purified mouse monoclonal anti-human CD4 antibody at a concentration of  

1 μg/mL, or with rabbit polyclonal anti-β-actin antibody (1:300 dilution). The results revealed that the 

expression of the cell surface CD4 molecule in MT-2 cells infected with pAd-IDOEGFP was reduced 

when compared with that in mock cells or with cells infected with pAd-EGFP (Figure 2D, the upper 

panel) while similar amounts of β-actin were detected in mock, pAd-EGFP or pAd-IDOEGFP infected 

MT-2 cells (Figure 2D, the lower panel).  
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Figure 2. IDO downregulates CD4 protein in MT-2 cells. MT-2 cells were infected with 

either pAd-EGFP or pAd-IDOEGFP for 60 h. At 60 h post infection, the cells were 

harvested and stained with PE-conjugated anti-CD4 monoclonal antibody. FACS analysis 

was used to determine the efficiency of infection (A) and the cell surface CD4 expression 

(B,C) on untreated, pAd-EGFP or pAd-IDOEGFP infected MT-2 cells. Panel A and panel 

B illustrate the results from two-color (PE and GFP) channel analysis, whereas panel C 

depicts the quantitative analysis of CD4 expressing levels in either noninfected pAd-EGFP 

or pAd-IDOEGFP infected MT-2 cells. Data are shown as mean ± SD, representative of 

three similar experiments; (D) Expression of cell surface CD4 by Western blot analysis. 

The plasmatic membrane proteins prepared from 6 × 105 noninfected cells or cell infected 

with either pAd-EGFP or pAd-IDOEGFP for 60 h, were fractionated by SDS 

electrophoresis on 8% acrylamide gel and electrotransferred onto a PVDF membrane. CD4 

was detected by using mouse monoclonal anti-human CD4 antibody at a concentration of  

1 μg/mL (upper line). In parallel, the cell lysates (with RIPA buffer) from the same amount 

of these cells were fractionated by SDS-PAGE. β-Actin was detected using rabbit 
polyclonal anti-β-actin antibody at a concentration of 1:300. ★ p < 0.01, compared with 

Control and pAd-EGFP respectively. 
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2.3. Downregulation of the CD4 Molecule by IDO Is Partially Tryptophan Dependent 

To test the possible mechanism through which IDO mediates the downregulation of CD4 

expression on the cell surface, L-tryptophan or IDO inhibitor 1-MT was added to C8166 cells 

including non-infected, pAd-EGFP and pAd-IDOEGFP infected cells at the time of infection, and at 

60 h post infection, the cell surface CD4 molecule was evaluated by flow cytometry and Western blot. 

Addition of L-tryptophan at a concentration of 200 μM or 1-MT at a concentration of 800 μM to RPMI 

1640 medium (containing 10% FBS) had no effect on the expression of CD4 in infected C8166 cells 

(data not shown) or pAd-EGFP infected C8166 cells (Figure 3B–D); however, the addition of 

tryptophan markedly increased the expression of CD4 molecule and partially restored the level of CD4 

expression in pAd-IDOEGFP infected C8166 cells (MFI of 92.4 ± 8.1 vs. 70.4 ± 10.1, p < 0.05, 

compared with pAd-IDOEGFP infected C8166 cells, Figure 3F–H). Meanwhile, the addition of 1-MT 

was also able to partially restore CD4 expression in pAd-IDOEGFP infected C8166 cells (MFI of  

93.3 ± 7.6 vs. 70.4 ± 10.1, p < 0.05, compared with pAd-IDOEGFP infected C8166 cells,  

Figure 3F–H). This partial restoration of CD4 expression in IDO infected C8166 cells by addition of 

tryptophan or IDO inhibitor strongly suggested that the depletion of tryptophan is involved in IDO 

induced downregulation of CD4 expression. 

2.4. Effect of IDO on the Level of CD4 mRNA in C8166 Cells  

The agarose gel electrophoresis of extracted RNA from each cell group show that the 28S, 18S, 

5.8S (5S) rRNA bands were clearly visible (Figure 4A). The PCR efficiencies of CD4 gene, β-actin 

gene and GAPDH gene were 96%, 97.5% and 98% respectively using the method of standard curves 

of serial dilution of cDNA and a strong linear correlation (R2 values = 0.995) was established. The 

melting curves in Figure 3 show the specificity of amplification for different cell groups (Figure 4B). 

The primer pairs for human CD4 gene were designed as described in the Materials and Methods 

section. There are at least five variants of CD4 mRNA and the primer pairs are common to all the 

variants. However, we could not perform RT-PCR using variant analysis for the CD4 molecule, 

because there were no specific primer sets for each variant. The CD4 expression in the transcription level 

was investigated by real time PCR. We found that there was no significant difference in CD4 expression  

in pAd-IDOEGFP infected cells compared with either non-infected, or pAd-EGFP infected cells  

(Table 1). These results indicated that IDO did not affect CD4 expression at the level of mRNA. 
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Figure 3. Addition of tryptophan and IDO inhibitor partially restored IDO induced 

downregulation of CD4 expression. C8166 cells were infected with either pAd-EGFP or 

pAd-IDOEGFP and added with either 200 μM tryptophan or 800 μM 1-MT at the time of 

infection. At 60 h post infection, the cells were harvested and stained with PE-conjugated  

anti-CD4 monoclonal antibody. FACS analysis was used to determine the efficiency of 

infection (A,E) and the cell surface CD4 expression (B,C,F,G) in untreated, pAd-EGFP or 

pAd-IDOEGFP infected C8166 cells added with tryptophan or 1-MT or without. Pane A and 

pane B illustrate the results from two-color (PE and GFP) channel analysis, whereas pane C 

depicts the quantitative analysis of CD4 expressing levels in pAd-EGFP infected C8166 cells 

added with or without tryptophan or 1-MT. Pane E and pane F illustrate the results from  

two-color (PE and GFP) channel analysis, whereas pane G depicts the quantitative analysis of 

CD4 expressing levels in pAd-IDOEGFP infected C8166 cells added with or without 

tryptophan or 1-MT. Data are shown as mean ± SD, representative of three similar 

experiments. (D,H) The expression of cell surface CD4 was carried out by Western blot 

analysis. The plasmatic membrane proteins prepared from C8166 cells infected with either 

pAd-EGFP or pAd-IDOEGFP and added with tryptophan or 1-MT or without for 60 h, 

were fractionated by SDS electrophoresis on 8% acrylamide gel and electrotransferred onto 

PVDF membrane. CD4 was detected using mouse monoclonal anti-human CD4 antibody 

at a concentration of 1 μg/mL in pAd-EGFP (D, upper line) or pAd-IDOEGFP (H, upper 

line) infected C8166 cells. In parallel, the cell lysate (with RIPA buffer) from the same 

amount of these cells were fractionated by SDS-PAGE. EGFP or IDOEGFP protein was 

detected by using purified mouse monoclonal anti-GFP antibody at a concentration of 

1:1000 and β-actin was detected using rabbit polyclonal anti-β-actin antibody at a 

concentration of 1:300 in pAd-EGFP (pane D, middle and low lines) or pAd-IDOEGFP (H, 
middle and low lines) infected C8166 cells. ★ p < 0.05, compared with pAd-IDOEGFP. 

Abbreviations: EGFP = enhanced green fluorescent protein; IDO = indoleamine  

2,3-dioxygenase; MFI = mean fluorescence intensity; 1-MT = 1-methyl-DL-tryptophan; 

pAd-EGFP = recombinant adenovirus containing EGFP gene; pAd-IDOEGFP = 

recombinant adenovirus containing IDOEGFP gene; SDS-PAGE = sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis. 
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Figure 3. Cont. 
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Figure 4. The expression of human CD4 mRNA in IDO expressing C8166 cells. C8166 

cells were infected with either pAd-EGFP or pAd-IDOEGFP, and at 60 h post transfection, 

the total RNA was extracted and the cDNA was synthesized as described in the Materials 

and Methods section. Panel A illustrate the total RNA from untreated (control), pAd-EGFP 

or pAd-IDOEGFP infected C8166 cells, extracted as described in methods and subjected to 

electrophoresis through a native 1.5% agarose gel; Panel B displays melting curves of  

RT-PCR product generated using GeneAmp Ster One Plus SDS software. 

C
on

tr
ol

pA
d-

E
G

FP

pA
d-

ID
O

E
G

F
P

28S

18S

5S

A

B

C
on

tr
ol

pA
d-

E
G

FP

pA
d-

ID
O

E
G

F
P

28S

18S

5S

A

C
on

tr
ol

pA
d-

E
G

FP

pA
d-

ID
O

E
G

F
P

28S

18S

5S

C
on

tr
ol

pA
d-

E
G

FP

pA
d-

ID
O

E
G

F
P

C
on

tr
ol

pA
d-

E
G

FP

pA
d-

ID
O

E
G

F
P

28S

18S

5S

A

B

 

Table 1. CD4 copy-number analysis by real time PCR. 

 
β-actin Ct 

(Mean ± SD) 

CD4 Ct 

(Mean ± SD) 
2−ΔΔCt 

GAPDH Ct 

(Mean ± SD) 

CD4 Ct 

(Mean ± SD) 
2−ΔΔCt 

Control 30.35 ± 0.10 32.44 ± 2.63 1 31.34 ± 0.06 32.33 ± 2.51 1 

pAd-EGFP 31.03 ± 0.46 33.58 ± 2.40 1.04 ± 0.05 32.34 ± 0.21 33.42 ± 2.55 1.02 ± 0.07 

pAd-IDOEGFP 30.89 ± 0.27 33.02 ± 2.25 1.08 ± 0.09 31.86 ± 0.42 32.78 ± 2.10 1.05 ± 0.02 

3. Experimental Section  

Antibodies and Chemicals—Antibodies used in Western blot, flow cytometric analysis and reverse 

transcriptase-polymerase chain reaction (RT-PCR) are as follows: the purified mouse monoclonal  

anti-GFP antibody was obtained from Clontech Inc. (USA); the purified mouse monoclonal anti-human 

CD4 antibody was obtained from R&D Systems (USA); the rabbit polyclonal anti-IDO antibody was 

obtained from Santa Cruz Biotechnology, Inc. (USA); the rabbit polyclonal anti-β-actin antibody was 

obtained from Beijing Boisynthesis Biotechnology Co., Ltd. (China); the polyclonal horseradish 

peroxidase-conjugated swine anti-rabbit immunoglobulins, and rabbit anti-mouse immunoglobulins 

were purchased from Dakocytomation (USA); PE-labeled anti-CD4 monoclonal antibody was 

purchased from BD Company (USA); the Western blot detection ECL kit was purchased from Pierce 

(USA); protease inhibitor cocktail, L-tryptophan, 1-MT and RIPA buffer was purchased from Sigma 

Aldrich (USA); ViraPower™ Adenoviral Expression System (including Gateway LR Clonase II 

enzyme Mix, Lipofecfamine 2000, Library Efficiency DB3.1 Competent Cells, DH5α Competent 

Cells, pAd/CMV/V5-DEST and pENTR 2B vectors), pEGFP-N1 vector and Trizol were purchased 

from Invitrogen (USA); Plasma Membrance Protein Extraction Kit was purchased from Nanjing 
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KeyGen Biotech. Co., Ltd. (China); DMEM, RPMI 1640 and FBS were purchased from GIBCO 

(USA); QIAGEN OneStep RT-PCR Kits were purchased from QIAGEN (Germany).  

3.1. Cell Culture 

Cell Culture and Transfection—Human embryonic kidney 293T cells were maintained in DMEM 

supplemented with 10% FBS. The CD4+ C8166 T cells and CD4+ MT-2 cells were cultured in RPMI 

1640 medium containing 10% FBS.  

3.2. Adenovirus Vector Construction 

The human IDO cDNAs were cut from pEGFP-IDO plasmid [17] and fused to the 5' end of  

pEGFP-N1 to generate IDOEGFP. We used ViraPower™ Adenoviral Expression System (Invitrogen) 

to construct Adenoviral vectors carrying IDOEGFP or EGFP genes, according to the manufacturer’s 

instructions. The IDOEGFP fragment was generated from pEGFP-IDO plasmid, digested with EcoRI 

and NotI and was inserted into a pENTR™ 2B entry vector at the same sites; the EGFP fragment was 

generated from pEGFP-N1 plasmid digested with KpnI and NotI and was inserted into a pENTR™ 2B 

entry vector at the same sites. An LR recombination reaction was performed between the cloned 

plasmid and pAd/CMV/V5-DEST™ destination vector by using LR Clonase™ enzyme mix, and the 

reaction mixture was transformed into competent DH5α bacteria, and the true expression clones were 

selected as ampicillin-resistant and chloramphenicol-sensitive. The success of IDOEGFP or EGFP 

insertion into adenoviral plasmid was confirmed by DNA sequencing. Adenoviral vectors carrying 

either EGFP (pAd-GFP) or IDOEGFP gene (pAd-IDOEGFP) were then linearized by PacI digestion 

and used to transfect 293T cell using Lipofecfamine 2000 reagent. Transfected cells were monitored 

for GFP expression and after three cycles of freezing in a liquid nitrogen bath and rapid thawing at  

37 °C, the cell lysates were used to amplify viral particles on a large scale. The viral titer was 

determined in a 96-well plate according to the manufacturer’s instructions. 

3.3. Infection and GFP Detection 

Recombinant adenoviruses were used to infect MT-2 cells or C8166 cells at a multiplicity of 

infection (MOI) of 100. Cells were harvested after 60 h of infection. The efficiency of infection was 

determined by flow cytometry (FACScan; Becton Dickinson Co., USA) measuring the GFP protein 

expression and fluorescent microscopy using a Nikon inverted microscope equipped with an FITC 

filter to view GFP. Images were captured by a digital camera. 

3.4. Flow Cytometric Analysis 

The expression of CD4 and the efficiency of infection on the cell surface were determined by flow 

cytometry. After direct immunofluorescence staining using PE-labeled anti-CD4 monoclonal antibody 

for 30 min, nonspecific binding was removed by washing the cells twice with cold PBS and two-color 

flow cytometric analyses were performed. A total of 10,000 events were collected by the FACScan, 

and the data were analyzed using the CellQuest software (Becton Dickinson Co.). 
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3.5. Western Blot Analysis  

To detect the expression of IDOEGFP and cellular protein β-actin, the cell extracts were prepared 

from normal or infected cells lysed in RIPA buffer supplemented with protease inhibitor cocktail. 

Extracts were centrifuged at 14,000 rpm for 10 min. Then the supernatants were run onto SDS-PAGE 

gel and the proteins in acrylamide gel were transferred to a polyvinylidene fluoride (PVDF) membrane. 

Immunoblotting against IDOEGFP and β-actin was carried out. Blots were initially incubated with 

mouse monoclonal anti-GFP antibody at a concentration of 1:1000, or with rabbit polyclonal  

anti-β-actin antibody at a concentration of 1:300, followed by incubation with HRP-conjugated 

secondary antibody respectively. To check the expression of cell surface CD4 molecule, the plasma 

membrane fraction from normal or infected cells was obtained using a Plasma Membrane Protein 

Extraction Kit according to the manufacturer’s instructions. The plasmatic membrane proteins were 

fractionated by SDS electrophoresis on 8% acrylamide gel and electrotransferred onto PVDF 

membrane, then the membrane was incubated with 1μg/mL mouse monoclonal anti-human CD4 

antibody, subsequently with HRP-conjugated rabbit anti-mouse antibody. Protein bands were 

visualized by using the ECL Kit followed by autoradiography. 

3.6. Real Time PCR  

Total RNA in the C8166 cells of each group was isolated by Trizol reagents (Invitrogen, USA). The 

purity and quantity of RNA were determined with a UV spectrophotometer with A260/A280  

ratio >1.8 and the integrity of extracted RNA was tested by agarose gel electrophoresis. cDNA was 

generated from 3 μg of total RNA by utilizing a cDNA synthesis kit (Promega, USA) and oligo d(T) 

primers according to the protocol recommended by the manufacturer. The sequences of primers of 

human CD4 gene were designed according to the gene sequences and synthesized by Shanghai 

Genecore Biotechnologies, Shanghai, China. 5' Oligonucleotide primers used for amplification were as 

follows: for human CD4, sense 5'-GTATGCTGGCTCTGGAAACCT-3' anti-sense 5'-GAGACCTTTG 

CCTCCTTGTTC-3'; for human glyceraldehyde-3-phosphatedehydrogenase (GAPDH), sense  

5'-AGAAGGCTGGGGCTCATTTG-3' anti-sense 5'-AGGGGCCATCCACAGTCTTC-3'; for human 

β-actin, sense 5'-TGGCACCACACCTTCTACAATG-3', anti-sense 5'-TCATCTTCTCGCGGTTGGC-3'. 

One microgram of the total cellular RNA extracted with Trizol Reagent (Invitrogen, USA) was 

subjected to reverse transcription by utilizing a cDNA synthesis kit (Invitrogen, USA): incubated at  

70 C for 5 min, 37 C for 5 min, then 42 C for 60 min, and finally cooling. The real-time quantitative 

RT-PCRs were performed using the ABI Step One Plus Sequence Detection System (Applied 

Biosystems) and analyzed with GeneAmp Ster One Plus SDS software. RT-PCR reactions were 

performed with the Universal TaqMan 2× PCR mastermix (Applied Biosystems, CA, USA) in a  

20-μL reaction volume containing primers for human CD4 or GAPDH. The thermal cycling conditions 

were 2 min at 50 C and 10 min at 95 C, 40 cycles at 95 C for 15 s and 60 C for 1 min. The 

software was used to analyze data and calculate Ct (threshold cycle) values. The CD4 and GAPDH 

transcript levels were estimated using the formula 2−ΔCt where ΔCt represents the difference in Ct 

values between target and housekeeping assays. To confirm the specificity of amplification, melting 

curve analysis was carried out after the last cycle of each amplification. To know the PCR efficiency 
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the standard curves were constructed using serial dilution of cDNA from each group (each 

concentration in triplicate).  

3.7. Statistics  

Statistical analysis was conducted using SPSS version 10.0, and results were shown as  

means ± standard deviation (SD) and were analyzed statistically by using Student’s t-test. Probability 

values of <0.05 were considered significant. 

4. Conclusions  

In a set of seminal studies, Munn, Mellor et al. [5,8] reported evidence that IDO activity was able to 

prevent allogeneic fetal rejection due to IDO abrogating maternal T cell-mediated immune responses 

in mice. Subsequent studies have broadly extended the immunosuppressive role of IDO in a variety of 

physiopathological conditions, ranging from pregnancy [2,7,8,18] to transplantation [19–22], from 

autoimmunity [23–25] and inflammation [10,16,26,27] to neoplasia [28–30]. It is important to know 

how IDO modulates T cell-mediated immune responses and leads to immunosuppression, since IDO 

has been shown to be implicated under these physiopathological conditions. It has been reported that 

IDO arrested activated T-lymphocytes in the G1 phase, inhibited T-cell proliferation [6,16], induced 

apoptosis of thymocytes and terminally differentiated T helper cells [31], downregulated the TCR  

ξ-chain [32], and upregulated CD25+ T regulatory cells [33]. To determine whether downregulation of 

the cell surface CD4 molecule by IDO has a role in the onset and regulation of the antigen-specific 

immune responses, two recombinant adenoviruses bearing either the EGFP (pAd-EGFP), a reporter 

gene, or the IDOEGFP gene (pAd-IDOEGFP) in which the gene of IDO was fused with the EGFP 

gene without a stop codon, were constructed in our laboratory, and a series of experiments for IDO 

immunomodulatory mechanisms were carried out. It was shown that when GFP coding gene is fused 

in frame with the target gene, the resulting polypeptide contains both fluorophore and enzymatic 

activity of the target protein. This GFP fusion protein can be easily detected by fluorescence 

microscopy or flow cytometry, thereby enabling the tagged proteins for gene regulation analysis [34]. 

For example, we fused YFP gene to integrase gene of HIV-1 and studied subcellular localization of 

this enzyme [35]. Of course, before determining whether IDO downregulates the cell surface CD4 

molecule, we demonstrated that IDOEGFP protein inhibited the proliferation of C8166 cells infected 

with pAd-IDOEGFP (data not shown), thereby disclosing that the function of IDOEGFP protein is 

consistent with IDO protein. 

By using MT-2 and C8166 cell lines that express the cell surface CD4 molecule, we showed for the 

first time that IDO downregulated the cell surface CD4 expression in these cells infected with  

pAd-IDOEGFP. Further analysis revealed that the downregulation of CD4 expression was partly due 

to the depletion of tryptophan. Because CD4 exerts a subtle influence on the natural status of immune 

responses, by influencing the sensitivity of antigen recognition and the precise nature of the  

response [36], these findings provide direct evidence showing that downregulation of CD4 is one of 

the mechanisms underlying IDO-mediated local immunosuppressive effect in vivo. Previous studies have 

suggested a strong correlation between IDO expression and the loss of T cell function in HIV-1-infected 

patients [10,16]. Some research demonstrated that HIV-1 inhibits CD4 + T cell proliferation by inducing 
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IDO which might account for the impairment of T cell responses in these patients [10]. Our results 

hinted that IDO may impair T cell-mediated immune responses by downregulation of the cell surface 

CD4 expression. Although CD4 downregulation can be carried out by HIV-1 virus protein, such as 

HIV-1 Nef [37,38], it is interesting to discuss why cellular proteins, such as IDO, downregulate the 

cell surface CD4 molecule. Our results indicated that IDO induced downregulation of CD4 in MT-2 

and C8166 cells. The most likely reason for the CD4 downregulation by IDO is the depletion of 

tryptophan. Tryptophan is the least available essential amino acid in the body, and T cell is susceptible 

in the absence of tryptophan [10,14,32]. Degradation of tryptophan by IDO might affect protein 

synthesis, and may probably downregulate the CD4 molecule on the T cell surface. Moreover, it has 

been well described that IDO expression can induce T cell apoptosis [5,6,9,10]. When there is a forced 

expression of IDO, it probably reduces the number of CD4 counts as the CD4 is the marker for T cells. 

In our experiments, both addition of tryptophan and 1-MT can partly restore downregulation of CD4 in 

pAd-IDOEGFP infected C8166 cells. Furthermore, our results demonstrate that downregulation of 

CD4 by IDO only occurred at the protein level, but not at the mRNA level, further implicating the 

possible role of tryptophan deletion in the regulation of CD4 expression. However, addition of 

tryptophan and 1-MT could not completely recover downregulated CD4 to the normal level in  

pAd-IDOEGFP infected C8166 cells, suggesting that besides depletion of tryptophan, other factors 

might also be involved in the downregulation of CD4. Therefore, it remains to be further investigated 

whether tryptophan metabolites induce downregulation of CD4, or CD4 downregulation requires the 

combined effects of tryptophan depletion and tryptophan catabolites. It has been proposed that HIV-1 

Nef has the ability to downmodulate CD4 cell surface expression and that a leucine residue of the 

E160xxxLL motif in Nef is essential for the downregulation [39,40]. There is a E192xxxLL sequence 

in IDO and whether this motif is related to downmodulation of CD4 requires further study. 

In conclusion, the data suggest a novel mechanism of immune regulation, of which IDO induces 

cell surface CD4 downregulation. Depletion of local tryptophan seems to be one of the reasons that 

IDO downregulates the expression of CD4. This observation strongly suggests that IDO may regulate  

T cell-mediated immune responses by downregulation of cell surface expression of the CD4 molecule. 
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